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1. INTRODUCTION 

A qualitative and quantitative understanding of electronic 
correlations in transition metals remains a challenging prob­
lem. The main theoretical problem is an appropriate treatment 
of the correlations between electrons. Angle-resolved experi­
ments which have been performed recently for several of the 
3d-band metals provide detailed information about electronic 
structure of these elements. Comparison of the experimental 
results with the existing band calGulations reveals important 
discrepancies. Especially Ni is the case for which many-elec­
tron effects cannot be ignored / 11 For example, photoemission 
measurements indicate a total d-banq width smaller by' a fac­
tor of about 1.4 than in band structure calculations. Also, 
the value of the ferromagnetic exchange splitting at EF of 
about 0.6-0.7 eV found in spin-polarized band calculations is 
roughly twice that required to fit angle-resolved and spin-po­
larized photoemission data. These and other discrepancies bet­
ween one-electron theory and experiment indicate ~hat the cor­
relation between electrons must be included in a more transpa­
rent way. Up to the present, the Habbard Hamiltonian has been 
applied in most of the papers concerning the investigations 
of the many-body effects in solids, i.e., a large number of 
papers was devoted to investigations of model syst~ms descri ­
bed by Hamiltonians with intraatomic integral present only. 
However, the intersite interactions may be important to the 
same degree (for detailed discussion see part I of this 
work/ 2 / ) . For this reason we have investigated the influence 
of these additional interactions on the main specific feature 
of the many-body description, i.e., on the electron self-ener­
gy. 

The paper is organized as follows. The Hamiltonian and the 
method of calculatíon of the self-energy as well as the appro­
ximations involved are discussed in Sec.II.Sec.III contains de­
tailed numerical results of calculation of the electron self­
energy for model fcc and scc tight-binding metals for various 
k vectors and values of intersite interactions. Also, a com­
parison with the so-called local ~ximatiQn for self-ener­
gy is given. It~Villi~ttiHj,jA "iiii.:~ \ 
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2. THEORY 

In part I of this paper / 21 we have presented detailed theo­
retical investigations of the model Hamiltonian with intersite 
interactions included. Here, for the sake of completeness, we 
give only a short presentation of·the obtained results (ali

/ 2 / notation is the same as in the previous paper ) . 

The Hamiltonian reads as 

H = 2 t .. a+a. +.!L 2 n. n. + 21 2 (1- o.. )(U.:'- 1.'. ) n. n. + 
ija lJ Ia]a 2	 ia la 1~ ija 1J 1J 11 la Ja 

(1) 

+ 21	 2 (1-0.. )U.~'n. n. +~ 2(1-0ij)Iíja7aa~_aaj_aaja' 
ija 1) lJ Ia J~ ija 

where U is the intraatomic Coulomb integral, U", I c, r" are 
the interatomic Coulomb and ex~bange integrais. Usually, I' 
= I" in the	 case of real Wannier orbitais. 

For a Fourier transform of the Green function defined as 

OC:.(t - t ') == «a. (t); a: (t'»> == -ie(t - t')<[a (t),a+ (t')] > (2)
1J Ia Ja 1a ja + 

we have obtained the Dyson equation 
a o o oa a a	 (

O .. (E) = G .. (E) +:S O.n(E)Mn (E) G j(E),	 3)
lJ lJ r fi 1 t t n n 

where the Fourier transform of the "zeroth-order" Green func­
tion	 Of{(E) is as follows: 

o .~ + ~ 1 ....... ...... 
O a (k; E) = [E; - ( k ) + N :s (U" (k - q) - I' (k - q)) ,< n ... >­q	 q-a 

1	 
U 

~ -. 1 
- -N 2I ( k +	 q) < n., > -[U + U"(O)] .<n > - [U"(O)-.r'(O)].<n >]-, 

~ q-a <o a 
q (4) 

where 

~ 1 -iko(Ri-R j ) 

€(k) = - L t .. e 
lJN ij 

(5) 
1 

< n > ::t - :s <n~ > • 
a N ~	 qa 

q 

The self-en~rgy Ma(k;E) reads as 
~ 1 ~ ~ ~ ~
 

M (k; E) = - L [m

a N 2	 ~ ~ - a a-o 

(k; E)f 1(k, p , q) +
 

p q
 

2 

~~L a-a a (k; E) f.2(k, p, q) + ma aa { k~ E') f .'3{ k~ p, .q) L .(6) 

wbere 

-+ '" +- ,00 dw -dú) dw 
lh7	 ~ 1 2.3 n 
JIl a a :o (k; E)	 = ~ J fI + ' (w 1 ' ú.l 2 , w 3 ) x 

