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1. INTRODUCTION

Recently Piasecki and Wajnryb /!’ discussed a model describing the
relaxation of a rarefied gas of neutrinos in the stellar matter. In this case
the collision integral contains terms related to isotropic and anisotropic
scattering. They obtained an exact formal solution from which they inferred
the long-time asymptotics of the distribution function.

The purpose of our paper is to generalize results obtained by these
authors. Namely, we consider a class of models characterized by a parameter
a, which determines the strength of anisotropic scattering. The value a =0
(i.e. isotropic scattering) corresponds to the case of standard Lorentz gas
(SLG) discussed by Hauge’ 2,3/ Therefore, we call the present model the
modified Lorentz gas (MLG). We shall show that the long-time asymptotic
behaviour of MLG depends on value of a and can be diffusive (for 0< a <
<1/r) or hydrodynamic (for a = 1/r ). The parameter r is the relaxation
time characterizing the isotropic scattering.

In section 2 we find the formal solution of the Boltzmann equation
for the Fourier — Laplace transform (FLT) of the distribution function.
In sect. 3 we study the number of the singularities of the FLT of the distri-
bution function and their properties. In section 4 we consider the depen-
dence of the long-time asymptotic behaviour on the parameter ar .

2. THE FORMAL SOLUTION OF THE BOLTZMANN
EQUATION FOR THE MODIFIED LORENTZ GAS

Published in 1872 the Boltzmann equation (considered today to be
the fundamental equation of the kinetics of rarefied gases) describes the time
and space dependence of the one-particle distribution function f(?, 3, t). We
congider the situation when the Boltzmann equation is linear (ct./2:%)

'af-’.-..‘ > > a > o - > - -
_(;ts") +vVI(r,v,t) =‘Lfdv’a(v,v’)[f(r.v.t) -f(r,v,t)]. 1)
”

For modified Lorentz gas, the probability of transition per unit interval
of time, o(v, v’) isequal to

a(:'.\-;’) =o(v,pn) = % + Sau, (2)
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where p = Vv’ is the cosinus of the scattering an e, The case of a=0
corresponds to the standard Lorentz gas (SLG) (cf 3/ ). Let us introduce
the deviation of the distribution function from the equilibrium value

1

St(r,v,t) = t(r,v,t) - ——n_,
45

o

where n, is the equilibrium isotropic homogeneous density of particles.
For the FLT of the deviation function

kT -+
fdsre ! 5t(r,v,t)
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'Q(k,v,Z) (3)
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one obtains the integral equation
r(z—-ikv)®(k,v,z) = (@o + ar?1 1) @(k,v,2) +rh(K, V), (4)

where for an arbitrary function of v ,say 8(Vv),
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g(v) = 4—1 [ ave(v), (5a)
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g(V) =73;fd3’33’g(\r’), (5b)

h(k,V ) is FT of the initial deviation function

>

h(E, V) = fa’re 51,7, t=0). (6)

Equation (4) 1s soluble The solution (for a = 1/(3r )) was found by Piasecki
and Wajnryb . We shall extend their solution to the case of the parame-
ter ar
sionless variables

k = kvr, { = Zr,

The solution of eq. (4) has the form

i A~ h 3a ~
ok, v,0) - — gl 2 qF
k(A -p) ik C°A-p ik .
(7
2 -~
x(1+pBQ 1+ 2285 P oy,
ik A-p

where A = (1+ {)/ik . The functions A(k,A), B(k, A) play an important
role in our considerations
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belongmg to the interval [0,1]. Let us introduce the two-dimen-

A M =[1-Lq )+ 32 ixa-1)a W17
( m Qo( )+ (1k)2( ) 1( (8a)
B(k, A)=[1- :‘on,m] (8b)

The functions Q,(A) (€ =0, 1, 2, ...) are the Legendre functions of the
second kind, which can be represented by the Cauchy integral (cf.”%/ )

1
. v
QE(M= —2--fldu = ) (8¢)

where Py (£ = 0,1, 2,...) is the Legendre polynomial.
The standard mgthods of complex analysis yield for the inverse Laplace
transform of ®(k, v, {), which we denote F, the following expression

. [ag 474
F(k,v,t) = dle '
2rir o )
where the contour C encircles all singularities of ®(k,v, (), i.e,:
i) the cut from -1 - ik to -1 + ik. (10a)

ii) the' poles corresponding to zeros of the functions

Kk, A), Bk, A)  (8s,b). (10b)
As it is seen from expressions (7), (8a,b,c) the cut is related to the Legendre
function of the second kind. Let us mention that in fact it is due to the
two branching points, because the formula (8c) can be written in the fol-

lowing form (cf.”4/ )

