00bEAUHEHHLIN

WHOTHUTYT

A AA8PHLIX

o ;n_ululhl[uyl_u];_ HECAEADBANKA

~ pYyOHa

314 E17-87-885
A.A.Bakasov

PHYSICAL REASONS
FOR LIAPUNOV’S STABILITY

‘ OF RADIATION REGIME.
| OF A PREVIOUSLY INVERTED SYSTEM

Submitted to '"'"Physics Letters'




1. "Superradiant threshold" and ILiapunov's stability

The superradiation theory, as the laser theory, contains
such values of 'some physiéal quantities that -are sometimes
agsumed to correspond to the tramsition of a system from one
regime to another. In the laser theory the intensity of pumping
may be a parameter taking critical values. Upc.. exceeding the
first critical level of pumping laser emits a sinusoidal wave
that is replaced by ultrashort pulses when the second threshold
is reached ﬁ 2] The solutions of differential equationa des-
cribing dynamics of such a laser become unstable at critical
values of the pumping intensity: first, a stable focus is rea-~
lised, then it is replaced by a limit cycle and further by the
torus [3]. In this case the pumping intensity is the master
external paresmeter of a system.

For superradiant systems one can observe a somewhat differ-
ent situation. An object of the investigation is usually a pre-
viously inverted system that may go over to the ground state in
different ways. In this case a superradiant system does not
possess an external parameter similar to the intensity of pump-
ing for a laser. The regime of radiation depends on preparation
of the system containing emitters. This is reflected in- the
initial conditions for the system ofvdifferentiql equation3
describing dynamics of such a system.

One of the main quantities is the number of previously
inverted emitters /(XQ;)where Z; is the initial time moment.
It is gometimes assumed that if /\/(zé)> /(Z‘Aﬁ’ where /l/{//— is
some critical value, then the regime of cooperative radiation

is realised [4] » Otherwise if /{/Z;) £ /(#/‘ radiation
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will be spontaneous. Another example is the Arecchi-Courtens
criterion [5}, in particular, for a number of emitters /b/
Thus, if /@A< /knghere /%? is the critical value, then as is
sometimes assumed, the superradiation pulse has a smooth secant-
shaped form, but if /®/>-/$é , .then the cooperative emlssion
becomes oscillatory.

In this paper we investigate the problem of the nature of
changes 'in the radiation regime of a previously inverted system
of two-level atoms by the rigorous methods of the stability
theory of solutions to ordinary differential equations. If there
are such criticdl values of /ﬁQ,, or /k; at which the solu-
tions of tpe corresponding evolution equations become unstable,
then the radiation regime changes step-wise: a spontaneous
radiation changes to cooperative or the secant-shaped pulse
changes to oscillatory pulses. If the solutions remain stable,
the passage over the "critical! values /%kéw and ,44 is
smooth and continuous.

Our analysis will be based on the following system of
ordinary differential equations describing the radiation of a
pencil-shaped system of two-level atoms interacting with two

resonant modes {6]:
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Here /7 is the number of photons inside the sample, /4
is the number of inverted atoms, ﬁ{ is the correlation between
the dipole moments of transitions of two-level atoms, /4-7 is
the energy exchange rate between the field and atoms, 7  is
the field relaxation time owing to the escape of photons from
the sample, ZC; is the time of homogeneous relaxation of a
macroscopic dipole moment, 777 is the time of relaxation of

1oz
inverted atoms owing to radiatlonless mechanisas, /¢/ is the

number of atoms in the system, 7_' f’g,/}-ﬁ , Where (? is
the interaction constant in the chke Hamiltonian,

If the regime of radiation changes step-wise when the
initial number of inverted atoms passes through the value /(ééh
the corresponding solution of equations (1) becomes unstable.
This is illustrated in the figure. If/?kaz)exceeds /¥;éh by
an infinitesimal value of 8.)'() , the solutions corresponding
to the solid and dashed lines are a finite distance apart:
from each other and consequently become unstable a la Liapunov/7/
Therefore, our aim is to investigate some nontrivial

golutions of eq., (1) for stability. We shall also find out

what conditions will be imposed on the investigated solutions.