1 2 3	 17 E 4- co -w -.(jJ 
-00 1 2 3 

(7) 
-a '1 -+ ~ a 2 -+ -+ o. 3 -+ 

X J m G (p + k : ca 1) J mG (q + 1l ~ co 2 ) JmD( q; w:3}, 

-+-+~"2 -+, -+ -+ -+ -+ 
f 1( k , _p,q) = U + 2 U U " ( p) +.(U + U "CP» I -'(k + p + q ) + 

+ U U " <p) + U" (p) 2 ,	 
(8a) 

f2 (i,	 li, q) = I " (i + li + q) 1: U + U n. ô~ - q) + I n (k 't 'p + q)l, (~b) 

f~(i.	 p, q) =(1'(p) -'U"{p)]{U"(k - qj - I'(k - q)] + 

(Bc) 
,-+ -+ 2 

+[U"(p)-I'(p}] , 

11 {w	 ' w 2" (V ) == f (cu 1) l 1 - f{cd ) ] (1 - f(w 3) ] + 
1 3 2 

{8d) 

+ [1 - ( cu1 ) 1 f{ (J) 2) f (w 3 L' 

and-. f(w 1) is the Fe rmi d i s t r í.but i.on function, U""'{q) , I' (q), 
I "(q) are the Fourier transforms of ·the intersite interac­
t í.ons . 

III.	 SELF-ENERGY CALCULATIONS.
 
NUMERICAL RESULTS AND DISCUSSION
 

Let us apply the results Df the previous section to the 
calculations of the self-energy for a model electronic band 
structure. In general, formula (6) and 
Oa (k ~ E) = [Oo a (k; E f 1 _ ~ ( k~ E) 1- 1 (9) 

provide a self-consistent way for obtaining the self-energy
a-+	 • a -+

M (k; E) andGreen func t on O (k; E). Howeve.r , because of ra­í 

ther tedious	 integration in 9'-dimensional space (6-dimensio­

3 

http:U"(O)-.r'(O)].<n
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nal space for k 7integr~t:i~n .and 3-dimensional space. for energy 
integration) for every' iteration'step, we calculate the self­
energy in the first iteration step only. Thus, we do not obtain 
self-consistent solutions of Eqs.(6) and (9), but for small 
values of U/W where W is the bandwid th, the~e resul ts are 
quite r easonab Le j see also!3,4J. l.Je take for Jmcf (~, E) as a 
first iteration step, the value 

1 a-+ -+ 
- - JmG (k; E) = ô(E - f(k)), (10) 

where f(i} is'~he energy dispersion for a model tight-binding 
energy band (in our case for fcc and ·scc crystal lattices). 
The spin Lnd ex (J will be suppre s séd as we are dealing wi th the 
paramagnetic case. 

~ Now formula (6) becomes 

-+ 1 J1(k, p, q) 
M(k;E)=N2 k + -+ ----....". .....-+ ~ 

E + ((q) - e (p + q) - f (k + p) 

( 11) -+ -+ -+ -+ -+ -+ 
+ f ( k , p, q) + f (k , p, q)].

2 3

With the expression for the self-energy at hand, we can calcu­
late the spectral density of states, the important characte­
ristic of the electronic structure needed, for example, for 
interpretation of the photoemission spectra. For one-electron 
states the spectral density of states reduces to a set of del­
ta functions peaked at the corresponding band energies, but in 
the presence of the electron correlations these peaks are 
shifted.and broadened. These changes are essentially represen­
ted by the re~l and imaginary parts of the electron self-ener­
gy. Therefore, it would be par.ticularly ..useful to inv~stigate 

in detail the behaviour of the electron self-energy curves for 
a sufficiently broad class of parameters. 

