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1. Introducticn

Glassy behaviour of high-'I‘c superconductors (HTSC) first reported
by Miiller et al. /1/ was then studied by varicus methods both in the
ceramic samples /2,3/ and single crystals /;,5/. Morgenstemn et al. /6/
presented numerical simulations for a 2-D system of clusters coupled by
Josephson tunnelling which reproduced main features found in high-'I‘C
superconductor experiments. Important is the proposal made of a phase
diagram in the H-T plane showing possible states of the system. Ana-~
logous to the experiments of Miiller et al. /1/ the rumerical simulations
led to the existence of a quasi-de Almeida~Thouless (AT) line separating
the superconducting-glass (S0G) phase and the normal conducting regime
at H<H (H!=0.5 the mgnetic field in wnits of 2%/ ). But at
H > H together with the SCG phase the Josephson spin-glass (JSG)
phase exists,

The numerical simulations /6/ were performed for the magnetic
field up to H = 0.4 since at higher fields equilibrium is hard to attain.
Therefore, phase boundaries between the JSG phase and the SCG phase and
nomal conductor phase are to be refined. '

A phase transition line Tc (H) was calculated in /7/ analytically
for an analogous system described with an XY model. The results of pa-
per /7/ are valid at strong fields H>H: leading to strong frustra-
tion effects, i.e transition to the JSG phase. Follawing the method ex-
ploited by Vinockur et al. /7/ we study here the quasiequilibrium (static)
properties of the model for weak coupling superconducting clusters /6/
in an arbitrary magnetic field. Phase boundary is derived separating
betueen the nomal conductor phase and Meissner phase at H<H , S0G

phase at H£<H<I;lg and JSG phase at H’Hz.

2. The model
Following Morgenstern et al /6/, let us consider an array of N su-

perconducting (SC) clusters coupled by Josephson tunnelling. A cluster
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is defined as a region of coherent phases in the superconductor. The con—
sidered nodel allows clusters inside the physical grains in contrast to
Ebner and Stroud /8/ and John and Iubensky /9/ . The i-th cluster is lo-

- . : ~’
cated at X, and is descibed by a camplex order parameter
_ i,
\’(i = A ;@ 1, (1)
Here Aiisthecmlplexenergygapand ¢iisthephaseofthe(boper

pairs in each cluster i ., The ensemble of SC clusters in magnetic field

is then governed by a 2-D XY-model Bamiltonian

H= - . - -
E K;4 cos (¢, ¢j BAgy) (2
where
J
_ 2T - .
Aij = 3: JA‘dC . (3)
i

We consider the case when coupling energies between damains of uniform

phases i and j Ki' = J for nearest neighbours only and otherwise zero.

J
For Josephson tunnelling we have
A (—)-A(T
K@ = Ti(—jl tanh zaij'r) . @)

where Rij is the resistance between damains i and j in their nommal

. state,

In contrast to the ordinary XY-SG model /10/ frustration in our system °

(2) is due to the external magnetic field (3). Applying the magnetic field
in the Z-directian we have

X, + X
AL =2 075

i] = ¢° 2 (Y4 - Yi)l (5)
where x;, y; are the actual coordinates of i-th cluster and ¢ = Ee is
an elementary flux quantum. As in /6/ the 2-D case for site disorder will

be considered. We will describe this type of disorder by the Gauss dis-
tribution functian over the cluster coordinates (and not by random J dis-
tribution as in the SG theciry /‘]_.0/)

x. . °

1 - i " 1%
P(xi,yi) =3%e © (6)

with the mean-square area of SC cluster S being in the form S =76 .
So, the mean area of the cluster on the randam Josephson lattice is, in
fact, the only parameter of our theory.

A justification of the model (2) can be’found in /6/. Here we should
only remember the most important limitations of the model. They are :

(i) the Josephson energy J is smaller than the transition temperature
for a single cluster (otherwise the dependence of J on temperature need
to be taken into account),

(ii) the London penetration depth is large compared to the cluster size
and their separation (otherwise one ought to discriminate between the lo-
cal and applied magnetic fields in (2)).

In a recent paper /7/ a similar to (2) model as a model of Joseph-
son spin glass was considered. Although the authors of that paper dealt
with the region of very strong fields only (in fact, they were in the re-
gdime of camplete frustration, where the SOG phase was not existent alrea-
dy), their analytical results were very interesting. We take the method

they used as a guide line in our own research.

