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I, Introduction

The recent progress in the study of linear conjugated organic
polymers 1s based on t?e extensive imvestigation of the Su-Schrieffer-
-Heeger (SSH) model /1 formulated for the trans-polyacetylene, (CH% .
The tight-binding electron-phonon SSH model contains solitons as
elementary excitations. The physical characteristicé of solitons
evaluated in /1/ are in good agre7ment with a lot of experimental
data (see, for example, a review 2/ ). The following .evolution of
the S5H model includes two main lines: (a) The extension of the SSH
Hamiltonian by the electron-electron interaction terms,by including
the three-dimensional effects and a more realistic phonon spetrum, etoc.
(b) The description of the novel types of polymers on the basis of
the SSH-like models. In recent years the cls-polyacetylene 3 )
polyynes (-0 =C - ).t/4/ and polycarbonitrile (-CW= N-)x /5/
models have intensively been studied. The last polymer is an example
of a diatomic (AB) system.

The lattice model for an AB polymer proposed in /5/ is a usual
extension of the SSH model on the diatomic ohain. In 5 the phonon
spectrum, ground state as well as one-particle excitations of the
AB system have been investigated. In 6 the continuum Hamiltonian of
the AB polymer has been constructed and a soliton charge has been
evaluated. It has been found that the low-lying particle-like
excltations of the AB polymer model are the pairs of solitons where
each soliton carries spin O = 0 (or 0 =1/2) ana non-integral
fermion charge. The soliton creatlon energy is a function of a
parameter 2ok =Ey-Ep which characterizes the dif;e;ence between the
atomic p~orbital energy of the A and B atoms. In 7 the polaron-like
solution of the AB polymer model has been studed . The behaviour of a
soliton charge at finite temperature and ohemical potential has been
investigated in 8 « In 8/ the possibility of forming a soliton
lattice with increasing sclitonio pairs in the AB chain has been
considered.

In the present paper we study the ectended AB. polymer model when
the next-nearest neighbour hopping processes are taken into account
Both the ground state and the phonon spectrum are investigated and the
sound velooity is calculated. We construct the continuum equations of
motion using the finite~band scheme introduced for the first time
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in 1% for the trans—(CH); model. 1n this case the basic pro-

perties of a discrete model are conserved. We show that the
correct description of the one-particle excitations is essentially
based on the consideration of the effects of an order of C7ﬂ/£)>
where [ 1is the chailn length. The kink solution 1s obtained and
the physical characteristics of ltinks are calculated. In conclusion
we summarize the obtalned results.

2, Hamiltonian, ground state and phonon spectrum

We start with the Hamiltonian in the site reprcsentation
which takes the form

H = Het - 05% a;,rrad',a - sz/%(cf/ta Cyfz,a*h.c) - /Z {-[/4,@; §r1,0'+ h-f)’

6
2t - + + (1)
B "(’% 6;16 g!,cr - tza%(gmgfrz,&* hf)'{% im,f(gz;aam,w* hf):

where }ha{ describes the lattice energy
My ot Ky e Mes gt Kso oy
Hh{ = TAJ,ZL([/ * 1}(%{ Lﬁi) * 2%9@ :,EZ(H'M ‘%) . (2)

¥ +
In (1) /(() labels odd(even) sites, Q/;o' (Q/',o') and tfz,a(ég,g)
are the creation (annihilation) operators of 9 - eleotrons with
spin 0 ( #1/2) at the site )(f) . The J - eleotrons can be
treated in the tight-binding approximation with hopping integrals
é*ﬁ} (fhﬂf) which can be expanded to first order about the
undimeTized state Lisy; = fa-)((z.,,-u/), Loge= tom Y (Uni-ye);
to is a hopping integral for the undimerized chain a?d > 1s the
electron-lattice coupling constant. Additionally to 5/, we included
in (I) the next-nearest neighbour hopping prooesses with the hopping
integrals fo and tzg . It has been shown in /11 that these
processes are important for the analysis of the electron loss data
in trans—(CH),. The parameter o4 1s estimated in the introduction.
The energy level (EA+EB)/}, is chosen to be zero. We assume that
there is exactly one J —electron per atom. In (2) Mj (ge) are the
lattice displacements from the uniformly distributed atoms, Ma
and Pﬂa are the atomio masses. We use the harmonic approximation
for the lattlce energy, \( is a spring constant.

