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I. Introduction

The fundamental property of squeezed light is the reduced
quantum fluctuations in the one-quadrature phase.

After the early works by Caves [1}) in which the potential
application of squeezed light for detection of gravitational
waves was shown, a large amounf of theoretical [2-16] and ex~-
perimental works [17-18] is concentrated on the generation
of squeezed light and its application to overcome the short-
-noiee limit [19]. In recent works the radiative decay [21]
and spectroacopic properties [22] of an atom interacting with
a broad-band squeezed vacuum have been considered.

In this work we discuss the collective resonance fluo-
rescence from N driven atoms which are damped by white squeezed
noise. In the case of intense external field the stationary so-
lution for the density operator of the atomic system is given.
In the general case (without the case of exact resonance) the
density matrix of the atomic system is dependent on a phase
difference of the driving field and squeezed vacuum. The depen-~
dence of the spectrum of fluoreascence and photon statistics of
spectrum components on the parameters of the squeezed vacuum

are analyzed.

II. Basis equations

Let N two-level atoms be concentrated in a region small com-
pared to the wave-length of all the relevant radiation modes
(Dicke model). The atoms are interacting with a classical driv-

ing field of frequency @, and with the quantized multimode ra-



diation field. The Hamiltonian of the system in tl® electric
dipole, rotating-wave approximations and in the interaction pic-

ture can be written in following forms
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where §= 054-60,_ is the detuning of the lase? frequency

-t L
from the atomic resonance frequency ai Ge =/¢E, where/

P H
is the atomic dipole moment end € is the amplitude of the
driving field; 'Ti,' ({,i=4,2) are the collective (angular) ato-

mic operators which satisfy the commutation relations

(3. 041 =23,.8, - 7., ¢
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Hpad is the free Hamiltonian for the quantized radiation field;
I and r* are operators defined in terms of the positive and
negative frequency components of this field, respectively.

The normel treatment of the resonance fluorescence is con-
ridered in many worke [223.281 4n whish +he quantized rodiaticn
field is initially taken in the usual vacuum state,

In this work we assume that all the quantized radiation
modes coupiing to the atoms initially are squeezed [20-22].

The band-width of the squeezing is assumed to be sufficiently
broad so that the squeezed vacuum appears as cr-correlated
squeezed white noise to the atoms. Then, the correlation func—
tions for free parts [ and Cr:e (the noise operators) of

Sree
the operators [ and I'* can be written as [20-22]
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where ¥ is the spontaneous emission rate of an atom in the
usual unsqueezed vacuum; P and @= IQ! e' are the parameters
characterizing the squeezing with IGI% P(P+1) , where the equa-
lity holds for a minimum-uncertainty squeezed state.

Using the relations (1) and (3) and after mak:l.ng the uni-

- Pe -
tary transformation U =€ (Je= 930 )

, one finds the master
equation for the reduced demsity operator § of the atoms in
the following form [20]:

¢ . {
2t = =i Z& SRR @(Jy+ 8, § ]

t lr("”)('rf.tf‘]:14 TR PR A H.c.)

P.( Iy %y = T 0,5 H.C.)

0
Q

-id . e
(4,89~ 3+ #e)

¥ ‘¢ L H.c.)z L

Liare'” (3,87 -3 s+mc)zlg,

2 LT 4)

whore h = 20 _ & ia the nheme difference of the driving field
’ - L 4 -

and squeezed vacuum.
Following previous works [23,26J we introduce the Schwin-

ger representation for the collective atomic operators Jij .