3. Density of States

Following Vinokur et al. /7/ let us rewrite the Hamiltonian (2) in

the form of a 2-D XY-model for Josephson spins Si

e ]
H=-Rei S.J..5. 7
& Y1355 ¢ (7)
where
iAa, .
= i¢1 = 1]
B, =¢ B Jij =Je . (8)

It is important to stress that in contrast to Vinokur et al /7/, our exchange
energies Jij autamatically permit the symmetry Jij = J';i (due to the an-
tisymmetry of Aij (5)). Let us consider the spectrum of the random (via Aij)

matrix J iy’ because this spectrum (as we are to see below) is connected

with the critical behaviour of the model (7). The density of states for



N (e

J,. is defined in a standard manner by averaging the one-point Green fun-

1)
ction 955 (E) according to (6)

P =- L ®+i0 , )

where

_ -1
gij(E) = (6ijE - Jij) . (10)

To find the locator g(E) = gii(E), we need to solve (in the virtual

crystal approximation) the Dyson equation

g(E) = g (E) + g (E) ‘Z-g(E). (11)
Here, go(E) = E_l is the "bare" Green function, and the self-energy X
has the fom

< -1

I()= Z K (Ng" (12)

n=l

A set of irreducible correlators Kn is defined as follows ( for ocu h)

sl
K = T30, 2 eeedy =l
2n-1 13173332777 Tt 1 4+ A2

(13)

v=HM, H =%/25 s=36. (14)

On Fig. 1 the diagrammatic version of Dyson equation (1l) is presented.
The set of one-loop diagrams can be sumarized exactly and for the self-

energy Z (H) in arbitrary field one gets

I(H)=-Ji— , U=+ )2 (15)

+ Ju
1- U292
By solving the Dyson equation (1l) we have the cubic equation on g(E)
Eg(E) = 1 + Z(H)g(E) - (16)
An upper boundary of the spectrum Eo in arbitrary field is defined by
the appearance of an imaginary part in the solution of equation (16).

When E-E, such solutions have the root singularity and, hence, g(Eo)

0
is the solution of equation ’aE(g)/ ’Bg =0, i.e.

4

. 1+ JZNUZgz(E ) + 2JNU29(E )
J NQZ(EO) J2N2 > 20 3 © -1, a7
k- vy (Eo)]

As will be shown in Sect. 4, thequantityg(Eo) determines the critical
temperature in the system (7).
In the limiting cases of zero and infinite magnetic fields equa-

tions (15) and (16) yield

a)H=0(v=0,U0=1)

2-=1—_JJN—9 , gEB=EY @»,
f® = o® E = IN (162)
b) H=00(v =00, U= 0)
2
; 4 E
I=d% 9B =12 (—— -1 -_E .,
N a% oy

J

1 ’ 2 2 .

E) = 4NI® - ET , E=2JyN . 18

ﬂ) 23’1\]]2 [ (180)

In the case of intermediate fields one may disi:inguish three characte-

ristic regions

I. Reversible diamagnetic region (H<Hc1) _
PE = dmra - ‘2’—2) ,Eg= IN(4 —% vi) (19)
H = 3/4-H -.;.Hf . (20)

II. Irreversible region of superconductive glass ( ch’ H?> Hcl)

2
pm= S -1+ —2_r?-8,
2 2%N
N 2173
E =-B )3 N (21)
o= @ J
H_,=15-H EH:‘ . ’ (22)



III. Irreversible region of frozen Josephson spin glass (H?> ch)
P(E)c; B -e* , B =23yWa+dy. (23)
27 N v

At H?H,, E = 2JYN', i.e we deal with the regime of camplete

frustration /7/.

4. Phase Diagram

The transition temperature TC(H) is defined as usual by the appearance
of singularity in the behaviour of the generalized susceptibility. The
mean value m, =<Si) is described by the Thoules-Anderson-Palmer equa-~

tion /11/ in a fictive field hi

=L -
m =5p (% Jygmg +h) - dhmg (24)
The correlative to the mean field theory correction o((h') was first in-
troduced in /11/ for the correct description of thermodynamic properties
of the SG-model. In the case of arbitrary fields this constant is detemmi-

ned in fu!l analogy to the one-point Green function by the substitution of

gii(E) for i = 1/2T. By taking into account equations (13)~(16) one
obtains
J_ JN T -1
A =55 Gr+uwa-52)",
4T
where
v = 1+ B2,
H2
(o) ’)mi
Equation (24) for the generalized susceptibility Xij = 3h, yields
5
= - -1 = = .
Xij-IZ‘I‘(l ). S 13- 93] T g E= A L)) (25)

So the equaticn on TC(H) has the fom /7/

2T (1 + oL(Tcn =E, , (26)

where the upper boundary Eo for same limiting cases is given by (19)-(23).