Note that the electron—electron interactions between J -
elecirons as well as the interchain coupling are neglected in (.
Usually the lattice displacements are treated as classical quanti-
ties. The quantum fluctuation effects (QFE) in the lattice displacement
fields L&'(?&) can be considered in such a manner as in the
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712/ 1t 35 xnown /1% that the QFE will not
destroy either the dimerization or the soliton states,

The ground state is determined by making an adiabatic (Born-
—Oppenheimer) approximation where the ground state displacement
fields are given by {f, —--L{/- =:Z(/'/1, for all values of /‘,fa.nd
%= const. The choice of signs here corresponds to the two possible
and entirely equivalent senses of the dimérization field. First of
all let us note that the difference between the values of M,
and My leads to the doubling of the lattice constant 2a while the
distance between sites is @ . Thus, we obtain that the Fermi mo-
mentum of the valence electrons is ﬁ = I/ja . In the case of one

J - electron per atom the valence band is fully occupied while
the conduction band is empty. The gar in the electronic spectrum
opens at the Fermi level thus leading to the dielectric properties
of a diatomic polymer in accordance with the Pelerls theorem. At

polyacetylene model

W=const the electronic energy spectrum is easily calculated and has
the form

By () - (b aa) s o = pto)'e 090k o 2tBtssha fnttn)

where in the first Brillouin zone ‘ﬁﬂa < k < ﬁyka; A=J)ufand
8= bh‘{lg . The parameter [5 characterizes the dimerization gap.
The energy gap at the Fermi level has the value A@%):«Kadﬁéﬁjdﬁ,
Note that the terms with Tgag and ot in (I) break the charge
conjugation symmetry. This 1s a qualitatively new effect beyond - the
primary SSH picture. We can see from (3) that the processes with ol
are of direct interest because the parameter of  determines the
value of the gap A(kpj. Conversely, the influence of the next-
—nearest neighbour hopping processes is reduced only to the shift
of a chemical potential of a system. The terms with in A(ﬁ;)
are much smaller in comparison with of . We shall return to this
discussion in the next section., It should be noted that the 1+1
dimensional quantum~field-~theory models with broken charge conjugated
symme try have been studied in 713/ o .

Consider now the equations of motion i]V} = H\\)>,
where H 1s defined in (I). For the one-particle excitations
we obtain the following equations:

G- - ()~ G bl 4]

s 4 " (@)
{f =-d% - f"“(%rz* ha) - fo(‘@,*%) *J[(Um'je)%,* ('gg-a,,,)g_ ’] )
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wll;)ere we determine IIP{» (UF)Z((‘PM,{ ({)a;’m + “f’m ({)6’!;) ‘o> ,

Jlm() %n({) are the Schrddinger wave functions. The self-consistent
condition takes the form

MAL{;} < K (o2 ) )Z[ ¥.)+he] ()
Mb}}e = K(“&f‘lye*“f-«)*&g [Qléf(‘@,‘—(ﬁ,_{)v“h.c.] .

® The sum in (5) is over the occupied states in the valence band.
In the ground state the self-consistent condition is written as

2
4 L )
1= KTI/E, £, dita | 6)

where

= | (Hotorka)* + (tinka) + £ - I dCo 0t + (J0s Tha)*
The expression for the gap parameter in the ground state will be
obtained below -in the ocontinuum scheme. We note here that A#0
and’' the dimerization of the AB polymer chain takes place.
I+ has been investigated in 2 that in caloulating the phonon

spectrum, 1t 1s essential to take into acoount the polarization of the

T —eleotrons to second order in )’ . The phonon frequenoy
is determined from (4,5) by the solution of

bt | @) - L@ =0 o

where

By0)= () 1870 G- sigf - 0

5.. é' 4 0
4 1s the Kronicker function, I . The contributions

from the Jl - electrons are determined by

1i(4) = W& S (hkeq)Flk o)/ (£, < By.y) )

with §(44) =24+ tp, Suh¥)- Ly, = ditke  ana
F(4%) =1 + [ (2otorka)(2hotarki) - Ag,‘z,‘ +ol* 1/ (B E40)

From (7) and (8) we immediately obtain the acoustic S2_ )
and optical &2, (q,) phonon branches

_ (M M)l (g) £ V(M- M) @) +4MM D)
Q! (%) .ZMAME,

9)

where (3(q) = 2K- 83 1i@), P@)-= IKeorqa - 33 %.(4) , and the

wave veotor lies in the range —-.'X[w £ Q< RNjga . At §=0 these
two branches have been plotted in s where the values of the
parameters ‘}:o =3 eV, K = 68,6 eV/&", ¥Y=8¢/F and Mp ana

M,, for polycarbonitrile were used. It should be noted that the
restoring force for long-wavelength optical displacements (t;a»o)
which i3 purely electronic in origin, inoreases with o leading
to a glant Kohn anomaly as o(-,Ao.