Let us discuss the method and class of parameters needed 
for calculation of the self-energy. The integraIs we!e calcula­
ted by the Monte-Carla method. For each energy' and k-vector 
from 500000 to 2xl0 6 pairs of vectors (p, q) were ~andomly ge­
nerated. In order to reduce a noise shown by the calculated 
curves, a very large number of randpn points was needed espe­
cially fox energies corresponding to the minimum of the self­
energy. We first calculated, of course, the imaginary part of 
the self-energy and than obtained the rea~ part by the Kramers­
Kronig relation. Before we begin numerical calculations we must 
determine some parameters entering into the formul~s for the· 
self-energy (or, equivalently, the parametersof the Hamilto­

nian). 1'he calculations were done for model-+fcc- andscc crystal 
lattices with electron energy dispersion f(~ calculated in 
tigh-t-binãing schemé for d-band wíth nearest:-neighbour hopping 
integraIs only. Although the HamiItonian (1) describes the 
one-band model, we can try to use it fo-r description, in an 
approximate manner, of the realistic many-band solíds (see 
alsd 3•4/ ). lf degenerate bands are considered, for simplicity, 
then Ín the calculated self--energy we must include the numeri­
cal factor ~ (for d-band metaIs) 13/. Of course, now the parame­
ters U, U ", etc. are the aver age, values taken over alI pairs 
of the band indices. The bandwidth W anã the band fillíng Ne 
wer~ chosen to have reasonahle values for modelling the d-band 
transition met a l s , He take W= 4.6 eV and t he, band filling 
N = 9.4 and 8.6 electrons per atom. These parameters corres­e 
pond to nickel and cobalt, respectively. In order to obtain 
a better insight into the problern under consideration we haye 
calculated the self-energy also for some other values of the 
parameters N e AlI calculations were done for the temperature 
OOK and for the paramagnetic case. The next problem is the 
choice of the parameters describing the intersite Coulomb and 
exchange interactions. For fcc crystal lattice th~ Fourier 
transform of the interactions J í j reads as (similarly for s cc 
crystal lattice): 

o 

(1) aq x aq-+ 1 i q. d~i - Rj) y-
J (q) = ---c- k e J,. 4J [ cos -- cos- + 

N ij lJ 2 2 

aqy aq z aqz aq x 
+ C08-- 008-- + C08 -- 008 -- J +

2 2 2 2 

(2)
+2J [c08(aq~ + C08(aqy) + C08(aqzJ1 + "', 

wher e J( 1) ,l2) are the f i r s t e-nei ghbo u'r s and second-neigh­
bours interactions, respectively, and a is a lattice constant. ' 
In our calculations we retain only the first term in this exp­
ression. Now we must determine the ratios U/U n( 1) , U11"( 1) 

(we have taken I.'. = I -: ). Note that the intersi te integraIs
• • lJ lJ •

wh~ch are g~ven by the matr~x elements of the long-range Cou­
10mb interaction, are defined with respect to the Wannier func­
tions. Numerical values of these ratios are taken to be com­

5,61parable with the ones used by Aisaka T. et al/ and 
et al. / 7 / Kaga E. • These authors found that including of the 

í nter s í t;e ínteractions impr~ves the consistency of. the band 
narrowing and satellite binding energy as well as gives a cor­
rect q-dependence of the effective exchange parameter in 
n í.ckel . The numerical values for (U/U'n(l), U/I'(l») we have . 
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Fig.1. The imaginary and real pai-te of the. self-energy {the ~ 
left- (a) and right-hand side (b) parts of the Figure~respec­
tively} for fcc lattice. EF=D.95 eV:, (U/U"(1), U/!'(1)) =(10~20)~ 
'i = c(O~O~O). 

used ar~ (10,20)~ (10,50) and (20,100Y. In Figs. 1~10 we pre­
sent'resu~ts for i~aginary and real p~rts of self-energy calcu­
lated for fcc crystal la t t ce ; and in Figs. 12-17, for scc cry­í 

stal lattice. In alI Figure~ the broken curves denote the re­
sult of l~c~l 'approximation for Hubbard Hamiltonian (see Appen­
dix) ~nd curves denoted by éubsctipts A, B and C cotrespond 
to t he ' tesul ts obtained for t he, cases when: a I I interactions 
are included - curve A,only on-site Coulomb interaction ,is 
present - (Huobard model) - curve B and on-site Coulomb and 
iritersite Coulomb interactions are taken into account ~ curve 
C, respectively. In '~ll Figures the left part represe~ts the 
imagin~ry part of the self-enersy and the right(part - the re­
al part of the self~energy. If in any Figure the curve denoted 
by letter C is absent, it means that there is no difference 
between curves A and C. 