Due to (25) and (26) X | (T) =g, (E) = g(E). On the other hand in

iie iit7o
the model of "hard spins" ( [Sil = 1} in the high temperature phase, from

linear response relation 2'1"Xi:.| = Sis; »? , we have /7/

yii = 1/2T . (27)
Finally the equation on Tc takes the form

g(Eo) = 1/2Tc . . (28)

In general the dependence of Tc on H in arbitrary fields is determined by
(17) and (28).
In the regions I-II-IITI this dependence is described by the follo-

wing explicit formulae

I. H<Hcl (region of nearly ideal diamagnetism)

T (0) - T_(H)
O - TH 2 2 .
T -3 @) Ha =(3/44, (29)
c [}
- JIN,
TC(C-) =5 (30)
II. ch > H >Hc1 (z;egion of SOG phase : AT line)
Tc(o) - Tc(H) = Wsz H2/3, ch =15 H. (31)
T, (0) ©

III. H > ch (region of JSG phase : strong frustration)

T (H) =T_(60) (1 + 3ﬂ'fz’), (32)
c c 2H2

_ 3N .
T (00) == (33)

At moderate fields (H‘.‘:HO)

N (34)



ITI. Trreversible region of frozen Josephson spin glass (H>Hc where the upper boundary Eo for some limiting cases is given by (19)-(23) .

o)
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Aa =% B+ - IHT)1 T (0) -7 (1) _3f 2 2/3
2T 2T 4T2 ! [<] o] = W H™ ™, ch =15 Ho. (31)
T _(0) °©
c
where
UH) = (1 + g)-l/Z . III, H > H, (region of JSG phase : strong frustration)
© my 3NH2
Equation (24) for the generalized susceptibility Xij = 7_5 yields Tc(H) = Tc(oo) 1+ ; ), (32)
X =[2r<1+ol).6 N ‘1=g (E=2T(1 +el)). (25) JIN
ij, ij ij = i) T () = =5 (33)
So the equaticn on TC(H) has the fom /77 \ At moderate fields (H:.-Ho)
| IN ' (34)
- 4 =9
2T (1 + oL(Tc)) E_ ., (26) T, = |



The analytical results (29)=(33) al;'e reflected on the phase diagram
(Fig. 2). To campare it with the experimental one for the La-Ba-Cu~O
system we have to translate our units into the units of paper /6/. This
yields, in particular, Ho = 0,05T. In view of (14) for the actual value

of cluster area S we have

2o

2
>3 & 0,02 J'l . (35)

S =

N

This is in reascnable agreement with the cammonly used experimental es-

timates § = 0.01 + 0.1 p° /1-5, 12, 13/.

S. Diamagnetic Response

For the more correct identification of the phases I-II-III shown in
Fig. 2 let us consider the behaviour of isothermal (field-cooled) magne-
tization for these phases versus applied magnetic field,

In our model the role of magnetization plays an induced (by Josephson

supercurrents Iij) magnetic moment of the SC cluster ensemble /7/

=L -
Jz =3¢ 123 Tiglyyy = %5v5) (36)
where
_2e_ .
Iij =% J s:.ncbij (37)
¢ij =<, -¢j - a5 | (38)
Bere Aij is defined by (5).

By perfoming thermal averaging via (24) and random averaging via (6) we

find the magnetization per cluster area § as

M= <J“z> /S == X(t,T,H)H B (39)
where
Xiesrm = X em @+ §>'3/" : (40)
o]

Y. m
— o
Ko = =5 %Dii(t) , (41

4JSN

Dt = XS O8I , X e (42)
<}

In the mean field approximation fram (27) follows that in the static
limit

D0 =20 X (m =1- (43)
Thus in relatively small fields (H% Hcl) the relations (39)-(43) lezd
to a linear diamagnetic susceptibility in the form

oM ? 7/
= _M - e . A

Xac —QHIT = XO(T) (44)

According to (39) - (43) the nonlinear effects in the behaviour of suscep-

tibility became more essential with increasing field. This, in fact, was
observed experimentally for the region of SOG (Hc2> H > Hcl).When H>E
(the JSG phase on Fig.2) the magnetization rather rapidly tends to zero.
The behaviour of equilibrium (static) magnetization versus magnetic field
is shown in detail in Fig. 3.

Conforming with the units of paper /1/ we have in accordance with (35)

_2N ., -2
T 1.2x 10 © em/g - (45)

This, by the way, allows estimation of the coupling energy between clua-
ters J . Namely, from (45) and (39) one obtains for N = 16 /6/
J = 3.7 K. On the other hand as follows from (30) for the experimenal

value of TC(O) = 28 K /6/ the Josephson energy is

PR NUPEEES (46)

So we may say that there is a correlation between the superconductive

and magnetic (glassy) properties in the high—'I‘C SOG model .
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6. Conclusions H —’Hc (see also /7/). And so, if a number of features of the lower cri-

The phase transition temperature as a function of applied magnetic tical figld Hc’ allows its identification with the first critical field Heq
field is derived in this paper for a model of superconducting clusters of the second order superconductor, the situation with the upper critical
coupled by Josephson tunnelling. According to the estimates reported in ’ field Hg appears more camplicate. In facJt, the Hg and Hg critical
Sect.4 of this paper the mean area of the cluster S = 0.02 JJZ and their fields are introduced in connection with the magnetization behaviour
coupling energy J = 3.6 K. The TC(H) line obtained reproduces the results N which plays the role of a critical current for the model under discus-
of the numerical simulations /6/ at Hs< Hg and extends to the fields sion (see Fig- 3). Therefore, experimental study of the magnetic field
ng ZH> H c‘ glving additional information. dependence of T, under transition from the SOG to the JSG phase is of

The temperature T (H) is defined by the apperance of irreversible interest.

