coesmen
OEMEARNBRNOTY
nTHTIT
TS

NECARANMANNA
AYSNa

T24 E1787.724

E.Taranko, R.Taranko

CORRELATION EFFECTS
IN EXTENDED HUBBARD MODEL.
NUMERICAL RESULTS




1. INTRODUCTION

A qualitative and quantitative understanding of electronic
correlations in transition metals remains a challenging prob-
lem. The main theoretical problem is an appropriate treatment
of the correlations between electrons. Angle-resolved experi-
ments which have been performed recently for several of the
3d-band metals provide detailed information about electronic
structure of these elements. Comparison of the experimental
results with the existing band calculations reveals important
discrepancies. Especially Ni is the case for which many-elec-
tron effects cannot be ignored/l/. For example, photoemission
measurements indicate a total d-band width smaller by a fac-
tor of about 1.4 than in band structure calculations. Also,
the value of the ferromagnetic exchange splitting at Ep of
about 0.6-0.7 eV found in spin-polarized band calculations is
roughly twice that required to fit angle-resolved and spin-po-
larized photoemission data. These and other discrepancies bet-
ween one—electron theory and experiment indicate that the cor-
relation between electrons must be included in a more transpa-
rent way. Up to the present, the Habbard Hamiltonian has been
applied in most of the papers concerning the investigations
of the many-body effects in solids, i.e., a large number of
papers was devoted to investigations of model systems descri-
bed by Hamiltonians with intraatomic integral present only.
However, the intersite interactions may be important to the
same degree (for detailed discussion see part I of this
work”2/). For this reason we have investigated the influence
of these additional interactions on the main specific feature
of the many-body description, i.e., on the electron self-ener-—
gy-

The paper is organized as follows. The Hamiltonian and the
method of calculation of the self-energy as well as the appro-
ximations involved are discussed in Sec.II.Sec.III contains de-
tailed numerical results of calculation of the electron self-
energy for model fcc and scec tight-binding metals for various
kK vectors and values of intersite interactions. Also, a com—
parison with the so-called local approximatiaon for self-ener-

gy is given. Dovensnennbll BUCTATYY :
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2. THEORY

In part I of this paper/z/ we have presented detailed theo-
retical investigations of the model Hamiltonian with intersite
interactions included. Here, for the sake of completeness, we
give only a short presentation of the obtained results (all
notation is the same as in the previous paper/z ).

The Hamiltonian reads as
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where U is the intraatomic Coulomb integral, U”, 1, I”  are
the interatomic Coulomb and exc¢hange integrals. Usually, 1° =
=1 1in the case of real Wannier orbitals.

For a Fourier transform of the Green function defined as
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we have obtained the Dyson equation

o oo oo o g
G} (8) = G/ ®) + % GIJ(E) My, () 6T, B),

—16(t - t’)<[ala(t),a3'0(t’)]+> (2)

(3

where the Fourier transform of the '"zeroth-order" Green func—

tion Ggf(E) is as follows:
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and f(o,) 1is the Fermi distribution functionm, U’XE),I’(E),
1'(d) are the Fourier transforms of the intersite interac-
tions.

ITII. SELF-ENERGY CALCULATIONS.
NUMERICAL RESULTS AND DISCUSSION

Let us apply the results of the previous section to the
calculations of the self-energy for a model electronic band
structure. In general formula (6) and

og 2 _’. -1
7(k: E) = [G°(k; EY ' - M (k: E)) (9)

prov1de a self-consistent way(fq; obtaining the self-energy
M (k E) and Green function G (k; E). However, because of ra-
ther tedious integration in 9-dimensional space (6-dimensio-
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nal space for k- —integration ‘and 3-dimensional space for energy
1ntegratlon) for every iteration step, we calculate the self-
energy in the first iteration step only. Thus, we do not obtain
self-consistent solutions of Egs.(6) and (9), but for small
values of U/W where W is the bandwidth, these results are
quite reasonable,see also/3'4/. We take for Jn]Ga(ﬁ, E) as a

first iteration step, the value
1

- Jm 67 (k; E) = 8(E - €(K)), . (10)
where e(k) is" the energy dispersion for a model tight-binding
energy band (in our case for fcc and 'scc crystal lattices).
The spin index ¢ will be suppressed as we are dealing with the
paramagnetic case.

: Now formula (6) becomes
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With the expression for the self-energy at hand, we can calcu-
late the spectral density of states, the important characte-
ristic of the electronic structure needed, for example, for
interpretation of the photoemission spectra. For one-electron
states the spectral density of states reduces to a set of del-
ta functions peaked at the corresponding band energies, but in
the presence of the electron correlations these peaks are
shifted.and broadened. These changes are essentially represen-—
ted by the real and imaginary parts of the electron self-ener-
gy. Therefore, it would be particularly .useful to investigate
in detail the behaviour of the electron self-energy curves for
a sufficiently broad class of parameters.