J. = a.a. (.1 =1.2) ) (5)

where the operators a,.. and a: obey the boson commutation
relations
* = &
[a,. a ] = f
and can be treated as the annihilation and creation operators
for the stoms being populated in the level I (3.,

Afier performing the csnonical (dressing) iransformation

= C, Sin ’
a,' = C4 o3 g ¢+ 7 3 (6)
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where tg(l-G) = 26 /8 )
one can split the Liouville operator L appearing in equation
(4) into the slowly varying part and the terms oscillating at
frequencies €41 and 441 , with 41 denoting one half of the
Rabi frequency. We assume here that the Rabi frequency is suf-
ficiently large and satisfies the relation .

a = it e ) » oy * M
In this case the secular approximation [23-24J is justified
and we retain only the slowly varying part of the Liouville
operator, We have then the master equation
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where R“ = C; CJ. (i, j=4,2) are the collective operators of

"dressed" atoms satisfying the commutation relation

CR, , R )= R 5” - R, 6".1, y (9)

B= ¥(Pe+l- lalcese) sin%. cos’s ' o)
x1 = {-[P(ms"g + sc»’§)+ co.s';w glalcesé.

sin%. cos*¢ ] , 1)

Xz= g [P(cos"gf stn'q)f sm’q + 2I@] cos . 12)
sin*¢. cos*¢ ] )

Ry= Ry-R. (13)

£=T¢ T’, where T is the unitary operator representing the

canonical tranaformation (6).

The master equation (8) gives the exact steady-state

solution -
. -1 N ”4
¢=1 L X 'nq><n1' ’ (14)
1;1:0
where
X = x’ / XL ) (15)
Ned
Z= (x"-1)/(x-1) (16)

The state In‘) ie the eigenstate of the operators R" and

R“ + RIL . The solution (14) allows one to calculate all the

stationary expectation values of the atomic observables. Some

of the results that will be needed for our further coneliderations

are given in Appendix. In the case of exact resonance cig?: 4
one shows from (11)-(12) end (15) that X =4 and the solution

(14) reduces to N

~ -4 i
f = (N+1) nz_ol'n,><n,l - an
=

The esolution (17) is independent of the parameters P, @ of the
squeezed vacuum, consequently all the one-time expectation va-

lues of the atomio observables are independent of that the
vacuum is squeezed or not. In the general off-resonance case
the density operator F in (14) is phage-gensitive and all
the steady-state expectation values of the atomic and field
observables are dependent on the parameters of squeesed vacuum.
In sections III and IV we investigate the influence of the
squeesed vacuum on the fluoresocent spectrum and photon statis-

tios of spectrum components.

ITI. Stesdy-state fluorescence spectrum

Pollowing the work [22] the steady-state spectrum of the
fluorescent light has been calculated as the Fourier transform

of the atomic correlation function

= 2 . 18
(G 03, fa:l.’ <L ro] 0> (18)



Thie scheme for calculating the spectrum assumes that there
exists a small "window" of unsqueezed vacuum modes through which
we can view the fluorescence. For the case N> P the intensity
of the fluorescent field dominates over the squeezed noise thus
a "window" of unsqueezed vacuum modes is unnecessary, where

<o % denotes an expectation value over the steady-state

(14). According to the transformation (16) we have

. 2 .2
= . - Sitn .
I“{t)- Sing.cosG R, (t)+ Cos G R, (£)- ¢ gRa(t)
(19)
The equations of motion for < R (t)> can be derived by

using the master equation (8), and have the following form

d (R (0)>= -3 <R(t))-Y<R(t)>+ wSav),
di 2 (20)
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Y=Y [(P+1)(192.5in% cos % )- Lialcos ¢ cas% sin 6_] e
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b’cz I(Stné—“-ff)- (25)

Equations (20)-(22) are so far exact. They contain, however,
terms with the products of operators which make them unsolvable
in the general case.