K(t)




2. Proof of stability

Now we introduce dimensionless variables and time

qt/ /Z<?2—‘—/’<% ,%—A/, 5]:?—{ (2)

and dimensionless constants

ol = ‘_/757062: l/_/701, oly = /7 (3)

System (1) acquires the form

j-—¢+%a

=S g Ll 05,
5/3 = st R%p Yy, - A/<72’

4, = s Y, T Yoo

The dot means the differentiation with respect to the dimension-
less time &

Let /4(&) [/4_((&) ,42/&) /4 /67) 141, /&)j be some
arbitrary solution of system (4). Let us investigate its

stability. Writing down

y(8)= A(®)+x(6) o
we get for the variations X(&)=[Xi[(9),xz(9), Xg@), XI/@}

the reduced nonautonomous quasilinear system of equations
[

Xi = —Xi + XZ’
R
- 4t Vo 2, + 2 A+
+24,(0)X ~ WX + X5+ X,),
(6)

_‘XL/:: '—xJX#—Xe.

The concise form is

= (B+DD(8)x+ k). ™

where B is constant matrix

-1 4 0 o
_d:// -4 (1 ol ) ocf 0522
= O —/1/ —061 0 (8)
‘ o -1 0 ~olg
_D/&) is the time-dependent matrix

0 0 0 20
- RGAE) O 0 2,40
S0 246 0 R2A06) ] ©
0 0 0 0
and nonlinearity is
f6)= { 0, 2% X,, 2XX,, 0}- (10)
To apply the ILiapunov criterion for nonautonomous quasi-

linear systems [8], one should show that the nonautonomous

system of the first epproximation

f. = (5+D(5’))f (11)

ig correct & la Ligpunov [7] We require that the investigated
solution A (@) should satisfy the condition

mewM@<m 8-4/%

Making the change Cf CI7 in system (11) where C’
nonsingular matrix diagonalizing the matrix 5

is

A=CBC- dz‘ag(/’lj, s A5 A) (13)

we get the linear system of equations

p=Ap+ CHD(@)C’Q,

(14)



where the time-independent coefficients A.{ ’ ;{2' 43 and A/,
on the right-hand side are along the diagonal. It follows from
condition (12) that ©°

{Ic*D6)C]do < <.
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Then system (14)ois correct 4 la ILiapunov and the numbers

Ai' Az, A , ﬂk form its total spectrum [9]. Since non-
linearity (10) satisfies the conditions of the ILiapunov crite-
rion for nonautonomous quasilinear systems, the investigation
of stability of 'a trivial solution of the reduced system (6)-
(10) or, which is the same, of the nontrivial A(%Q)solution of
initial system (4),is reduced in virtue of the condition (12)
to a simple problem of negative definiteness of the constant
matrix Zg. Using the Sylvester criterion, one can easily see
that at all positive values of ?_,’Z:,777, UZ;h and /1/in Eq.
(1) the principal minors of the matrix 'f3 are positive

A, (-8)=1>0, |

8y ((B)= 41+ o)+ LN/ > 0,

b5 (-B)= oy Ay (B) + LN > O, 2

4, (B)= o5 A5 (B) + oy 0622 >0
and, consequently, the matrix 23 is negatively definite, i.e.
Az-<0, i=1,2,3,4. Then, accprding to the Liapunov criterion
for nonautonomous quasilinear\systems, a trivial solution of

the reduced system (6)-(10) is stable & la Iiapunov. This means

that the nontrivial /4 (EQ)SOIution of the primery system (1) or

(4) satisfying the only condition (12) is stable. Moreover, as
it follows from this criterion, the solution is exponentially
gtable & la Iiapunov [10].

The stability of the A(6)solution, that is an arbitrary

one (except for condition (12)), physically implies that there
are no such initial conditions, in particular, there is no such

ini%tial number of inverted atoums /fzéhat which the regime of
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radiation of a previously inverted system described by eq. (1)
could change step-wise. Consequently, in a given system the tran-
sition from the regime of spontaneous radiation to superradia-
tion is continuous. The exponential stability of the/4(29) golu-
tion means that during the time comparable with /)7(,7)((7,72—; 70_'77/;)
the evolution of variables /2 ,/67, A;land /Y’undergoes a stage

of their exponential tending to zero values. Consequently, eq.(1)
adequately describes a dissipative nature of radiation of a
previously inverted system of two-level atoms.

From a point of view of a mathematician sufficient condi-
tion (12) is very strong. However, a physicist should require
fulfillment of this condition, since it is equivalent to the
simple physically necessary conditions. Let us show the validity
of the statement.