Let us discuss the method and class of parameters needed
for calculation of the self-energy. The integrals were calcula-
ted by the Monte-Carlo method. For each energy and k-vector
from 500000 to 2x10% pairs of vectors (P, ) were randomly ge-
nerated. In order to reduce a noise shown by the calculated
curves, a very large number of randon points was needed espe-
cially for energies corresponding to the minimum of the self-
energy. We first calculated, of course, the imaginary part of
the self-energy and than obtained the real part by the Kramers-
Kronig relation. Before we begin numerical calculations we must
determine some parameters entering into the formulas for the
self-energy (or, equivalently, the parameters of the Hamilto-

nian). The calculations were done for model fcc and scc crystal
lattices with electron energy dispersion (k) calculated in
tight-binding scheme for d-band with nearest- neighbour hopping
integrals only. Although the HamilItonian (1) describes the
one-band model, we can try to use it for description, In an
approxrmate manner, of the realistic many-band solids (see
also’ 3% ). 1If degenerate bands are comsidered, for 51mp11e1ty,
then in the calculated self-energy we must include the numeri-
cal factor 9 (for d-band metals) /3. Of course, now the parame-
ters U, U”, etc. are the average values taken over all pairs
of the band indices. The bandwidth W and the band filling N,
were chosen to have reasonable values for modelling the d-band
transition metals. We take W= 4.6 eV and the band filling

N, = 9.4 and 8.6 electrons per atom. These parameters corres-
pond to nickel and cobalt, respectively. In order to obtain

a better insight into the problem under consideration we have
calculated the self-energy alsc for some other values of the
parameters N, All calculations were done for the temperature
0°K and for the paramagnetic case. The next problem is the
choice of the parameters describing the intersite Coulomb and
exchange interactions. For fecec crystal lattice the Fourier
transform of the interactions J reads as (similarly for sce
erystal lattice):

exq-(Ri—ﬁj) (v aq aq
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Jij =47 [cos—z—cos 5
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a‘Qy aqz an a'qX
+cosz—cos2 + Cos 5 cos — T+

+ 2J(2)[cos(aqx) + cos(aqy) + cos(aq )] + ...,

where 3 ,J(a are the first-neighbours and second-neigh-
bours interactions, respectively, and a is a lattice comstant. -
Tn our calculations we retain only the first term in thlS exp-
ression. Now we must determine the ratios u/u 1 ), U/I’

(we have taken I/:i= I’a }. Note that the intersite integrals
which are given by the matrix elements of the long-range Cou-
lomb interaction, are defined with respect to the Wannier func-
tions. Numerical values of these ratios are taken to be com-
parable with the ones used by Aisaka T. et al./%®  and

Kaga E. et al. /77 These authors found that including of the
intersite interactions improves the consistency of the band
narrowing and satellite binding energy as well as gives a cor-
rect {-dependence of the effective exchange parameter in
nickel. The numerical values for (U/U~(1) u/1-(1)) we have .
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Fig.1. The imaginary and real parts of the self-energy (the } -40 20 0 28 40
left- (a) and right-hand side (b) parts of the Figure,respec— ( p

tively) for fec lattice. Ep=0.95 eV, U/u” (Y, u/14vy =(10,20), =002
k =+(0,0,0).

o ReM(k E)IU

used are (10,20), (10,50) and (20,100). In Figs. 1-10 we pre-
sent results for imaginary and real parts of self-energy calcu-
lated for fcc crystal lattice; aiid in Figs.12-17, for scc cry-
stal lattice. In all Figures the broken curves denote the re-
sult of local ‘approximation for Hubbard Hamiltonian (see Appen-
dix) ‘and curves denoted by sSubscripts A, B and C correspond
to the results obtained for the cases when all interactions
are included - curve A, only on-site Coulomb interaction is ;
present - (Hubbard model) - curve B and on-site Coulomb and L
intersite Coulomb interactions are taken into account - curve
c, respectlvely In all Figures the left part represents the 'L__ ¢
imaginary part of the self-enérgy and the rightipart — the re-
al part of the self-energy. If in any Figure the curve denoted
by letter C is absent, it means that there is no difference
between curves A and C. EleV)