Finally, we obtain the sound velocity in the AB polymer. Neglec—

ting the electron-lattice ocoupling ( ?f =0 )it immediately follows
from (10) that

W Y
Q ([n K{( ) [(”A Hg) "%%] } and the sound

velooity is determined as So = (352. /a ) 0= Q m R where
IM=Mr+*Mg . At Y #0 we obtain from (10)

0.0 - (ST . g1

where 0M = Mpo-Ms . We assume that |6Mlec M . The sound
velocity is found to be

g = Se V1 "J"F(i"j) 12)

with
oy 2
RSy f‘ oL (
F( ('f) (l+3‘*)/*[ S (4 mezHJ/L ; (i- m4m’{) 13)
and with our choice of parameters = //I}/,XK{O & O,I{ s £‘=A/Ho )
g’d/ﬁo ’ m*= ("Zl)/(’“yl) . An exact evaluation of (13)

leads to the result

Feg) - Gl ") - L2 ) L) @

In the 1imit Z « 1 and & 1 we obtain that F(ﬁ,g) -4
and S - 0.78 S, . When the values of % and y are
increased the sound velooity S decreases.



3. The continuum model

The continual variant of the 4B polymer modﬁl excluding the
terms with flA& has been considered in « We shall obtain
the' continuum equations of motion immediately from (4) and (5) using
the finite-band scheme « Namely, the electronic wave functions
are expressed in the form FAQ)e (tf"/a) ”‘P-\/_'B GXP(L*&L)
where the wave vector 1s measured relative to p f/za and we
assume that —ﬁ/{a <k < J'/;m by analogy with . The lattice
displacement fields have the form 4)?[[’)91/0[@&) AR), 4)”0)9)(})(1@}11)-—[\0

® where @zji‘jf,’ A(J) B(¢), A(J) and - are slowly varying
(f) « Introducing the, spatial continuum location
T =M (/;7 :/',[) we obtain from (4) and (5) the following
equations of motion:

i = fm)A (€4-ity)B- it B~ hiatyptindha f + 2 1k BN+
*.ZAB [zwm[zBA AB'+ AB) JEkB HJMA] ,  (15a)

functions of

(b= (-dr Lot} - Eur104)A - A hindasit HaB - ke (A’
I0K) - £ b (A 0K 6) 26K i8]

mere A -A(xt), B=bBrt), A=D@d), A=y NoW/p
Ek—-.?%o/}tnkav 'U};'k = T coska %’oz{aa %;A 5k=.,2‘£,u 9,0031’&{1 AfAODSka‘

We regard in (15) the terms up to the seoond order of (a/fs) f
where fs is the characteristic length of exoiltations. Note
that the continuum approximation may be applioable,at §g>>Q .
The electronic fields are normalized according to d@(lM‘rlB\) 1

where L= /\/Q is  the length of the chain. We obtain from ( 5)
the self-consistent condition

MB + Ka'A" = -4KA +{5)2 3 [Blewha(A-dAs) +sihak) +he]. ey

A "
It can be seen that the terms with A and N 1in (16)

are of the same order . We must regard both these terms in analysing
the soliton dynamlcs as well as the soliton lattice formation at
high soliton densities. For trans—(CE); the value of 1, 1s

-

known /11/ fi = (0, 05-:-0.1)t° . Assuming {,, = 4,4 we obtain
that § = 0,01To . Thus, to lowest order we oan neglect the
difference between the values of fj;anq  in (15).

Consider now the stationary equations of the model (15) in the
leading approximation

(B - ot~ 14 YAa @) = - €05 B ) - (€40 @) B )
(Enﬂ’c - i«lk) B, (x) = 'MFI; An (@) - (€k+ iAk('l»An(I) 5

(17

together with the self-consistent gap equation

L, N .
M@ = - IS (KB - Bhm)oska, G2

It 1s easy to see frsm (17) that the terms with {lk
only renormalize the Fermi energy. In the following calculations
we set En: En' 135 -+ To investigate the influence of the hopping
processes with tlA.B on the physical characteristiocs of solitons,
one needs to solve the full system (15,16). The role of the para-
meter of 1in (17) is more essential. At of = (0 equations an
are reduced to those in the continuum trans_(CH) model. For the
case o{=0 and ?t;4=0 the system (15,16) has been obtained for
the first tme 1n/1%, '

Three classes of solutions for (17,18) are known: ground state,
kink and polaron. In the present article we consider the ground
state and kink solutions.

a) In the uniformly dimerized phase ( A = const) the solu-
tions of (17) are the plane-wave states with

e, +iA Y
Ap=(M1)" 325 5 By (ki)™ @)

where /V<;=-ZEQ,/(E¢’—0(,) and the energy spegtrum takes the form

EW = r €%’+A‘@+d‘"‘

from (18)

« The gap parameter A is determined

ﬁﬁj% ool
= d, .
§ =4 OS {W (20)

Note that (20) is a continuum anglog of (6), In the limit 2«1
angd g«*f we obtain from (20) .

