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I. INTRODUCTION 

In the last years the problems of bistability ( . ' I '  and 
refs. cited therein) and jumps in the collective limit '2-8' 
have widely been discussed. There have recently been a number 
of works that has emerged on the novel problem of observing 
quantum jumps in a single atomic system and applying these 
jumps to measure linewidths of weak transitions in spectrosco- 
py /'-I6' . Since the weak transition linewidth may be excep- 
tionally narrow, this scheme has been proposed for an ulti- 
mate laser frequency standard ' 13-14' . 

In this paper we investigate the effect of collective popu- 
lation trapping in a system of three-level atoms interacting 
with an intense external field and collective jump-like be- 
haviour in the intensity and statistical characteristics of 
the fluorescence field. The potential applications of the 
collective jumps to measure narrow linewidths of weak transi- 
t ions have been discussed. 

I 11. THE BASIC EQUATIONS 

We consider a system of N three-level atoms interacting 
with one mode of monochromatic driving field of frequency o L  

1 and with the vacuum of other modes. For simplicity the atoms 
are assumed to be concentrated in a region small compared to 
the wavelength of all the relevant radiation modes (Dicke 
model). A schematic diagram of atomic energy level is shown 
in fig.1. The ground state Ili is coupled to the excited state 
12, by the strong driving field. The state / 3 ,  may be a low- 
lying vibrational or rotational excitation accessible from 
the ground state in the Raman ~cattering'~-~/or it may be 
a metastable state 14'. In order to keep the discussion gene- 
ral, we will not specify these states and will return to this 
question later on. 

On treating the exciting laser field classically and making 
standard (Born and Markov) approximations to describe the sys- 
tem-reservoir couplings, one obtains a master equation for 
the reduced density operator of the atomic system alone in the 



F i g . ] .  Level scheme of t he  atomic system. 

following form / 17' (fi = 1 units are used) 

(J P - J 1 3 ~ J 3 1  + H.C.) - L p ,  
- Y31 31 13 

where 2ykv (k,f = 1,2,3) are the transition rates from level 
I k >  to /8> due to the atomic interaction with the reservoir; 
n3=0.23 (where okp = o k  - up ), 6 = ozl-@~ is the 
detunlng of laser frequency from the atomic resonance frequ- 
ency a 21; (2 = -d 21 Eo is the resonance Rabi frequency descri- 
bing the interaction of the driving field with the atomic 
system; Jkp (k,f = 1,2,3) are the collective angular moment 
of the atomic system having in the Schwinger representation'18' 
the following form: 

where the operators Ckand Ciobey the boson communication 
relation 

and can be treated as the annihilation and creation operators 
for the atoms being populated in the level (k>. 

Further, we investigate the case of an intense external 
field of large detuning 6 only so that the following relation 
is fulfilled: 

1 n = ( - a 2  + ~ ~ j l , ' ~ > >  N Y  
4 kt' ' 

Af ter performing the canonical (dressing) transformat ion 

C,= Q ,WSC$ +Q2sin4, C2=-Ql sin d +  Q2cos4, C3= Q 3 ,  (3) 

where t g 2 4 =  2G / 6, one can split the Liouville operator I, 
appearing in equation (1  ) , into the slowly varyimg part and 
the terms oscil1;lting at frequencies 2I? and IQ. In the case 
when the Rabi frequency Q is sufficiently large and satisfies 
the relation ( 2 ) ,  the secular approximation ' l9 ' is just if ied 
and we retain only the slowly varying part of the Liouville 
operator L. After using the secular approximation one can 
find a stationary solution of the master equation in the 
fv rm 

where U is the unitary operator representing the canonical 
transformation ( 3 ) ,  

, p ,  M .is an eigenstate of the operators R -  R 1 1 +  R 2zr Rlland 
the operator of a number of atoms N -R 14-  R 22 - R 33 , here 
Rkr= QLQ p ( k , f  = 1,2,3) are the collective angular momenta 
of "dressed" atoms. The operators Qk, Q ;  satisfy the boson 
commutation relation 

As in ref. 'lg' , for a later use we introduce the characteris- 
tic function 
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case of )131 /yZ3 > 1, the effect of collective population 
trapping 1s absent. 