In Figs. 1-3, 4-6 and 7-9 the self-energy curves are calcu- -50 40 2{) 0 20 40
lated for the parameters U/ g/1rny equal to (10,20) < "] sz( A
(10,50) and (20,100), respectively. In order to obtain a bet- -QOZL 4
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ter insight into the problem we have calculated the self-ener- i / M
%y for different k—vectors in Brillouin zone, namely for '()OLP
(0,0,0) — 1T, [ (1/2, 1/2, 1/2) 2n/a — L, and for k =
=(1,0, O)2n/a—— X. The energy band for fcc is located in the
limits (-3.45 eV, 1.15 eV) and Ep = 0.95 eV. This value of
Fermi energy corresponds approximately to the band-filling
equal to 8,6 electrons/atom (in degenerate d-bands model) and
roughly corresponds to the case of Co and may be representati- [ : \
ve, to some extent in our model calculations, of transition -012
metals Ni, Co, Fe for which this parameter takes the values
9.4, 8.4 and 7.3 electrons/atom, respectively. Additionally, -014
we present the imaginary part of the self-energy calculated A
for fec lattice for Ep= 0.25 eV (507 of the total band fil- -Ojsf A k=100
ling) and for (U/U(Y , U/1°(D) equal to (10,20), Fig 11. '
In the case of scc lattice we placed the Fermi energy in the
middle of the band and took for the parameters (U/U” (D -~
u/1°(%)Y values (10,50) Figs.12-14 and (20,100), Figs.15-17.
Let us discuss the case of fecc lattice. First of all, when Fig.2. The same as in Fig.l
looking at Figs.1-9, it is seen at once that there is a very fbrlt: (1,0,0)27/a,
clear dependence of the electron self-energy on Kk-vector in-
dependent of the value of ‘the electron-electron interactions.
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The imaginary part of the self-energy for k = (0,0,0) has a
nonvanishing value in the energy interval from -4.0 eV to
6.0 eV and has no any tails for energies below as well as
above the Fermi energy. On the other hand, it has a rather
broad main minimum extended to -0.15. As we are going with
k-vector from I' point of the Brillouin zcne to more distant
E—points, the imaginary part of the self-energy has long non-
vanishing tails and both the minima are larger and sharp. Es-
pecially sharp main minimum (for energies below the Fermi ener-
gy) has the imaginary part of the self-energy for the point
(1/2, 1/2, 1/2)2n/a, whereas for the point (1,0,0)27/a minimum
for energies above Fermi energy has a very small value. This
general trends are independent of the value of the electron-
electron interaction. For the cases outlined above, also the
real part of the self-energy changes from the shape with rela-
tively sharp minima below and in the neighbourhood of E for
I' - point to the shape with a very broad minimum below E and
relatively sharp structure (two maxima and one minimum) near
the Fermi energy. The local approximation, which is very often
used in literature for a Hnbbard Hamiltonian, is a rather good
approximation for k-vectors lying at a distance from I' point.
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For I' point the discrepancies between the exact caleulation
and those dome in the local approximation reach about 25% in
the region of a broad minimum. The imaginary part of the self-
energy calculated in the local approximation has a tail sprea-—
ding outside the limits obtained from the exact calculations
(for I' point, only).

As for a comparison of the numerical values. for the self-
eneaﬁg we can say that biginning from the parameters (U/g-tD
U/t equal to (20,100) the differences between those cal—
cuIated for the Hubbard Hamiltonian (but for k- —~dependent self-
energy} and for the Hamiltonian with inter-site electron—elec—
tron interactions included, are relatively small for k= (0,0,0)
(excluding the energy region corresponding to minima or maxima
of 1mag1nary or real parts of self-energy) and are negligible
for k points lying outside the middle of the Brillouin zone.

In Fig.10 we present the imaginary and real parts of self-ener-
gy calculated for Ep= 1.07 eV for fecc lattice. This Fermi
energy corresponds to the band filling equal to 947 (for dege-
nerate d-band Hamiltonian this corresponds to 9,4 elec-
trons/atom). All the conclusions we have made for the case of
the Fermi energy equal to 0.95 eV are now justified too. The
only difference is*smaller numérical values for the calculated
self-energy curves. In order to better show the influence of
the intersite electron—electron interactions on the self-ener-
gy, we present in Fig.l1 the imaginary part of the self-energy
calculateg for a band filling of the fec energy band equal to
50%Z (for k = (0,0,0)). In this case the top of the density

of states is located far away from Eand the imaginary part
of the self-energy for Hubbard Hamiltonian (also, in the lo-
cal approximation) is strongly unsymmetric curve. Surprising-
ly, after including the electron-electron intersite interac-
tions we have a quite different situation. Now the location

of the minima is interchanged and we obtain the minimum for
energies below Ep. Such a situation leads to quite different
pictures for the spectral density of states. Now we have broad
peaks of the spectral density of states for energ1es below E
and not for energies greated than Ep