In Fies. 1-3, 4-6 and 7-9 the self-energy curves are calcu­
lated for the parameters (UIU"(l), U/I'(l)) equal to (10,20) 
(10,50) and (20,100), respectively. In order to obtain a bet­
ter insight into the problem we have calculated the self-ener­
gy for different k_;-vector's: in Brillouin zone, namely for 
k = (0,0,0) -- L, k = (1/2, 112, 1/2) 2TT/a - L, and for k 
=( 1,0,0)2TT/a - X. The energy band for fcc is located in the 
limits (-3.45 eV, 1.15 eV) and E F = 0.95 eV. This value of 
Ferroi energy corresponds approximately to the band-filling 
equal to 8,6 electrpns/atom (in degenerate d-~ands model) and 
roughly correspon~s to the ca~e of'CO and may be representati ­
ve. to some extent in our model calculations, of transition 
~etals Ni, Co, Fé for which this parameter takes the values 
9.4, 8.4 and 7.3 ele~trons/atom, respectively. Additionally, 
we pr~sent the imaginary part of the self-energy calculated 
for .fcc lattice for E F = 0.25 eV (50% of the total band fil ­
Ling) and for (U/u u(1) , U/I'(1)) equal to (10,20), Fig.l1. 
In the case of scc lattice we placed the Fermi energy in the 
middle of the band and took for the parameters (U/U u( 1) , 

v/r(1).) vaLue s (10,50) Figs.12-14 and (20,100), Figs.15-17. 
Let us dlscuss the case of fcc lattice. First of alI, when 

looking at Fi gs.. 1-9, it is seen at onc e t ha t ther~ s a veryí 

clear dependence of the electron self-energy on k-vector in­
dependen t of the value of -the electron-electron interactions. 

6 

-0.02 

-0.01. 

N 

~ 
<,
 

LU
 
,~ 

'"i 
E ..... 

-0.12 

-D.11. 

k-l0.0.0Jc 

(a) (b) 

e"
I k a 10.0.01 

N 

~­........ w. 
,~-::E 
~ c:: 

0.01 J 11 I I 

-0.00 

-40 0:0 4.0 
E(eV) 

k-I1.0.0) 

t 
E 

n 
~A C 

A 

c 

EF 

l_ 
k·(1,0,Ol 

A 

n., _C 

C 
II 

A 

-4.0 ° 
. E(eV) 

0.12 

0.10 

O. 

N 

::>-W 
t~ 

~ 
~ a:: 

OI I~ I 
-002 

4.0 

7 

-0.'02 

-0.04 
N 

::>-
Li] 
'::5 
~ 

oS 
-0.12 

-0.14 

-0.16 

AIIto.. 

Fig.2. The same as in Fig.1 
fork= (],O~O}2TT/a. 



N 
::J--Wt.x 
~ 
§ 

-0.12 

-0.14 

-0.16 

-0.18 
c i<-[,'/2.1I2.1/21 

Fig.3. The 
~ 

same as in Fig.1 
fOl? k z: ci/», 1/2~ 1/2) 2 ":Ia. 

-0.02 

-0.04 
N 

::J-'W 
.~' 
~ 
E ...... 

-0.12 

-0.14 

k"ID.D.Dl 

~ 

Fig.4. The same'as in Fig.1 
.fOl? (U/U N (1) ; u/!'(1)) z: 

==(lO~50). 1 

8 

C I 

.,.. 

E(eV}
 
- 6.0 -4.0 -2.0 O 2.0 4.0
 0.10 

008 

0.06 
N 

:J
........
 ­w 
t.:i" 
~ 

... A~Ol 111 I 

-Q02 

-0.04 

~f-0.06 
~ k'-11.0.01 

.4/IIa:. 

Fig.5. The same as in Fig.4 ~ - I I I---'-- ­

k'-11.0,OI 

'A,e 

c;;::=: r i I' i li i • i 

N 

::J­......... w 
,:.x' 
~ 
.É 

-0.12 

-0.14 

-0.0 

0.10 

0.08 
N 

::J-
-·W 
4~-
~ 

~ 
OI 

~ - 4.0r 

/ 
/:1. 

/1 
/1,, 

,/ 
/
.111 1 

E _ 
F 

J k.( 1-7,v2.~) 

0.0 4.0 
E(eV) 

fOl? k z: (1 ~ O~ O) 2 tt / a. 

N 
::J
 
.........
 -
W 
4~-~ 

.É 
-0.12 

-0.14 1 

-0.16~ 
-O.18L-­

\ I 

,. -4.0 O 4.0 
E(eV) 

0.06 

0.04 

N 

::J-
-W 
4.:::i 

~ 
(::.) 

