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I. INTRODUCTION

In the last years the problems of bistability (/1 and
refs. cited therein) and jumps in the collective limit’ 28/
have widely been discussed. There have recently been a number
of works that has emerged on the novel problem of observing
quantum jumps in a single atomic system and applying these
jumps to measure linewidths of weak transitions in spectrosco-
py /% 18/ | Since the weak transition linewidth may be excep-
tionally narrow, this scheme has been proposed for an ulti-
mate laser frequency standard /13147 |

In this paper we investigate the effect of collective popu-
lation trapping in a system of three-level atoms interacting
with an intense external field and collective jump-like be-
haviour in the intensity and statistical characteristics of
the fluorescence field. The potential applications of the
collective jumps to measure narrow linewidths of weak transi-
tions have been discussed.

II. THE BASIC EQUATIONS

We consider a system of N three-level atoms interacting
with one mode of monochromatic driving field of frequency wp,
and with the vacuum of other modes. For simplicity the atoms
are assumed to be concentrated in a region small compared to
the wavelength of all the relevant radiation modes (Dicke
model). A schematic diagram of atomic energy level is shown
in fig.1. The ground state |l1> is coupled to the excited state
12> by the strong driving field. The state | 3> may be a low-
lying vibrational or rotational excitation accessible from
the ground state in the Raman scattering ‘67 or it may be
a metastable state /14, In order to keep the discussion gene-
ral, we will not specify these states and will return to this
question later on.

On treating the exciting laser field classically and making
standard (Born and Markov) approximations to describe the sys—
tem-reservoir couplings, one obtains a master equation for
the reduced density operator of the atomic system alone in the
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Fig.1. Level scheme of the atomic system.

following form /17’ (% = 1 wunits are used)

dp -

rrafinint [3(322"311)‘(3@21*"]12) ~Q 4745 Pl -
= ve1 Up1dyp — Jyppdpy + HG) - M
= Ye3Ugglge P = gy pdp+ HCY -
_ y31(J31J13p - J13pJ3l+ H.C.) = Lp,

where 2y (k,l = 1,2,3) are the transition rates from level

k> to [> due to the atomic interaction with the reservoir;
Qs=m'23—w21/2 (where wy =wy, - wp ), 8=wy -0, is the
detuning of laser frequency from the atomic resonance frequ-
ency @ g3 G=-d,,Ey is the resonance Rabi frequency descri-~
bing the interaction of the driving field with the atomic
systemy Juf (k,? = 1,2,3) are the collective angular moment

of the atomic system having in the Schwinger representation’ 18’

the following form:
e = ¢y,

where the operators Ck and (T;obey the boson communication
relation

+
(Cy.Chpl =3y

and can be treated as the annihilation and creation operators
for the atoms being populated in the level |k>.

Further, we investigate the case of an intense external
field of large detuning & only so that the following relation
is fulfilled:

_ e 2,172
Q_(48 +G*®) >> Ny o - (2)

After performing the canonical (dressing) transformation
Ci: Q 17005¢ +Q251n¢, sz-lein ¢+ Q2'005¢, 03.293, (3)

where tg2¢= 2G/ 6, one can split the Liouville operator 1,
appearing in equation (1), into the slowly varying part and
the terms oscillating at frequencies 20 and 1}. In the case
when the Rabi frequency @ is sufficiently large and satisfies
the relation (2), the secular approximation 1’ is justified
and we retain only the slowly varying part of the Liouville
operator L. After using the secular approximation one can
find a stationary solution of the master equation in the
form

- _4 N P
p =Upu* = A b s %P3 ZM{p,MT» <M, pl, (4)
p=0 M=0

where U is the unitary operator representing the canonical
transformation (3),

| 2 R
X ‘: )/31 ()’ 39 Ctg é)v z = Ctﬁ ¢7
N N+1
A z (XZ)N 1 21 1 x + -1 (5)
z -1 xz -1 z -1 x-1

'p,M-is an eigenstate of the operators R=R;;+ R g5, Rjjand
the operator of a number of atoms N-R,,-R ,,+ Rgy , here
R=93Qp (k! =1,2,3) are the collective angular momenta
of '"dressed" atoms. The operators Q,, Q, satisfy the boson
commutation relation

[Q,, Q71 =5, (6)
S0
[RH,RR;";‘ =Rkp:8k")—RkI"8kF' . (7)
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As in ref. 1® , for a later use we introduce the characteris-

tic function
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where y; = xe s Yo = Z€ T and <...> denotes the expectation

value in the steady state described by the density matrix (4).