(glassy) features in a system of randam Josephson contacts. Strictly ) We are indebted to Prof. K.K.Likharev for useful discussions.

speaking this temperature is different fram the critical temperature at
which occurs the superconducting transition and which should be determined

fram the temperature dependence of resistivity. However, according to

the experiments /1/ and numerical simulations /6/ these two temperaturcs . i ) i ) . i i

are hardly distinguishable. The latter showed this difference to be pro- : . [
Fig. 1. Dyson equation on one-point Green function gii(E) (shaded

portional to N-l/ 2, where N is the number of superconducting clusters in °
circles). Thick points for "bare” Green function 9,5 straight

the model. Since the results of this paper are obtained in the themmodynamic .
line for J.., dotted line for averaging over disorder.

limit of N4 , we apparently cannot distinguish these two critical tem 13
peratures. ) 10
Data reported in papers /1,6/ have not only indicated close values Tc(o)

for these temperatures, but also pointed to their similar behaviour fol- 0,5 I

lowing the extemal field variation. At fields below the Qpper critical E;_________ —
fleld H] (i.e. in the SOG region) a T_(H) line of the AT type separates 1; I . L]]]
between the superconducting phase and nommal conductor region, i.e. the 0 'H:: 10 Hg 20

transition temperature follows the magnetic field variation (in the mag- %

netic field range ng'ﬂ ? Hé) as #/3, Only at H"Hg the above tempe- Fig. 2. Phase diagram in the H-T plane. ??eversible diamagnetic phase (I).
ratures start to behave differently, the difference being rather essential. Between the Hé and H(L:l superconductive glass phase (II). Above
At higher HoHY cae Tc(H)appmaches saturation corresponding to the JSG ' Hg. the Josephson spin glass phase (III). Irreversible effects
phase with a frozan disorder and zero induced magnetic mament, while the SC are separated fram reversible ones by an AT line.

transition terperature on the contrary must suffer strong suppression at

10 : 11
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HO
Fig. 3. Equilibrium (field—cooled) magnetization M versus the magnetic
field H (cf. Fig.2).
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Axcenos B.Jl., CepreeHkoB C,.A. E17-88-28]
0 dasoBoir auarpamMe B MOOENH
BLICOKOTeMIIepaTypPHOr 0 CBEpXNpPOBOMAMEro CTeKna

B nByMepHo#t XY Momenu nx03edCOHOBCKHX CIIMHOB BHYHCJIeHAa
3aBHCHMOCTb TeMueparyphl dasoBoro nepexoma T, U H30TepMH-
Jeckol HAMAarHHYEHHOCTH OT BHemMHer0 MATHHUTHOrO monsa H mpu
0 <H<e, TlokasaHo, 4To Ha muockoctu (T,H) umeeTca Tpu
obnacTH, pasjaMYawmHecs XapaKTepoM 3aBHCHMOCTH T. or H:
JuaMarHuTHasa obinacTh, O6JIaCcTh CBepXHNPOBOAAMmMEro CTekJia
U o6nacTe OX03edCOHOBCKOTO CIIHHOBOr'O CTeKna. PesynbTaTs
KavyecTBEHHO COTJIACYWTCH ¢ OAHHBIMH SKCIEPHMEHTOB H UHCIIeH-
HOTO MOOefIMpOBAaHHS ONA ''HOBbIX' CBePXIPOBOOHHKOB.

Pa6ora BmmoyiHeHa B JlaGopaTopuH HeHTpOHHOM ¢du3uxku OUAN.

TMpermpunt O6%enHeHHOro HHCTHTYTA AREPHBIX HccenoBanmii. ly6ua 1988

Aksenov V.L., Sergeenkov S.A. E17-88-281
On the Phase Diagram of High-T¢
Superconductive Glass Model

The transition temperature T, and isothermic magnetiza-
tion are calculated as functions of applied magnetic field
in the frame of the 2-D XY Josephson glass model. Three
characteristic regions are shown to be distinguishable in
the H-T plane: the diamagnetic region, region of super-
conducting glass and region of Josephson spin glass. The
results are in qualitative agreement with experimental
data and the results of numerical simulations for "new"
superconductors,

The investigation has been performed at the Laboratory
of Neutron Physics, JINR.
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