3. Physical reasons for stability
3e¢1. Sufficient conditions of stability

For a solution A/&)zﬂz@,/&@ﬂs@)’&@}?“ the system
of evolution equations (4) sufficient stability condition (12)

has the- form:
oo

[Ip@lds=2 &f)/oc;Af(ehAj/9)+(1+o<;)‘"/1j@'49< o, (16)

@7 The BEuclidian norm is used. The function g45 6?) is seen

to be out of this condition. The following upper estimate is
valid for the improper integral from (16):
[- =]

51&2"/1,2(9%;45 B+ (1+ 2 PAY) d6 < an
< (a6 + 14,0] @ D\,@) o
8

If the improper integral in the right-hand side of inequality
(17) exists and converges, the imﬁroper integrals



f A ®G)de, (18)
ﬂA @)\ds, 19
f 5 | A (0))d6 =

also ex1st and converge in virtue of the non-negative character
of the functiqps under the integral from (17).

So, if ! :<OO,cf = 1,2,4, then sufficient stability condition
(16) is obviously valid.

3.2. Non-negative definiteness and finiteness of the energy of a
radiating system; existence of its equilibrium state at infinitely

long time.

First let us show that the condition of non-negative and
finite energy implieés convergence of the integrals ]— and ]
The functions ;4 (9) and /4 /5) are the number of photons in the
volume containing emitters and the number of excited emitters

respectively. They determine the energy of the system, therefore

0<h8)< o=, (21)
0 <A, (8)<ee. (22)

For any two moments of the dimensionless 1;ime&i2 >&i > 00

one can write down

AB) -4, @)= fA (8)d5 -
A@)A@)f L @)ds (26

Summing (23) and (24) and taking into account evolution
i;ﬁations (4), we obtain

(@18, O)0-AB)- MBI AB)-A,5) @

€, Let limits for 44 (&) end ,4" (8) atf-> 0o exist. It implies

that the open system of emitters described by egs. (4) or (1)
goes to an equilibrium state at infinitely long time. Then we
h%ge in virtue of (21) and (22)

[(n@)+ s |A,@Ddo < | @)+ | el + )

b +AG) + A, ()] < o,
From tg}s it follows immediately that the improper integrals
li and / exlst and converge:
“A ©)|dE< oo, (27)
_/— j/A (O)dB< oo (28)
o

3.3. Finiteness of the intensity of radiation or absorbtion

Let us now estimate the integral Té. Note that the following
inequality is valid in virtue of the first evolution equation (4)

IAQ (9)1 lAi(Q)l + I A (9)}, (29)
Further on we shall discriminate two cases. The first is a

monotondus asymptotlc behaviour of the field. Let there be a
moment of time 69 0 when the function /4 (Z{) is monotonous
on the sem1—axisE§'og> « This function is also continuously
differentiated in virtue of the theorem of éxistence and uni-
queness [ ] « Then it follows from convergence of .[ in (27)
that /1 09) is a monotonously non-increasing function, such that

I'- (14@ld6 < o= e

Then the ié%egralAI T + T (due to estimate (29)) and,
consequently, exists and converges. Thus if the field is asymp-
totically monotonous, condition (16) is fulfilled owing to (27),
(28), (30). So, the stability of the radiation regime in this .
case is again determined by the non-negative and finite character

oxr the energy of the system.




Let us consider another possible case -~ oscillatory asyupto-
tic behaviour of the field, when the number of photons oscillates
in time., Let 6&», 6% y ee» be a sequence of isolated extrema
of the function AA (9) on the semi-axis [&0,00) - If this sequence
is bounded, the consideration is reduced to the case of the
asymptotically monotonous behaviour of the field. Actually,
it is sufficient to consider the field evolution for the time
surpassing the upper limit of the sequence {’6%'2

Let the increasing sequence ZE%} be unbounded. Consider
the followmg definite 1ntegral 0,

[tm)- f" 1y(6)]dB = f 14,6)\de o)
According to the mean—value theorem
[ () = Z GG
@H<0 - 0. (32)
Let g, = hax | Ay (8)] s where @e J , [ . men

]1 (tn) < Z /O{ (‘9 ‘2‘-1)- (33)

Let us now demand that the following inequality should be
valid starting from some (

/t? < /v7/41(?) =

where qu is an arbitrary constant independent of (

A (i) is the mean value of ,4 (&) in the interval]él’i ’ 8([

Then the integral which converges owing to (27)
[=2 JA ©)do- Z A,6)(8:- &
=4

is a series which dominates the geries

L=t 1= 2 1460660 o

3 E /41(5’)0/6’ (34)

(4 - A
(2 él

Oz) < ©° (35)
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Consequently, in virtue of convergence of ji
-/
exiats and converges, furthermore

and condi-
tion (34), the integral

there 18 a convergent integral

S.IA ®)|de < f +l < 0o, (37)

which was to be shown. Then the oscillatory radiation regime is

stable, as the monotonous regime investigated before.