Por the one-atom case one can use the well-known operator
relation

R..R..., = R., 5 . (ﬁ,j,i:j'-.— i,2)

vy (] ty L’J (26)

and equations (20)-(22) reduce to the linear differential

equations
ﬁ(Ra(i)>=-);<R;(t)>+¢¥C Y e
it <R (8))= - 2iACR 0> - ¥, RS, (5
d - 4 * \
A < R ()} = 1t <R ) . (29)

Linear differential equations (27)-(29) are exact solvable and

their solutions are in agreement with the previous work on the

resonance fluorescence of an atom in a squeezed vacuum [22].
For the case of exact resonance, i.;a., Ctgz‘g = 4 we have

32: o and all equations (20)-(22) reduce to exact solvable

linear differential equations.
In the general case, to deal with the product terms we apply

a decorrelation scheme similar to that used by Compagno and
Persico [25]. The only difference consists in the fact that

we decorrelate symmetrized products of operators (anticommu-
tator). This allows us to preserve one-atom terms unchanged and
clearly separate them from the collective terms. The decorre-
lated operators that do not enter into the equations as "proper®
variasbles are replaced by their steady-state averages calcula-
ted with the density matrix (14).

CfRLR§D> = TRy Ry >=2lR R (30
With such approximations equations (20)-(22) have simple ex-
ponential solutions with the one-atom (i.e. Xo’ 3’* ) and collec-
tive (1,e.§.(Ry}) damping constant clearly sepsrated. Upon
neglecting the collective part one immediately obtains the one-
atom results, By using the density matrix (14), one can show
that [23,25] in the case of large N the decorrelation (30).
yields a small error (with an order of N.”) in the calcula-
tion of the steady-state fluorescent spectrum. The explicit

expressions for the collective terms of the damping constants



can be obtained with the use of the steady-state averages
given in Appendix.
Using the relation (19), the solutions of equations (20)-(22)
and applying the quantum regression theorem [21], one obtains
the following expressions for the correlation function (18)
(0T, = sin'g Ry B EEARRIEL
;: € + 2c1T

+ cos™s. <R e Kie % e ~
-y T
. + 5in%6. cosG « Rs % - Ic )e °+ St'u&g.(ay‘g I, |,
where (1)
Te =% (N%aw)<Ry) /3 ’ (32)
;;, % + ¥ <Ry ’ (33)
Y= % . % <Ry : (34)
The expressions for the weighting factors of the parti-

cular exponents are given in Appendix.
The steady-state .spectrum of the fluorescent light is pro-
portional to the Pourier transform of the correlation function

(31) and has the following forms

P i(w-w, )T
S(w) ~ .1. Re [ § e ¢ - <3, rt).r 2 Jt]:
o

) ' 2
- sin'Geos™G (<R -1, ). __Xg_z_:t +
(W-w )% ¥y
L (]
+ cos ¢-<R % L
% ke % (oo w -an)*s I
+ Stng {R 2 ?;L
.2 2
+ z‘—‘u‘n gesg I S(w-w, ) . (35)

The fluorescence spectrum (35) contains three sapectral lines

centered at frequencies W= &) ; W $20 ., In the off-resonance
2

case, i.e., when cig G ¥ 1 the centrsl line at ws= w‘_ contains

the elastic component with the intensity proportional to Nt
and the Lorentzian shaped component with the linewidth 3”: and
intensity Sc¢» §C°S % (<R - I, ) . The two-sidebands are
Lorentzians of linewidth )’* centered at frequencies a):u{-lﬂ.
and W= W, +22 , and having the intensities which are pro-

12 44>s fnd C""§< PR PP

pectively, In the case of exact resonance we have l;.. O and

portional to S¢n § (R 2 , res-

the spectrum (34) reduces to

Yo
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where ¥, and ¥, are the one-atom linewidths (see egs. (23)-

+
(24)) being taken for the case of exact resonance
Y, = ¥[ Pei + 1l cosd] , (1)
¥. = Xr3ps 2. 1a)cosd] : (38)
; x - F -

It is clear from the relations (36)-(38) that in the case of
exact resonance the elastic component vanisheé, the :Lntenlh
ties of all three inelastic components are proportional to Nz
and are independent of the parameters of squeezed vacuum while
the linewidths, and consequently the peak intenaities, are
dependent on the parameters of the squeezed vacuum and become the
phase-sensitive quantities. For an illustration we assume the
sqieued vacuum being in a highly quueezed minimum-uncertainty
state, i.e., P> 1 and Q= (P+P%) % we haves

X " if = o

{ b2 2PY ¢ (39)
¥y ~ X if ¢ = )
b P :
Y ~ PY ir = o
Y, = + (40)
;’ ~ 2Py if ¢ = ’



thus, the sidebands are broadened while the central peak has
a supernatural or subnatural linewidth by changing the phase
difference ¢ by 7 .