Once the characteristic function is known, it is easy to cal-
culate the statistical moments

n m
<RPR™ > - d dJ
11 ali&)® Jlipm lerR("’ i -0

iE=0

(8)

IITI. EFFECT OF COLLECTIVE POPULATION TRAPPING

In th%s section we discuss the stationary population of
the atomic level | 3> that has the following form:

Ng =<Jzg>=N-<R>, ' (9)

wherg the value <R> is found according to eq. (8).
Fu"st, let us consider the case y31/y23 < 1. By using the
relations (8-9) one can show that .

. 14 14 Y
(1)i<1’ i<ctg2¢<ﬁ

Y o3 Y o1 Y31

(i.e. when x < 1, x2< 1) and N>>1 so that xN, (xz) N< N~
almost all the atoms are populated on the level |3>, N_./N 1
that is the atomic level |3> plays a role of a "trap" %or the,a
'a:toms. We note that in the one-atom case the level |3> is the
trap" of an atom, i.e. Ng/N -1, only in the case yq,/y 5~ 0
thus the above described phenomenon can be tre A

ated as an ef-
fec'?.to collective population trapping’/7?/.

(ii) For ctg2¢< Y31/ Y23 <1 (i.e. x>1, x2<1 and N>1
so that xM>1 ) (xz)N << N°! and in the case of ctg2¢>y, §Vaol
(i.e. x.< 1,xz2 > 1) and N>>1 so that xN<N~—1, (xz)N>>21 3the
population of the level | 3> is small in comparison with N.

4

(iii) At the points ctgl¢ = )@1/ Yoy OT ctg2¢= );23/):31 the
nearly half of the atoms (Ng= N/2) is populated on the level

13>,
For the collective limit N-e« and when )'31/721 <1 the po-
pulation on the atomic level [3> takes the form

.

- 2 .
) if ectgcd < y31/y23
. . 2 -
1/2 if ctg®d = a1 /)’23
N, /N N220 1 AE vy Sy <CBEC <y /Yy

. 2.4 -
1/2 if CB82¢ = v, /¥y

0 if 2 .
L if ctg?d > )/23/1/31

Thus in the collective limit N the function N3/N shows
the jump-like behaviour at critical points ctg2¢=1yg4;/vog

and ctg?¢ = Yoa / Va1 - The jump-like behaviour of the atomic
population on the level | 3> (per atom), i.e. the quantity
Ng/N, is plotted in fig.2 as a function of the parameter ctg?d
for vygy/ves= 0.5.

In a similar manner one can show that in the case 731'/723>1
and for N>>1 the population of the level | 3> is small com-
pared to N for all values of the parameter ctg®¢ ; in this
case the collective population trapping is absent and collec-
tive jump in the behaviour of the function Ng/N is absent too.

In the case when y__/y,. =1, we have
0 if 31’ ‘23
ctigld4 > 1
Ny/N Noee | 1/3 if ctg?¢ =1

0 if etg?4 <1
thus in the collective limit N = the function N3{N shows
a discontinuous behaviour at
NJIN e, . . 2 -
the critical point ctg ¢
100 eens = yg./ Y23 = 1 but as for the
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04l Fig.2. Population (per atom)
of the level | 3> as a function
0.2} N=25 Of ctg? ¢ fOl" )’31/ Yo3 — 0.6
~N-= 100 The dotted curve illustrates
0005 10 15 20 25 30 ctg’¢ the case No=.




case of ygy /yp3> |, the effect of collective population
trapping is absent.

IV. COLLECTIVE JUMP IN THE STEADY-STATE INTENSITY
OF RESONANCE FLUORESCENCE

In this section we discuss the influence of the collective
population trapping one the behaviour of the stationary in-—
tensity I of the fluorescent field due to the atomic transi-
tion | 2> » |1>. The explicit form for the intensity I can be
found by applying the canonical transformation (3) and the
stationary density matrix solution (4)

| <J21]12> =sin2¢cos2qs<(R-2R11)2> +

+cos <R, Rip> + sin*@ <R ,Ry.> . (10)
where

<(R -2R,;)%> = <R®> + 4<R% > - 4 <RR, >, (11)
<RypRp>= <R > +<RR > - <R%l>, (12)
<Ry Ryp> = <R> -<R; ;> +<RR11>-<R121>, (13)
In eqs. (11-13), the statistical moments <R>, <R®>, <R >,

<R?l>and <RR,;> can be found according to relation (8).