IV. COLLECTIVE JUMP IN THE STEADY-STATE INTENSITY 
OF RESONANCE FLUORESCENCE 

In this section we discuss the influence of the collective 
population trapping one the behaviour of the stationary in- 
tensity I of the fluorescent field due to the atomic transi- 
tion 12> -. I I>. The explicit form for the intensity I can be 
found by applying the canonical transformation (3) and the 
stationary density matrix solution (4) 

F i g .  3. Scaled in tensi ty  of 
f Zuorescent Zight I/N as 
a function of ctg2d for Y ~ ~ / Y ~ ~ =  '... . . .._ 0.5 .  The dotted curve iZZu- 
strates the case N +  m. 

of the strong transition 12>+ 
- 1  I>. Changing the parameter 
ctg2d , i. e., changing the de- 
tuning 6 or intensity of the 
external field, one can observe 

the jump (see fig.3) in the intensity of'the fluorescence cor- 
responding to the strong transition ( 2> + / I >  at the critical 
point ctg2d = ygl or ctg2$ = y23 / Y ~ ~  , and this allows 
us in principle to measure the quantity y3,. 

where 
V. COLLECTIVE JUMPS IN PHOTON STATISTICS 

In eqs. (11-13), the statistical moments <R>, <R2,, <Rll>, 
<R:,, and <RRll> can be found according to relation (8). 

By using eqs. (10-13) one can show that in the case of 
~ ~ ~ . ~ y ~ ~  < I, ~ ~ ~ . y ~ ~ < ~ t g ~ d  < y 2 t / ~ 3 1  and N>>l (the condi- 
ton I)), i.e., when atoms are 'trapped" on the level 13> 
the intensity I is independent of the numbers of atoms. For 
all other values of the parameters y3, /y23 and ctg2$ the in- 
tensity I is proportional to N2. Thus, for the case y3,/ <1 
the jump-like behaviour of the quantity I / N ~  as a function of 

2 the parameter ctg d is presented (see fig.3). In the case 
of yS1/ye3< 1 and N-.w the function I/N~ shows the jump-like 
behaviour at the critical points ctg2 4 = y31/ y23 and ctg2d= 

= ye3/yS1 (see the dotted curve in fig.3). Further we shall 
discuss potential applications of collective jumps to measure 
weak transition linewidths. Let the level 13> be a metastable 
state, the transition 13> - I I >  be a forbidden and other 
transitions 12> - 1  I> and 1 2> + 13> be allowed transitions'l4'. 1t 
has argued that the weak transition 1 3> + I I >, which is dif- 
ficult to detect, could be monitored by the scattered light 

In this section we discuss the influence of the collective 
population trapping on the behaviour of the photon statistics 
and cross-correlations between spectrum components of the 
fluorescence field due to the atomic transition 1 2> + 1 1  >. 

With the use of the dressing transformation (3), the atomic 
collective angular moment J2, has the structure 

Following the work '8.19' we can consider the operators 
cos2d Re, , sin $COB d(R -2Rll) and - sin24 R12 as the amplitude- 
operators for the sources of Mollow's triplet centered at 
the frequencies oL+ 2R , C,J and oL- 2R and for simplicity 
we denote these operators by S+ ,s: and s:,, respectively. 

As London '20t, we define a hegree of second-order coherence 
between the spectrum components Si and Sj in the form 

(2) 
<s:s;s, s ' 

G .  = - (i, j = 0, 2 1 ) .  / <s;si > <s;sl> 
' f 
1 Since the operator S i  does not commute with the operator in 

the general case, we have 



In particular the correlation functians G:: (i = 0, + l )  des- 
cribe the photon statistics of the spectmd components Si 
have the form 

where 

In eqs. (16-19) the statistical moments <(R - 2R1112 > , < h A 1 >  
and <@R:~> can be found according to eqs. (1 1-12) and (81, 
respectively. 