Q, (A) = > (), (11)

n-1

where W is a polynomial of the order n - 1. For A & (-1,1) we have

UmQ (M k)=?P ()«)ln(—t——)— LM ‘” P_(A). (12)

€->0

The cut runs along the segment of length 2k . On the other hand k is the
Knudsen number, i.e. the quotient of the mean free path £ = vr and
the length A ~ 1/k , which defines the space inhomogeneity of the system.
Small Knudsen numbers mean that there are many collisions on the dis-
tance of the length A: A >> { | So we say that condition k << 1 defines
the collision-dominated regime. The opposite inequality k >> 1 defines
the collisionless regime. In the collision-dominated regime there exists a lo-
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cal equilibrium and the approach to the complete equilibrium is described
with the help of the macroscopic equations of- diffusion or hydrodynamics.
One can show that for k<< 1 and t > 7 the cut contribution to the
integral (9) is negligible. Thus, the long-time asymptotics of the FT of
51(F, Vv, t) is described by zeros of the functions A1, Bl (8a,)b) only.

3. PROPERTIES OF SINGULARITIES OF THE FLT
OF THE DEVIATION FUNCTION

Let us study how many zeros have the functions At (k, \) and B'ltk, A).
According to familiar theorem, the difference of number of zeros N, and
poles P, of a meromorphic function f(A) in the region D encircled
by the contour C is related to the following contour integral

dA
-P. =f aX\ ——
ND D {; 1{@N!

The function f(A) is analytic on C and in the region D, with exception
of contingent poles at internal points. Additionally, it does not vanish on C.
We shall apply the above theorem to our functions Al and B! . The only
singularity in the whole plane of complex A of both functions is the cut
(9a). Thus, the contour shown on fig. 1 contains (with R - o ) all the ze-
ros of these functions. Denote by N (o =A, B) the number of zeros
of A' and B'.

1 Imz

' Fig. 2. Contour Cg(cf. eq. 15) depends

. . jon p =ar/k only. Number of cycles made

Fig. 1. Contour in the complex plane p,, this contour around the point z = (1,0)

contains (with R > o) all the zeros js eqyal to the number of zeros of the func-
of functions A" ,B-} (8a,b). tionB*Y (cf figs. 5,9, 10).
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We have

dfo dfe
14
N,(k,ar) = 211 [ da dt" + lim [ dA A , (14)
v
c, o R+ Cp o

where A= Al fB - B-1. Let us notice that the second of these functions
depends only on one parameter p = ar/k . For both values of o the se-
cond term of (14) vanishes. With the help of eqgs. (8a,b) and (12), we can
transform the first of integrals (14) to the form

1 1
4 mi ‘{a 1 .22

(15)

where C, depends on the parameters k, a.r and is given by the following
parametrization of the segment (-1, 1)

x)
(-11) 55 o0 P2 (16)
1-a,(x)
where
3ar 1 14 3ar
a, () =- kA - 1 1 )1 kA ~1) A1,
A (ik)g( )+2lk_ n ( - L (i )
3ark 1 142
A) == [1-2A ,
a (M) ™ { 21n(1_x)]
” 3ar
BN = (14 — - (fA - DA,
3arm 2
A) = A
Bp(2) 2k
Calculating the residua of (1 -z%)"! atz= %1 we obtain
N, = €y —2+1 ’ a7

where (’.¢ (¢ =£1) is the number of cycles made by the contour C,
around the points z = ¢.

. The contours Cp of integral (15) for different values of p are de-
picted in fig. 2. It is seen that Nj(p = 1/2) =2 and NB(p =1/4) =0,
There exists a critical value of p , namely

pc = 0031:



such, that for p > p; the number Ny equals two ' and for p < p,
it vanishes, ’ i1 Imz

2, p2p
Ny(p) ={ ©

0, P < pg-

ar=01

Fig. 3. Contour C, (cf. eq. 15) depends on
both ar andk . For ar= 0.1 N, may be equal
to 0.1 or 2 dependent on x (cf. fig. 9).