In another case when P<<41 and @ =(P+ P"“‘ we have

Y - ] ¥  f =
%D’o..l(zftr’?')) 3 ¢ $=zo0 )

Y,z ¥(4-7) < % e $ =1

—-~x 3 3 .. = ,
i‘+~i‘;"‘;)‘t' #  d=o (42)

-y ,

Y, 2 g(2+)> 2y ¢ 4 =n

thue the narrowing or expansion of the linewidths of the cent=-
ral component and sidebands take place in the dependence on
the phase difference 4 . We note that the narrowing or expan-
sion of the linewidths are sufficiently large when squeezed va~-
cuum is in highly squeezed (P >> 4) minimum-uncertainty .state
(see relations (39)-(40)).
in iue uif-icscuands sase, =¢ ia clear fram ana. (32)-(33)

the linewidths contain the one-atom ( B; AR A ) and collective
parts (B; < R5 % ) and they are, in the general case, dependent
on the parameters of squeezed vacuum. For large numbers of
atoms N3» 1 from relation for {R, }s given in Appendix one
finds

Y(R, D = Z~4]szn“§- cos% | o ct’zgv;tlJ
s 2 43)
thus, for the case of ¥ > {1 the collective part of the specirum

linewidths is independent of the parameters of squeezed vacuum

and dominates over the one-atom parts f,, Y* . Consequently the

spectrum linewidths are approximately independent of that -the
vacuum is squeezed or not.

Contrary to the exact-resonance case the intensities of
the speotrum components are strongly depend on the parameters

of the squeeged vacuum. In fig, 1 a~d the relative intensitiea

10

00 10 20 30 ctglg

Pig. 1.

The relative intensities I, /N (8olid curves) and I_’ Iy
(dashed curves) as functions of the parameter dglﬁ for N= 25
(a-b) and Nz 50 (c-d). The curves (1)-(3) correspond tot

Pzidl= o0 3 P:z.lm:(P'-'rP)%. ¢=0 and P=2 ,IGI=(P‘5P)'/f'
&= 1 , respeotively,
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of the two sidebands, i.e., the quantities I_,/~= 3"71-45 ..(Rv«t”‘g%'
(deshed curves) and Iﬁ /N :@s'g,(&'kﬂ% /” (s0lid curveas)
are plotted as functions of the parameter cig’q for vari- .
ous values of P , /@) and ¢ . In fig. 2a<b the relative
intensity of the central line (the sum of elastic and inelastic
components), i.e., the quantity I°/N" = St'n‘§ COSJ? (’\’;% /,z
is plotted as a function of the parameter Cfg zé for the same
values of P, |@! and ¢ , It is clear from fige. (1)-(2),
except for the point of exact resonance, that the intensities
of spectrum components are sirongly dependent on the parameters
of squeegzed vacuum and become phase-gensitive values. In un-
squeezed vacuum (see curves 1 in fig. 1, 2 the intensities of
the two sidebands are equal and spectrum is symmeiric. In the
squeezed vacuum (see curves 2 and 3 in figs.1 a-d) the inten~

gities of two sidebands are quite different for the off-reso-

0.3} ’ N=50

. . ) . ¢
00 10 20 30 ctgZ 00 10 20 30 cig?
B d.