Further we shall investigate the photon statistics of 
spectrum components St (i = 0, + I  ) for the case of ygl / y23 <1, 
i.e., when the effect of collective population trappEng can 
occur. The behaviour of the degree of second-order coherence 
G rb and G!;! as functions against the parameter ctg2 4 for 
th6 case 07 Y~~ /y23 = 0.5 is plotted in figs. 4 and 5, respec- 
tively. As is seen from figs. 4,5, the photon statistics of 
the spectrum components si  ( i  = 0, - + 1 )  in the region of the 
parameters 

y3 1 2 y23 . - < ctg 4 <-, 
Y3 1 - < 1, 

y 2.1 y3 1 y23 - - 
i.e., when atoms are trapped on the level [ 3>, is quite diffe- 
rent from the photon statistics in the other regions of the 
parameters 

2 % 1 2 Y29 ctg 4 < - ( 1  or ctg 4 > -- > 1, 
y23 y 31 

when the effect of collective population trapping is absent. 

(2) Pig. 4 .  Function Go agains t  Fig.5. Function GT,,~ 
t h e  parameter for  ygl/ yt3 =- agains t  the  parameter ctg24 
= 0.5. The do t ted  curue z l u  for . Y ~ ~ / Y ~ ~  = 0.5,  The dot-  
s t r a t e s  t he  case N + = .  ted  curve iZZus t ra tes  t he  

case N .+ . 

For the case of N>> 1 the central spectrum component S o  
has superpoinsonian statistics in the region y31/~23 <ctg24 < 
< Y ~ ~ / Y ~ ~  and has the poinsonian statistics in other regions 

In the collective limit N + w  (dotted curves in figs.4,5), 
the functions GL:; and G::!: show the jump-like behaviour 
at the critical points ctg24 = y , Y~~ and c t g 2 4  = yQ3,' ~ 3 1  . 

The effect of collective popu\latatlon trapping also strongly 
affects the behaviour of the cross-correlation functions bet- 
ween spectrum components as well. For example, we investigate 
degrees of cross-correlation between sidebands S,land central 
component So that have the following form 



~ where 

Here the statistical moments <Rn~:,>can be found according 
I I 

to eq. (8). 
Further we shall investigate the functions ~ ( f , ;  and G%{ 

only for the case ygl ,' yQ3 < 1 when the collective population 
trapping can occur. The beliaviour of Cii% and 067: as func- 
tions against the parameter ct84 for the case of y31/~z3 =0.5 
is plotted in figs. 6 and 3, respectively. AS is seen from 
these figures, for the case Nh>1, the correlation between 
the central component SO and sidebands S + 1 occurs (G:: , ~ifi> 
' 1 ) in the region of the parameter 

F i  .6. Function G$,~)~ agni;ist  Fig. 7 .  Function Gf2) against  
c 8 d  for fil;yP3 =d. 5. Thz ctg2d for  Y ~ ~ / Y ~ ~  = 0 .5 .  The 
dot ted curve i l l z ( s t r a t e s  the  dot ted curve i l l u s t r a t e s  t he  
case N+w . case N + - . 

i.e., in the region where collective population trapping oc- 
curs. Physically it means that when the collective population 
trapping is present the photon of the central components So 
and sidebands Ski have a tendency to be emitted in pairs. 

In other regions of the parameters ctg24 < y31j 123 ; ctg24, 
>y23/~S1, where the collective population trapplng is absent, 
the anticorrelation or no correlation between the central com- 
ponent S o  and sidebands Stl occurs (see figs.6,7), and in the 
collective limit N +  - the photons of the central component So 

e 
and sidebands S T  1 are emitted independently (i. e. G$~],~= 
= ~ f t ~ ~  = 1) in these regions of the parameter ctg2+. 

In the collective limit N + w  the cross-correlation func- 
tion ~ 6 ~ ) ~  and G~F., show the jump-like behaviour at the criti- 
cal poibts ctg24 = yQ1 /yZ3 < I and ctg2d = y23 ,'ygl > 1 (see 
dotted curves in figs.6,7). 

V. CONCLUSIONS 

We have considered the collective population trapping and 
collective jumps in a system of three-level atoms interacting 
with an intense external field. 

It is shown that for y 1 ,  ~ l r 1  and v /Y <ctg2d~ 
< y23/Y31 almost all the atoms are populated on tye ?&el , 3, 
(collective population trapping). The influence of the collec- 
tive population trapping on the behaviour of steady-state in- 
tensity and statistical properties of a resonance fluores- 
cence field has been discussed. For the case ~ ~ / y ~ ~ < l t h e  
system displays discontinuous behaviour(jumps) In the collec- 
tive limit N+w.Potential applications of collective jumps to 
measure weak transition linewidths are discussed. 
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