Imz
L are1
Fig. 4. The same as on fig. 3 for 8r = 1. For
k=4 |‘ k < 4.55 function A\ has two zeros, for k >
> 4.55 this function has no zeros (cf. figs.10,11).
.1
Fig. 5. The dependence

of the real part of pole
¢y (i=1,..,4)on k for
ar = 1/3

0 6 ' 12

18 2

The number of zeros of the function A" depends on both parame-
ters k and ar . For ar = 0.1 the number N, is equal to 0 (k = 1.6),
1 (k= 03)or2 (k= 01) (cf. fig. 3), whereas for ar = 1 the number N ,

"takes two values, namely 0 (k = 5) or 2 (k = 4) (fig. 4).

The above considerations made the starting point to the numerical
calculations. The dependence of real parts of poles of A(k, A, ar ), which
we denote ¢, ¢, and of B(k, A, ar) - {4, ¢y, on k for ar=1/3 is
shown in fig. 5. The dependence of imaginary parts of these poles on k g
presented in fig. 6. It is seen that for small k each of denominators A-1
and B-! has two real zeros. With growing k they approach each other
and for some critical value of k i ]

k.= kc(a r)
6
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Fig. 6. The dependence 1,‘ImC
of the imaginary part of ar=ﬁ5 !
pole ¢y (i=1, .., 4) y ]
on kX for ar = 1/3
0
5
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Fig. 7. The dependence
of kg (j=A,B)on ar,

(G = A, B) they leave the real axis, The dependence of k{, on ar isshown
in fig. 7. For k greater than k’c the poles become complex conjugated to
each other, In fact this property follows from the relation

) o 14+ 1+¢
m ) = Q (= m T

According to our results conceming the number of poles, there exist
regions of values of k and ar, where some of boles or all poles disappear.
Let us consider this problem in detail. For a given value of 3r and grow-

ing ¥ the complex poles approach the cut and starting from some limi-
-ting value of k

Q (

).

m+1
M =) G

J J
Elim = Kjip (87)

. . . J

(= A, B) they vanish. According to eq. (9) for k greater than kjjy on-
ly the cut (10a) contributes to the FT of &f . The dependence of kl" onh
ar isshown in fig. 8. -
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Fig. 8. The dependence of kj“m (j=A,B)on ar .
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Fig. 9. The same as on fig. 5 for ar = 0.1, The zeros of A* -1 gre real in the whole ran-
geof k & (0, k“m )

Generally, the poles lie in the complex plane and only for small k they
move along the real axis. There exists a critical value of ar

) (af) = 014

such, that for a < (af )¢ the poles of A are real for all k € (0 kﬁ )
(cf. fig. 5, 9). Thus, the curve corresponding to the dependence of k% ¢ ulon
ar starts with a finite value at the point ar = (ar )c and then dimini-
shes almost lineary (cf. fig. 7). The dependence of klim on ar for ar <

< (ar)cis represented by two line charts corresponding to the two zeros
of A"l (see fig. 8).

4. THE INFLUENCE OF THE ANISOTROPIC SCATTERING
ON THE LONG-TIME ASYMPTOTIC BEHAVIOUR OF FT

OF 6£(t,%,t)
Following/l/ for0 < ar < 1weget
£ - I
17 3(ar-1) ' (18a)
(o= (ar-1) + d&?¥, (18b)
3k
43 = (af —1) -— N
bar (19a)
where
1, 3. —
d 3 6 3(ar-1)
(ar)?®

The contribution of a pole (3 /, ./4) to the integral (9) is propor-
tional to the exponential function e ¢ . So, according to egs. (18a,b),
for 0<ar < 1,.t> r and k << 1 the contnbutlon of {1 dominates.
We can write it in the following form

exp (~Dk"t), (20)
where
vZr
D = — . (21)
3(1~ar)

One can check that, for 0 < 87 < 1, the deviation of the density of partic-
les from equilibrium

san(F, t) = 9, 81(F, ¥, ¢t) (22)
obeys the diffusion equation

d

2_sn(f.t) = DASn(T,t).

at (23)



Fig. 10. The same as on fig. 5
fof ar = 1.

Fig. 11. The same as on fig. 6

for ar =1,
22
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Hence, for 0 <ar < 1 the long-time behaviour of the MLG in the collision-
dominated regime is purely diffusive. The diffusion constant is defined
by eq. (21). It is seen also, that the diffusion constant for SLG /% 3/ is mo-
dified by the factor (1 - ar )-1,
Let us consider the behaviour of poles for ar going to unity. The pole
{3 (19a) becomes diffusive and the expressions (18a,b) are not valid now.
In this limit the diffusion constant (21) is divergent, which signals the chan-
ge of behaviour from diffusive to hydrodynamic. Figs. 10 and 11 show
the dependence of the real and imaginary parts of the poles respectively
for ar = 1. As we see, for small k there exists two real zeros of B-! and
two complex conjugated to each other zeros of A-!. Instead of (18), (19)
we have now