'O:: 

-0.06 

-0.08 

-0.10 Ef 

l k=IOOC}) 

~ -4.0 4.0 
E(eV) 

0.12 

0·10 

0.08, 
N 

::J-
-W 
f~'-
~ 
~ o:: 

O 

,,,, 
/,, ,/

Fig .~. The same as in Fig. 4 ~ - 4.0 o 4.0 
fOl? k z: ci/», 1/2~ 1/2) 2 rr:/a. , E(eV) 

9 

EFl k-(l'2.hY2) 

~ j -002 
A,e k.11h1h1hl -o. 
~ 



EF 

\ k-W2Y2Y2) 

A 

~ 
B 

O /'.0 

EleVI 

-/'.0 

. E(eV)
-6.0 -4.0 -2.0 O 2.0 4.0,.1. i , 

'~ 0.98 

-0.04 

J 
N 

:J 
;:::::. 
W 
.~ 
z 
E .-. 

1 ·0.02 

-0.14L VA,e 
_ k= 11/2.112,1/2) 

....... 
Fig.9. The same as in Fig.? 

~ for k' z: cirz, 1/2~ 1/2) 2 "I a.' 

EF

t k-W,o.OI 

o 1..0 

A 

-1..0 

-OD6 

-008 

0.06 

0.01. 

'::> 
<, 

úJO 
t~ 

3.: 
Q,I 

~ 

for (U lU ,,( 1), UII' ( 1) z: ~ 
z: (20~ 100). 

-0.02 

-0.01. 

N 

::::> 
<, 

'Ui 
IX 

"i: 
E 
~ 

- 0.12 

-6.0 
... 
", 

\ 
\ 
\ 

\ 

Fig. 7. The 

.......
 

IEF 

k= '10.0.01 

eame as in Fig. 1 

Elevl 

n 
-0.02 

-0.12 I 1"1 

I I1'4
\

v 
/ 

A,S,e 
1_"1.!fE FI .
 

I
 
I
 
I
, 
I 

0.06 :1 A1\ ,'::> ,
...... ,,LU ,I~ ,
~ ,
ai ,
~ ,,

O 

E(eV) 
-6.0 -4.0 -2.0 O 

0.08 

0.06 

2.0 4.0 
N 

X 
UJ_ 
.~ 

:1:' 
c»a::: 

o, 

-0.02 

1..0 
iI 1\ I JCFõZ5 

-O 01 

" I I 
-002 

N 
:::> 
...... 
w 

f.:{. 

E,
 I ~
 

oS VI k-ll,O.O) e-0.09
-0.06 

Vc-aoal I . 

EF 

~ k= 10.0.01 
I ! I I 

0., 

-4.0 0.0 4.0 
E(eV).k.. (l.0.01 

t'A,e 

EF 

......... ' i i j. i i 

0.12 

N' 

=>­,...... W 
t~ 

~ 
E-

-4.0 O 4.0 -0.10 k-10,0:0)J.

E(~V) 

fig.8. The same as in,Fig.? for k = (1~0~0}2"/a. Fig.l0. The same as in Fig.-l for E F= 1 ~ 9? eV. 

10 11 



~.O 

11 \1\ II I 

Ef 

I k= ro.om 
I ! 

-4.0 00 4.0 
E(eV) 

~ 

N 

=> I 

00 

002 

W 

t~ 
2: 
tt 

-0.06 

-0.08 

N 

::J­.......... 
W 
t~-... 
2: 
E-

-0.16 

-0.18 

kaIO.O.O) 

E(eV) 
-4.0 -2.0 O 2.0 4.0 6.0 

i'" i i i X i i i i i _:LJOii:OI1li 

-0.20 

-0.25 

\ 
\ 
\, 

\ 

-0.05f " 
I 

N ~ \:::> I- . \ 
- IW \ 
t~ 
~ 
E 
~ 

-0.15 

Fig.ll. The imaginary part of 
the se Lf-energy for tcc latti­
ce, E F =­ 0.25 eV, k z: (0,0,0), 002 
(U/U " t 1) , UI I -(1)) z: (1 O~ 2O) • -. 

-0.04 

-0.06 

Fig.12. The same as in Fig.l for scc lattice, EF=-O.O eV 
and (U/U "(1) , U/I '(1») z: (Lü, 50). 

12 

4.0 006 

-0.05 
N 

=>
..........
 ­W 
t~ 

~ 
E-

-0.15 I k,. (1,0,01 

Er 
-006 

0.04 
N 

::::J-.......... 
W 
t~ ......... 
:2 
~ 
o:: 

-4.0 0.0 4.0 

..... E(eV)-0.20 
~ Fig.13. The same as in Fig.12 

k=11,O.0) for k z: (1, O, O) TT I a . 