By using eqs. (10-13) one can show that in the case of
Ya1/¥e3 < s ¥g1 ¥ag <ctgle < ):25,/‘):31 and N> 1 (the condi-
ton fl)), i.e., when atoms are "trapped" on the level |3>
the intensity I is independent of the numbers of atoms. For
all other values of the parameters ysl/y23 and ctg®¢ the in-
tensity I is proportional to N2. Thus, for the case Ya1/ Yeg <1
the jump-like behaviour of the quantity I/N? as a function of
the parameter ctg?d is presented (see fig.3). In the case
of yg,/793< 1 and N-w the function I/N2 shows the jump-like
behaviour at the critical points ectg2¢ = Y,/ Y and ctg2¢=
= ypg/ v31 (see the dotted curve in fig.3). Further we shall
discuss potential applications of collective jumps to measure
weak transition linewidths. Let the level |3> be a metastable
state, the transition | 3> - | 1> be a forbidden and other
transitions {2> ,|1> and | 2>4|3> be allowed transitions’/!4/. 1t
has argued that the weak transition |3> - |1>, which is dif-
ficult to detect, could be monitored by the scattered light

6
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/N2 Fig.3. Scaled intensity of

fluorescent light 1/N? as
a function of ctg®¢ for ygy/ves=

02 = 0.5, The dotted curve 1llu-

N=100 strates the case N c.

0151

01

005 of the strong transition | 2>~

-»| 1>. Changing the parameter
ctg?4 , i.e., changing the de-
tuning & or intensity of the
external field, one can observe
the jump (see fig.3) in the intensity of the fluorescence cor-
responding to the strong transition | 2> . | 1> at the critical
poir}t ctg_zdz =34 /y23 or ctg2¢=y23/}.’31, and this allows

us in principle to measure the quantity Y31°

00 05 10 15 20 25 ctg? ¢

V. COLLECTIVE JUMPS IN PHOTON STATISTICS

In this section we discuss the influence of the collective
population trapping on the behaviour of the photon statistics
and cross—-correlations between spectrum components of the
fluorescence field due to the atomic transition [2> - ]|1>,

With the use of the dressing transformation (3), the atomic
collective angular moment J, has the structure

121 = Siﬂ¢cos¢(R —2R11) + COB2¢R21-Bin2¢R12 . (14)

Following the work 819 we can consider the operators
cos?¢ Ry, , singcosd (R -2R,,) and -sin24 R, as the amplitude-
operators for the sources of Mollow's triplet centered at
the frequencies w; +20 »wy and ;- 20 and for simplicity
we denote these operators by S+,S; and S:l, respectively.

As London ‘20’ | we define a hegree of second-order coherence
between the spectrum components §; and Sj in the form

4o+
@ <S‘SjSJSi>

L <s{sl><s}sj>

(1,§ =0, £1). (15)

Since the operator 8; does not commute with the operator in
the general case, we have



@, ~& . .
GU% Gi.i G+£i).

In particular the correlation functiens G§2} (i = 0, +1) des-
cribe the photon statistics of the spectrumn components S;
have the form

<RigR {oRp; Roy>
2

(16)

@ _a® _
Gii=G4 4= R ’
<RpRy>

<R - 2R, %>
G - 1 , ' (17)

0.0 (R -2R;,)2>*

where

3 3 2p 2 2
<R ,RipRpyRgy > = <R{; > -2<RRYy; > -4<R{p> +<R°R7p +5<RR(111;;
+ 5<RZ > - <R®Ry;> -8<RR;; > -2<Ryy>,

<R -2R;)*> = 16<R{> - 32 <RRY,> +24<R®R% > - 8RR p + d:j;;
In eqs. (16-19) the statistical moments <(R_2R11)2> s <RyRo;>
and <RPR¥;> can be found according to egqs. (11-12) and (8),
respectively.

Further we shall investigate the photon statistics of
spectrum components S, (i = 0, +1) for the case of yal/y23<1,
i.e., when the effect of collective population trapping can
occur. The behaviour of the degree of second-order coherence
G and G£¥)+1 as functions against the parameter ctg?¢ for
thé case of 3%1 /yey = 0.5 is plotted in figs. 4 and 5, respec-—
tively. As is seen from figs. 4,5, the photon statistics of
the spectrum components Si(i = 0, +1) in the region of the
parameters

Y31 Yog Y31
<ctgeqs<——-; — <1,
Y o3 Y31 Yes3

i.e., when atoms are trapped on the level |3>, is quite diffe-
rent from the photon statistics in the other regions of the
parameters

Y3

2
ctg2¢>< 81 <1 or cig ¢> —>1,
Y23 Y31

when the effect of collective population trapping is absent.
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Fig.4. Function (ﬁf% against

the parameter for Y31/ Y3 =
= 0.5. The dotted curve Zllu—
strates the case N oo.

Fig.5. Function GQ? +1
against the parameter ctg24
for ygy/yeg = 0.5. The dot-
ted curve 7llustrates the
case N - oo

For the case of N>>1 the central spectrum component Sp
has superpoinsonian statistics in the region ygy/vey <Ctg24 <
<¥3/73; and has the poinsonian statistics in other regions

2 2
Ctg " < yg1/¥gs OT Clg"d >y /vy, .