The rélative intensity I, /yt as a function of the parameter
dq‘f for Nz 25 (a) and A= 50 (b). The curves (1)-(3) corres-

pond tos P=zl@lzo; P=2,|QI= cr% P)V,‘ é=0 and p-13 .lle(P’fP)’%

é= N , respectively.
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nance case cig"f# {/ and spectrum becomes asymmetric. For a

large number of atoms N>> 4 from the relations for (R“ Ra %
2

<R14. &4 % and <R5 % given in Appendix, one finds

I, = cost . N/ix-1 f clgfe x4,

I, = 54"’"’§ . NX/1x-4) o f Clglg +1 ,
sin's. costG (N xf:% ) s clg's >4,

I, = sin'G. cos% (W% _3_:% y if cdg*¢ <4 |

thus in the off-resonance case the intensities of spectrum
components are strongly dependent on squeezed vacuum even for a
large number of atoms N 4/ when the spectrum linewidths are
independent of one.

IV, Photon statistice of the spectrum components

In this section we discumss the influence of the squeeged
vaouum on the photon statistios of the spectrum components.
As is clear from the previous section and eq.(19), the

operators Cos's K, Singcosg Ry and-Sixg R, can be considered

’
as oporntor-eourc:s of the spectral lines centered at frequ-
encies W= w, ol-ﬂ-;u{ and wL--m and for later use these ope-
rators will be denoted by .5;4' , So‘;Soand 6:; , respectively.
Following refs. [23,28] we introduce the degree of second-order

coherence for the spectrum component Se ( €= 22{)in the fol-

lowing form .+

w <% ¥$%
ee (<8550

The quantity G;t) describes the photon statisti_cs of the

(£=0,24) . (44)

spectrum component S‘ .

Ueing eqs. (14) and (19) one finds
2 4 22
G = <RI JU<RD) ;s

0,0

’

13



(2’ )
G = SRR Ry Ry % KRRy, S ) G ,  (46)
E4

-4,- 1,4
where the expectation values <R52" < Rs %

< R

are given in the Appendix.

’

, KR R R R,

12 24> 12724 24

’1‘- :c

The degree of second-order coherence Go ; as a function of the
parame ter cig G for fixed Nz 25, The curves (1)-(3) corres-
pond tos Pajalzo; P=2 ,18/=(P%P) /“ ¢=0 and P=L ,
IQ"—‘(P‘:’ p)% ,¢= N , respectively.

2)

hd OREY) N =25
®
191 @
@
@
10 20 30 ctg?
-_
P.is‘ 1.
)
The degree of second-order coherence Gﬂ 24 as a function of

the parameter Cfg G for fixed ¥= 25, The curves (1)-(3) cor-

[)
respond to: Pzi@lzo0 ; P=2 ,|@l =(P%HP) é‘f-omd P= 2,

IGI*(F"';P)‘/z » = N , respectively.

14

Por the one-atom case, by using the operator relation (26)

one finds
) 2) «)
G = 4 ) G‘ = @ = 0 P
0,0 11 -4,-1

thus the photon statistice of the oentral component remains
Poissonian and the sidehands have subpoissonian statistics as
for the case in the unsqueezed vacuum.

Por the collective case, the degrees of second-order cohe-
rence for the spectral lines given in (45)-(46) are dependent
on the parameters of squeezed vacuum and become phase-sensi-
tive quantititea. The behaviour of the degrees of coherence G o
and G“ 4 "as a function of the parameter Cfg & for fixed ”-25
and for various values of P, IQ) and ¢ 1is plotted in figs. 3
and 4, respectively. As is clear from figes. 3-4, except for the
point of the exact resonance ctg’f = 4 , the parameters
of the squeezed vacuum including the phase difference ¢ play
an important role in determining photon statistics of the Mol-

IR Ty g iy
AV vaapav e

v. Conclusions

We have considered the problem of collective resornance fluo-
rescence in the squeezed vacuum., For the intense external field
the analytical solution for the steady-state density operator
for the atomic system is found. Analytical formulas have been
derived for the spectrum of the resonance fluorescence and for
the degrees of the second-ordered coherence for the spectrum
companents.