E(eV)
 
-6.0 -4.0 -2.0 O 2.0 4.0
 
i """'"""" I i ri i i i 7 I 

I 
I 

I 
I 
I 
I 

,I-O. EF ,
N 

I:J 

,,
,I i---.. -w 

~r,ui 
""-' ,
2 I 

E ...... 
1 

-0.15 

-0.20 

;tI 

I 

.1 -0.25;
I
•• k a 11,1.1) c 

Fig.14. The same as in Fi~.12 for k =- (l,l,l)rr/a. 

13 

, 4.0 

k, (1.1.1) 

-4.0 

0.08 

0.06 
N 

':=J 
~r B 

A 



-005 

N 

::J-

W 
f~-

---
E 

-0.15 

-0.20 

E(eV) 
-4.0 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\, 
\ 
l-
I 
I 
\ 
\ 
\ 
\1 

0.0
 4.0'
 

k- (0,0,0\ 

Er 

I ~= 1O.0.0l 

l' \l 11 I , 

0-02 
N 

'::J
~I -0.05 
W 
l~' L 

N

::J 
2: 
~ --Wa: L~-2:-0:06 E--0.08 - 0.15 

I ~ 

-4.0 0.0 t..D 

-0.20E(eV) 

. Fig. 15. The some ns in Fig. 12 (O:/U"( 1) , U/I'( 1)') z: 

E(eV) 
0.04 -4.0 0.0 4.0 

k .. (1,1.11 

, 
I
 

I
 
I
 
I
 
I
 
I
 
I ,I
 
,I
 
!,, . , 

,t, 
,I 
,­

k = (1.1,1) 

0.08 

0.06 
N 

::J----W 
t~ 
"'-

-4.0 0.0 4.0 

E(eV) 

for' 
Fig.1? The same as in Fig.15 for k - (l~l~l)TT/a. - r20~ 100). 

The imaginary part of the self-energy for k = (0,0,0) has a 
nonvan i sh.ing value i.n the erier gy interval from -4.° eV to 
6.0 eV and has no any tails for energies below as well as 
above the Fermi energy. On the other hand, it has a rather 
broad main minimum extended to -0.15. As we are going with 

N 

=>---­
k-vector from 
k-points, the 

r point bf the Brillouin zcne to more 
imaginary part of the self-energy has 

distant 
long non­

.~-I
2 
fi 

van i sh í.ng t-à í l.s and both the minima are Larger and sharp.; Es­
pecially sharp main minimum (for energies below the Fermi ener­
gy) has 'the imaginary part of the self-energy for the point 
((/2, 1/2, 1/2)2TTja. whereas for the point (I ,0,0)2rr/a minimum 
for ~nergies above Fermi energy has a very small value. This 

-0.06l A.s.e EF I 

general trends are independent of the value of the electron­
electron interaction. For the cases outlined above, also the 

-
Fig.16. The same as in Fig.15 
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real part of the self-energy changes from the shape with rela­
tively sharp minima below and in the neighbourhood of E F for 
r - point to the shape wi th a very broad tninimum below E F and 
relatively sharp structure (two maxima and one minimum) near 
the Fermi energy. The local approximation, which is very often 
used in literature for a HnbbardHamiltonian, is a rather good 
approximation for k-vectors lying at a distance fr~m r point. 
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For f' poirrt t he d i.sc.r epanc í.e s between the exact cal.cu Lat í.on 
and those done in the local approximation reach- about 25% in 
the region of a broad minimum. Tpe imaginary patt of the self­
energy calculated in the local approximatíon .has atai1 s-prea-· 
ding outside the limits obtained from the exact calculations 
(for r point, only}. 

As for a comparison of the numerical values. f~r the self ­
enert\1" we can say t ha t b.i.g í.nrrí.ng from the parameters (D/U ,,(1) , 