4. Short commentary

We enumerate once more the physical conditions, imposed on
the solutions considered.

Conditions (21) and (22) ensure selection of the solutions
witb the finite and non-negative energy.

Assumption about the existence of limits for the functions
A_{ {6)) and /4" (9) at B—> oo just ascertains an evident
physical fact of transition of the open system described by
eqs. (4) or (1) to an equilibrium state at infinitely long time.

It is easy to see that condition (34) is just a condition of
a finiteness for an observable, namely for the intensity of
radiation or absorbtion. Choosing the constant P1 one can obtain
any prescribed intensity, i.e. physical generality is not lost.

Thus, we have demanded that only the most necessary physical
conditions are fulfilled. If it is so, the radiation regime of
a previously inverted system of two-level atoms is stable. Chaos-
exponential instability [11J ~ never occurs in this system; more-
over, there are no threshold values of the initial inverse popu-
lation or the number of emitters as well. This is a rigorous
result for the considered system (1).

In conclusion, we should like to note that variables ",

ﬁ”, A7 and /( do not allow one to use a direct energetic way
of constructing the Liapunov's function for studying the stabi-

lity of eq. (1), since the energy of the system is linear with

11



respect to these variables [12]. We note also that eq.(1) which
forms a basis of‘review [6.]are quite general. Dropping some
terms and introducing into these equations variables of the
"gction-angle" type one can obtain [6:] nonautonomous pendulum
equations considered in refs.[4,5]. There will be unstable so-
lutions for a pendulum equation [7,8,10,12] and, consequently,
the "superradiant threshold" will exist in this particular case.
For the more general situation considered before, as we have

shown, the "superradiant threshold" does not exist.

The author is grateful to PiE,Zhidkov for discussion of

some mathematical aspects of the problem.
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BaxkacoB A.A.
dusnyecKHe NPHYHHE YCTOHUHBOCTH PEXUMOB

H3IIyYEeHHsT NpeaBapHTeNnbHO HHBEDPTHPOBAaHHOH
CHCTeMsl

E17-87-885

CTporo NnokasaHoO, YTO peueHHs 3BOJIOIMOHHLEIX YDaBHEHUI
OJIs. npefBapHUTeNIbHO HHBEPTHPOBAHHOH CHCTEMbl OBYXYPOBHEBbBIX
aTOMOB ABISKTCHA YCTOHUUHUBBIMH, €CJIH YOOBJIETBOPAIOT JIHIb CAaMbl
Heo6X0oauMbIM PH3HYECKHUM YCIIOBUSAM. JTO O3HAUaeT, YTO He Cy-—
mMeCcTBYET TaKHX HAYalbHBIX YCJIOBUH, HPU KOTOPBIX PEXKUM H3IITYy—
YyeHHsI MU3MEHsAllcA Obl ckaukoob6pasHO. B uacTHocTH, mepexop

OT CHOHTAHHOTO H3IIyuYeHHs K CBEDXH3Jy4YeHHI IPOMCXOOMT He-—
TpepHBHBIM 06pa3oM. i

Pab6ora BrinonnHeHa B Jla6opaTopuH TeopeTHUECKOH GU3HUKH
OUsHu.

Mpenpunt O6beaHHeHHOTO HHCTHTYTA ANEPHBIX HCeTenoBaHMit. Jly6una 1987

Bakasov A.A.
Physical Reasons for Liapunov's Stability

of Radiation Regime of a Previously Inverted
System

E17-87-885

Evolution equations describing a previously inverted
system of two-level atoms have been strictly investiga- -
ted. Solutions obeying only the most necessary physical
conditions are found to be stable. It implies physically
that there are no such initial conditions at which the re-|
gime of radiation changes step-wise. Particularly, the
transition from spontaneous radiation to superradiation
proceeds continuously.

The investigation has been performed at the Laboratory
of Theoretical Physics JINR.
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