In the co}lectiﬂ%)limit g%aao (dotted curves in figs.4,5),
Zzetﬁunct}g?s ;loﬂ.and Gil';1 show the jump—lgke behaviour

e critica olints = / =

heert P CLB 2P =yq,/¥pg and ctg b= yaq. ¥3q

e effect of collective population trapping also strongly
affects the behaviour of the cross-correlation functions bet-
ween spectrum components as well. For example, we investigate
degrees of cross-correlation between sidebands S+, and central
component Sy that have the following form -

<R -2R,) Ry R 5(R-2R,)>

0(2) = 0(2) -
0,1 -1,0 »
<(R—2R11)2> <R21R 18> (20)
Lo % <(R-2Ry;)%><Ryp Ry >
9



where

dR-2R, )Ry Rip(R-2R )> ——4 R} p+8<RR}> - 229
-4<R}> - 5<R? R121> +8<RR121> + <BRyp> -5RPR, ;> +<R%> ,

<(R - 2R, )RRy, (R-2R;)> =-4<RY > + B<RRY > + o5

2
+4<R3> - 5<RERE > -4 <RR] >+ <RPR >+ <R°Ry >,

&

Here the statistical moments <R“R?l>can be found according
to eq. (8).

Further we shall investigate the functions G®  and GEF}
only for the case vy, ygq <1l when the collectivé population
trapping can occur. The behaviour of G®) and Ggﬁi as func-
tions against the parameter ctg?¢ for the case of Y31/ Y23 =0.5
is plotted in figs. 6 and 7, respectively. As is seen from
these figures, for the case N>>1, the correlation between
the central component 83 and sidebands §+; occurs ((35)2)1 . G§23>
>~ 1) in the region of the parameter ’ ’
%3 0 Yar

Yag Y31 Vo3

)
Gy

30

N=25

30ctg?® §0 10 20  30cig?®
Fig.7. Function G against

ctg?@ for vy /ves = 0.5. The
dotted curve illustrates the

case N - oo .

00 10 20
Fig.6. Function Gge)l against
ctg“sd for v¥si/vas =0.5. The
dotted curve illustrates the
case Noow ,
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i.e., in the region where collective population trapping oc-—
curs. Physically it means that when the collective population
trapping is present the photon of the central components S,
and sidebands S84+, have a tendency to be emitted in pairs.

In other regions of the parameters (@g2¢ <v31/ ¥a3, ; ctg24 >
>yog/ys1» wWhere the collective population trapping is absent,
the anticorrelation or no correlation between the central com-
ponent Sy and sidebands S:; occurs (see figs.6,7), and in the
collective limit N- = the photons of the central component Sg
and sidebands S+1 are emitted independently (i.e. Ggq‘f
=Gy’+; = 1) in these regions of the parameter ectg®4.

In the collective limit N5 « the cross-correlation func-
tion Gf,g.)l and G‘{"% show the jump-like behaviour at the criti-
cal points ctg24 = ¥31/YVeg <! and ctge = Yog  Yg1 > 1 (see
dotted curves in figs.6,7).

V. CONCLUSIONS

We have considered the collective population trapping and
collective jumps in a system of three-level atoms interacting
with an intense external field.

It is shown that for , 1/¥ag <ty N> 1and y, /y,, <ctg?s -
<ygg/ygy almost all the a%oms are populated on the level 3>
(collective population trapping). The influence of the collec-
tive population trapping on the behaviour of steady-state in-
tensity and statistical properties of a resonance fluores-
cence field has been discussed. For the case y31/y23<1 the
system displays discontinuous behaviour (jumps) in the collec-
tive limit N~ .Potential applications of collective jumps to
measure weak transition linewidths are discussed.
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liymoscxkuit A.C., ®am Jle Kuen, Yau Kyasnr E17-88-26
KornmekTHBHAA JIOBYNKa M KOJIJIEKTHBHblE CKauKH

B CHCTeMe TpEeXyPOBHEBLIX AaTOMOB

PaccMoTpeHdp KOJJIEKTHBHAS JIOBYI'KA ATOMOB H KOJJIEKTHBHbIE
CKauykH B CHCTEME TpPeXYPOBHEBHX AaTOMOB B3auMOOEHCTBYWIMX
C CHJIbHBIM BHemWHHUM 11ojleM. O6CYyXOeHO BO3MOXHOE NpUMEeHeHHe

KOJINIeKTHBHLHIX CKAauKOB [OJI11 H3MepeHHsA y3KoH MMM PHHbI cnabpix
nepexonoB.

Pa6ora BhmnosiHeHa B JlabopaTOpHH TeOpEeTHUYECKOH GH3IUKH
ouay.
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The collective population trapping and collective
jumps in a system of three-level atoms interacting with
intense external field are considered. Potential applica-
tions of collective jumps to measure weak transition
linewidths are shortly discussed.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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