It has been'l shown that in the case of exact resonance the
intensities of the spectrum component are independent of squeezed

vacuum while the linewidths are subnatural or supernatural in

the dependence on the parameters P, IQ ! and phase difference

15



® of the driving field nnd.aqueued vacuum. Contrary to the
exact resonance case, in the off-resonance case the intensities
of the spectrum components are dependent on the squeeszed vacuum
and the spectrum become , in the general case, asymmetric while
the linewidths are approximately independent of the squeesed
vacuum for a large number of atoms N> 4 ,

We have also shown that in the collective and off-resonance
case the photon statistics of spectrum components are dependent
on the parameters of the squeezed vacuum and become phase~sen-

sitive qdantitiea.

Appendix

In this Appendix we give the explicit expressions for the
steady-state averages of the atomic operators that can be calcu-~

lated with the use of the density matrix (14)
Ned E 2
<R, > =1 [Nx T x] 0" Gy

- ["FY &
» 5 (AN AN-1) X
SRy %=1 TN TE N ) +

3
N+d 7
s e x M xS x] S0 ' (A2)

P 3 N+h s .2 N+3
T(INTAINZBNL1)X +
(R1y = 27w :

2 Ned
+(3N"+GN-4)X”’—(N’+3II&+JN+4)X +

s X% 4x% x] /(x.4)4 ' (Ae3)
KRS = 2 NSl e ant entcn-a)x”
e (64 1sn L on? qansq) A Y3
T LI LI T RAPTITD| x 2 N 4wy

5
NPYPULY Rt xtauxtuxtx] fox-1) ,
' (Aod)
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'<R5>s=~-.z4n“% ,
(A.5)
A 2 3
<R5>s = 4 <R11>S -4”<R41>‘ + ” ) (A.6)
2
I
<R14R41> = - <Ry tNA)SR, Z 4N, (a8)
4 3 g, ,2
<Rb>s= 16<R > - BINCR D + 24X <Rﬂ>s
-sw3<R“>s + wt , (A.9)
SR R Ry R D, = CRY> - 2ewred<R) > o
12712724 'Yy - L] H s

+ (N +5/V+5)<R % - (N%3N+2)<KR > -
1°5 (A.10)
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CnexTpanbHeie M CTaTHCTHYeCcKHe cBoHCcTBa
XONNIEKTHBHON pesoHaHCHOH ¢uyopecleHIHH
B CXaTOM BaKyyMe

O6cyxpaeTca npolieMa KolljleKTHBHON pesonalcHolt ¢nyopec-
HeHUNH aToMOB B GelloM cxaToM wyMe. [lojslyueun aHanuTHYeckHe
¢opMyNnH AnA CneKTpa pesoHaHCHON duiyopecLeHUHMH H ANS CTe-
NMeHN KOrepeHTHOCTH BTOPOI'0 NOPAAKA CHEKTPAaNbHLIX KOMIIOHEHT
JloxasaHe CYXeHHe, YHHpEeHHEe CHeKTpanbUuX JHHHH M acHM-
MeTpHA CcneKkTpa, KOTOpHe BOSIHKIM H3=-3a CKaToro wyma,

PaGora punonitena n JlaGopaToplilt TeopeTHUCCKON (PHINKH
OUsn.

Mpenpuxr O6sensoHNOro HHCTHTYTA AROPHLIX Hecnononanuil, [yGua 1988

Shumovsky A.S., Tran Quang E17-88-325 .
Spectral and Statistical Properties of
Collective Resonance Fluorescence in
a Squeezed Vacuum

The problem of collective resonance fluorescence of N
driven atoms which are damped by a white squeezed noise
is discussed. Analytical formulas for the spectrum of re-
sonance fluorescence and for the degree of second-order
coherence for spectral lines are calculated. The narrow-
ing, expansion of linewidths and asymmetry of spectrum
caused by squeezed vacuum are shown.

. The investigation has been performed at the Labora-
tory of Theoretical Physics, JINR.
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