U/I' ) equal to (20,100) the differences between those cal­
culated for the Hubbard Hamiltonian (but for R-dependent self ­
energy) and for the Hamíltonian with inter-site electron-elec­
tron interactions included, are telatively small for k=(O,O,O) 
(excluding the energy region corresponding to minima or maxima 
'of imaginary or real parts of self-energy) and are negligible 
for k points lying outside the middle of the Bril10uin zone. 
In Fig.l0 we present the imaginary and real parts of sel,f-ener­
gy caiculated for E F = L 07 eV for Lce lattice. This Ferrni 
energy c.orresponds to the band filling equal to 94% (for dege­
nerate d-band Hamiltonian this corresponds to 9,4 elec­
trons/atom). AlI the conclusions we have made for the case o'f 
the Fermi energy equal to 0.95 eV are now justified too. The 
only difference is·smaller numérica1 values for the calculated 
self-energy curves. In order to better show the influence of 
the intersite electron-electron interactions on the self-ener­
gy, we present in Fig.ll the imaginary part of the self-energy 
calculated for a band filling of the fec energy band equal to 
50% (for k = (0,0,0)). In this case the top of the density 
o f sta.t e s is Lc ca t ed far away from E F and the imaginary part 
of the self-energy for Hubbard Hamiltonian (also, in the lo­
cal approxim~tion) is strongly unsymmetric curve. ~urprising­

ly, after including the electron-electron intersite interac­
tions we have a quite different situation. Now the location 
of the minima is interchanged and we obtain the minimum for 
energies below EF\ Such a situation leads to quite different 
pictures for the spectral dgrisity of states. Now we have broad 
peaks of the spectral density of states for energies below E F 
and not for energies greated than E? . 

In Figs.12-14 and 15-17 we present the self-energy for scc 
crystal lattice for (U/U"( 1) , U 11'0)) equal to (10,50) and 
(20,100), respectively, for different k-vectors. The Fermi 
energy is located in the middle of the bando The band is 10­
cate~ in the energy scale from -2.3 eV to 2.3 eV. In compari­
son with the previous results for fcc crystal lattice, now for 
(U/U"( 1) > UII '(1)) equal to (20,100) influence of the elect­
ron-electron intersite interactions is Quite nottceable. Compa­

16 

ring these resul ts (and these for( U/U "O) , UI 1'( 1) ) equal to 
(10,SO))with those for the Hubbard Hamiltonian, we can observe 
quite a different behaviour of the calculated curves for the 
imaginary parts of self-energy for different pbints of the 
Brillouin zone. Generally, we have strong minimum for energy 
below EFfor k::: (0,0,0) comparing with the imaginary part 
of the self-energy calculated for the Hubbard Hamiltonian. 
On the other hand, for energies greater than EFa greater mi­
nimum is obtained for Hubbard Hamiltonian. Th~s situation is 
interchanged when we are go í ng to k.,-vector (1, I , I ).TT I a. For 

,.k::: (I,O,O)TT/a the self-energy (k- dependent ) calculated for 
the Hubbard Hamiltonian and for the extended Hubbard Hamilto­
nian is comparable. . 

In conclusion, we have calculated k.-dependent electron self­
energy for the extended Hubbard Hamiltonian for small values 
of U/W for fcc and sce crystal model band structures for the 
parameters representing, to some extent, the real transition 
métals. The obtained results indicate a relatively great in­
fluence of the intersite electron-electron interaction on the 
electron self-energy. ~he changes in the behaviour of these 
self-energy curves depending on the values of (U'/U"( 1) > 

U/I'( 1) ) and k -vector may lead to r e Lat í.ve l y great changes in 
the spectral density of states which is very important, espe­
cially in various photoemission studies. 

APPENDIX 

Here we give connection between the general""expression for 
self-energy given in Eq.(6) and the so-called local approxi­

'mation introduced and discussed by Treglia et al./ 3/ for the 

self-energy c~lculated in second-ordér 'perturbation'theory in 
U/W for a degenerate Hubbard Hamiltonian. Namely, Eq.(6) can 
be rewritten in the forro (paramagnetic case) 

~ 1 il~,· R +oe dúJ 1dúJ2 dw3 
M(k; E) = -2 ~ e rIr· + n (ú.> 1 ' úJ 2' úJ ) x 

N R -oe E +úJ 1 - úJ 2 - úJ 3 , 
3

i' 

1 3 i k .R ~ i k3 • R 
x (- -) ~ e 2 JmG(k; co ) e· JmG(k ; úJ ) XI o 

I
 
I TT 2 1 3 .:;.
 

k2, k 3,k 4 (A. 1.)
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3.	 Treglia G., Ducastelle F., Spanjaard D. - J.Physique, 1980,
-,+	 -+ 

i k 4 . R . .... -+ -+ -+. -+ .-+ .-+ 4 I, p. 281.. 
x e .JmD(k4,w3)x{fl(k4-k2+K3' k 3) + k 2-k 3, 4.	 Treglia G., Ducastelle F., Spanjaard D. - J.Physique, 1982, 

43, p.34L 
5.	 Aisaka T., Kato T., Haga E.. - Phys.Rev.B, 1983, 28, p.1113. 