¢ =’T§""B“kﬁ" (24a)
* 2 2 k
R v (24b)
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3 .2
Ss= - p K ' (25a)
£y =-1. (25b)
The long time asymptotics is determined by eqs. (24a,b) and (25a). The con-

tribution of (24a,b) to the integral (9) obeys the following set of hydro-
dynamic equations

2 bn+ g, 0, = 0, (26a)
dp

a 1. 82 1 1
I— + ?V Va on - —5—VZADa —EWaVﬁpﬁ— 0, (26b)
where

is the density of momentum. Let us mention, that since the energy density
is proportional to the density of particles we deal with the set of two hyd-
rodynamic equations only.

We conclude, that changing the strength of anisotropic scattering (i.e.
the parameter ar) one observes the crossover from the relaxation of the
diffusive type (described by solution of eq. (23)) to hydrodynamic beha-
viour described by eqs. (26a,b).

5. CONCLUSIONS

The long-time asymptotics for MLG is either diffusive (0 S a7 < 1) or
hydrodynamic (ar = 6). For example, the relaxation of neutrinos in su-
pernovae (ar =1/3)’ 1" is diffusive. In this work we studied the long-
time asymptotics only in the collision-dominated regime (k << 1). It is clear
that in order to study the solution in the whole range of t and k we need
some assumptions about the FT of the initial deviation function h(l?, \-;)gcf.
egs. 6 and 7). This problem was solved in’ %/ for the SLG. In the paper 7/
we extend the result of ' to the case of the modified Lorentz gas. We
confine ourselves to a certain (quite general) class of initial conditions for
which we are able to obtain the exact solution of the Boltzmann equation
for all k and 0 < t < e . This allows us to study the whole process of rela-
xation of initially disturbed system, i.e. the crossover from kinetic (colli-
sionless) to the collision-dominated regime.
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Finally, let us comment on the use of some simplified models of the
collision integral in the lattice phonon kinetics (cf./ 8/ }. Our relaxation
time plays the role of relaxation time for normal processes ry . These pro-
cesses do not change the total quasimomentum of the phonon gas. The
parameter (1 - ar)/r plays the role of the inverse of relaxation time for
resistive processes rp . The resistive processes change the total quasimomen-
tum. For massive ideal speciments at low temperatures the resistive pro-
cesses are related solely to intrinsic lattice Umk lapp processes and rR¥ T N
This inequality corresponds to our condition (1 - ar) << 1. In such situa-
tion the total quasimomentum of the phonon gas is treated as an almost
conserved quantity -and in the collision-dominated regime this gas is descri-
bed with the help of hydrodyna.lmc equations for the local temperature
T(T,t) and the local drift velocity V(r »t ). Our results suggest that these
equations, which quite accurately describe the phonon phenomena such
as the second sound, the Poisseuille flow and the heat conductivity, corres-
pond to an extension of the description to finite values of %, where the
difference between diffusive and hydrodynamic behaviour vanishes.
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Fcioxenuy Y., [Namxesny T., Bpaun: . E17-88-171
HonrospeMeHHOe aCHMIITTOTHNECKOE NIOBERXCHUE
JIOpeHII-Ta3a C AHU30TpOIMel pacceAHIs

PaccMaTpHMBaeTCA JIOPEHI-Ta3 C aHH30TPOIMed pacCeAHHA.
HHTerpan CTONKHOBEHMA CONEPXXHT WieHbl, OTBeYaloLMe H30TpoI-
HOMY H aHH3O0TPOIIHOMY PacCCefHMIO. Plccnenonaﬂa npobnema Kowmu
Ans ypaBHenna Bonsimana. :

PaboTa BhinonHeHa B JlaGopaTopul TeopeTHYeCKOH (HINKH
OHAU.
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Long-Time Asymptotic Behaviour of the Lorentz Gas :
with Anisotropic Scattering

The rarefied Lorentz gas with anisotropic scattering is consi-
dered. The collision integral of the Boltzmann equation contains
terms related to isotropic and anisotropic scattering. The Cauchy
problem for this equation is studied. When isotopic and anisotropic
contributions are equally effective, the long-time asymptotics of the
solution is hydrodynamic, whereas for prevaling isotropic scattenng
the longtlme asymptotics is purely diffusive. In particular, the gas
of neutrinos in supermnovae behaves diffusively.

The investigation has been performed at the Laboratory of
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