In Figs.12-14 and 15-17 we present the self-energy for scc
crystal lattice for (U/U”(D , U/I°¢D) equal to (10,50) and
(20,100), respectlvely, for dlfferent KE-vectors. The Fermi
energy is located in the middle of the band. The band is lo-
cated, in the energy scale from -2.3 eV to 2.3 eV. In compari-
son with the previous results for fce crystal lattice, now for
U/u”D [ u/1°( )y equal to (20,100) influence of the elect-
ron-electron intersite interactions is quite noticeable. Compa-

-~
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‘mation introduced and discussed by Treglia et al.

ring these results (and these for(U/UY |, u/1V ) equal to
(10,50))with those for the Hubbard Hamiltonian, we can observe
quite a different behaviour of the calculated curves for the
imaginary parts of self-energy for different points of the
Brillouin zone. Generally, we have strong minimum for energy
below Ep for k = (0,0,0) comparing with the imaginary part
of the self-energy calculated for the Hubbard Hamiltonian.
On the other hand, for energies greater than Epa greater mi-
nimum is obtained for Hubbard Hamlltonlan Thls situation is
1nterchanged when we are going to k—vector (1,1,1)7/a. For
(1,0,0)7/a the self-energy (k- dependent) calculated for
the Hubbard Hamiltonian and for the extended Hubbard Hamilto-
nian is comparable.

In conclusion, we have calculated E—dependent electron self-
energy for the extended Hubbard Hamiltonian for small values
of U/W for fecc and sce crystal model band structures for the
parameters representing, to some extent, the real transition
metals. The obtained results indicate a relatively great in-
fluence of the intersite electron-electron interaction on the
electron self-energy. The changes in the behaviour of these
self—energy curves depending on the values of (U/U”(D
v/t ) and kK -vector may lead to relatlvely great changes in
the spectral dens1ty of states which is very important, espe-
cially in various photoemission studies.

APPENDIX

Here we give connection between the general “expression for
self-energy given in Eq.(6) and the so-called 1oca1 approxi-
for the
self-energy calculated in second-order perturbation:theory in
U/W for a degenerate Hubbard Hamiltonian. Namely, Eq.(6) can
be rewritten in the form (paramagnetic case)
dwldw dwg

—)~) +o00

M(k; By= 2o 5 o prp L2 Nw., o, o.)x
N® R —o0 E t0) -0y - 0g 1 € 3
%o B ikq- R
x1)¥ s T @ ey e ImGky o) x
L, S, 2" “1 3 Yo
1{2.1{3,1(4 (A. 1')
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iE4'_ﬁ . > - = - - > 4], p.281.
xe Jan(k¥ ws) x{f](k4—-k24-k3, kz_'ks’k3)+ 4, Treglia G., Ducastelle F., Spanjaard D.
43, p.341.
S - e S I T 5. Aisaka T., Kato T., Haga E
+ foky - kKo+ kg, kg~ kg, k3)+'§#k4"k2+ k3’k2"ky 3”' 6. Aisaka T., Kato T., Haga E. - J.Phys.T,
7. Haga E., Kato T., Aisaka T

where N(w,, £ (k D, q), i =1,2,3 are given in p.697.

Egs. (8D, éA :%B 8C), respectively, and R denotes atomic posi—
tions in the crystal When we consider the Hubbard Hamiltonian
(U” =1 =17 = 0), then from Eq.(A.1) the result of Treglia
et al.”® is obtained

- - (75 Hoe dow,dw,dw
M(k: B) - U° 5 o ¥R gy 172 93
R

b (wl, w2, cos) x

e ET to —w,- @g
> - > (A,Z)
x DR; o ) DR; w ) D(R; w ),
1 2 3
where :
D(é;w):’NiE(__l_)JmG({:;m)eik' R (A.3)
m

If we retain only the first term in (A.2)- local approxima-
tion - then for T = 0°K we have

EF b b
M(k E) - M(E) = U ( il du) fdw rd(u +
, a EF‘ EF‘
(AL
v Erp Ep Dw )D@ ) D(w )
+ [ do, [do_ (do ) - .
Ep 1a 2 a 3 E +m1—w2—m3

From Eq.(A.1) it is evident that in the case of including in
the Hamiltonian of the intersite electron interactions, it is
impossible to obtain expression like (A.2) with factorized
lattice Green functions. For that reason, in the case of Ha-
miltonians with intersite interactions included, the local
approximation does not give any facility in the calculation
of the self-energy.

——— mr——
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