+ f 2(k4 - k2 + k3~ k2 - k~, k3) + .f~(k4-·k2+ k3 , t.. k3, k3) 1, 6.	 Aisaka T., Kato T., Haga E. - J.Phys.F, 1984, 14, p.2537. 
7.	 Haga E., Kato T., Aisaka T. - Progr.Theor.Phys., 1978,59, 

p. 697.where ){(~, (U ), fi(k,ii, ~ ),i	 = 1,·2,3 .are given in(U, 

Eq~.(8D, SA, ~B,38C), respectively, and R denotes atomic posi­
t ions in the crys.taL Wnen we coris í.de r the Hubbard Harní.Lron í an 
(U" = I' = Ih = O), then from Eq.(A.l) the result Df Treglia 
et al./ 3/ is obtained 

-+ '2' -+..... +0Cl d-<v dw dw1K RM(k; E) = U I. e ' rr ( ;1 2 -:3 n (w , co , )ú) x

R '-~ E+ + w - co - w 1 -2 3
 

1 "2 3 

(A.2) 
x D(li; Cu 1) D (R; ú) 2) D{ li ;w 3) , 

wilere 

-+ 1 1 ..... i k. li 
D{R; co ) =' N I. (--;)Jm G(k ;(v) e •	 (A.3) 

lf we retain ortly the first term in (A~2)- local approxima­
tion - then for T = 0'0 K we have 

-+. 2 E F. b b 
M(k. E) ... M(E) = U (f dw 1 {d w 2 r d(u3 + 

a E F E F 

(A.4) 
b	 E F 'E F D (w ) D (<J) ) D (w )


1 2 3
 
+ r dw [dw r dw) + . . 1 2 3E a a E + (j) - W - (u

-F	 1 2 3 

From Eq.(A.l) it is evident that in the case of including in 
the Hamiltonian of the intersite electron inter4ctions, it is 
impossible ~o obtain expression like (A.2) with factorized 
lattice Green functions~ For that reason, in the case of Ha­
miltonians with intersite interactiofls included, the local 
approximation does not give any facility in the calculation 
of the self-energy. 
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TapaHKo 3., TapaHKo P. 
KoppemnJ;HOHHbie 3clKPeKTbi B pacmHpeaao:H 
Mop;enH Xa66ap,o;a. llucneHHbie pactieTbi 

E 17-87-724 

Mop;enb Xa66app;a o6o6~aeTCH Ha cnyqa:H BKJirotieHHH ,o;anbHo­
p;e:HcTByro~ero KYJIOHOBCKOro B3aHMO,IJ;eHCTBHH Me~y 3JieKTpoHa­
MH, HaXO,D;H~MHCH Ha pa3Hb~ Y3JiaX KpHCTaJIJIH'leCKOH pemeTKH. 
B paMKax 4>opMaJIH3Ma p;ByxBpeMeHHbiX 4>YHK~:H fpHHa npoBep;eHbi 
'lHCJieHHble pactieTbl p;e:HCTBHTeJibHOH H MHHMOH tiaCTH MaCCOBoro 
OIIepaTopa ,IJ;JIH pa3JIH'lHb~ napaMeTpOB, OIIHCb!BaiD~X MO,D;eJibHbJe 
MeTaJIJihl. fioKa3aHO, 'ITO BKJIIDtieHHe Me~yygeJibHb~ 3JieKTpOH­
Hb~ B3aHMO,IJ;eHCTBHH Bep;eT K 3HatiHTeJibHb~ H3MeHeHHHM C06CT­
BeHHOH 3HeprHH 3JieKTPOHOB. 

Pa6oTa BbJIIOJIHeHa B J1a6opaTopHH TeopeTHtiecKo:H 4>H3HKH 
Ol15fl1. 

Coo6UleHHe 06'be,nHHeHHOI'O HHCTHTyTa R:,nepHbiX HCCJie.t(OBaHHH. ,lJ;y6Ha 1987 

Taranko E., Taranko R. 
Correlation Effects in Extended 
Hubbard Model. Numerical Results 

El7-87-724 

The Hubbard Hamiltonian is extended to include long­
range Coulomb interactions between electrons on different 
atomic sites. Electron self-energy for various parameters 
describing the model tight-binding fcc and sec metals is 
calculated. It is shown that inclusion of the intersite 
electron interactions leads to considerable changes of the 
electron self-energy. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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