7 .



[ d® =1, = (Btofe)ep(-4a) , (21)

where € =2,718 ... and ) 1s introduced in (12). At ol =0 we
have A= A . When the value of o is increased the gap parameter
A decreases and N=0 at of =A,. Thus, the dimerization in the
dlatomic polymer takes place only at ol < A, . At our choice of
parameters we obtain A, = 1.4 eV.
b) At o < A,y the system (17,18) has the exact kink solution

Aoy =+ Aojmnh kx| (22)

We determine the state with plus (minus) 1n‘(22) as a soliton (anti-
soliton), respectively. The electronic energy spectrum consists of
a localized state with energy [ =+ sy lying in the gap, and a
continuum of plane-wave conduction-band and valence-band states

with the energies Ef = tJekI+A‘k+d.z . At E =+0 we obtain
from (17) that ©&=0 and

Ao (@) = No22h,x (23)

with i",,: A/'Ur and = (%)cth(lh/,). The continuum states in the
presence of a soliton have similar energles as in a uniform system
but they allow phase shifts. we obtain

Ak (x) = 1:' €k+ {AthanM.,x’l N P)i = (Nk qul, (24)

where

4
/vk ) Ek~o(. [Ek 1([. Ek d:)’\ (29

and the phase shirt O(k)  1is determined vy d(k) = afwf{? (Ak/et),

4. Physical characteristics of kinks

Let us consider the change in the local electronic density
in the presence of an A-kink excitation. We propose that an
occupation number of the discrete level E =o 1s Yo ( Vp=0,1,2)
whereas in the valence band is Y =2. We have

. M@ = Voflo(2) +v{f_f:(¢)-v% [HON )

where Joos@) °(£‘°/f-)-ﬂ'4l"{:$ and

S _ A Akﬂffh‘zﬁ Ai Akjff/l f.x
F® =1 - e L A T +0()-

The last term in f:-— f (fx)dfl can be omitted because it enters

with a factor that 1s negligible with respect to O(’/l.) . From

(19) we obtain the value {/L for the dimerized chain. We

admit at this stage that the length L of the dimerized chain

can differ in the general case from the length L  of the chain with

soliton. Note that this assumption is essential for a detailed

analysis of one-particle exoltations. Moreover, as it will be shown

below the creation of a single soliton in a finite chain leads to a

chain relaxation (the effect of "solitonostriction" takes place).
Expression (26) can be written as

bp(a) = (%-VI )f (@) + y_Ii %% _%%14.0(34,,), (27)

where I+ =% k/ﬁ E O(,Lk .We have 1_ for a B-soliton. The last
two terms in (27) determine the change in the density of states in
the valence band in the presence of a soliton. We can rewrite these
terms in the form SN/L N L/L s where (SN N- /V' and JL L L,
IV(A/') is a number of states in the valence band in the presen—
ce (absence) of a soliton. Expression (27)includes an inhomogeneous
term with JDOS(IX:) and a homogeneous part (™vackground™). Setting
the homogeneous part to be zero, we obtain the following condition

oV = WLy, (oo

The value of I+ may be evaluated in terms of elliptic integ-
rals. In the limit 2'«{ and § '«1 we obtain that X, =S/ - 2,
where 1 =A/°(, . Note that in the genmeral case ON has an
unreal irrational value. Thus, there are restricted abilities
to crease a single soliton in the isolated chain.

Conslider now two types of the chains.

1) The chain with fixed boundaries. In this case 6L =0,

It immediately dllows from (28) that kinks in a such chain can be
created only in AB-pairs where the A-goliton has an energy level

E=ol whereas for the B-soliton E =-ol . Note that this result
agress with a topological requirement. The condition (_28) for a soli-
tonic pair takes the form ON=-V(I,+1.) , where I.>4-Plg+¥/y,

9 .



We obtain that 6N = -2 at YV = 2. Thus, exactly two electrons
are removed from the valence band when the pair of kinks 1is
created. The kink charge has an lrrational value at any occupa—
tion number of the levels with B=%tod , A& Y,=1 we have the
pair of kinks with spins O = 1/2 and charges QA,B=:Q(2/5;)autg(d:/A))
where €@ 1s an electron charge, and we neglect the contribution
terms ¥ %@ « At %=0 ( Y% =2 ) we nave the pair of kinks
with spins O =0 and charges Qup= 7 e(Yx) anctg(ﬁld,)

(for V,=2 the signs in (@Ap should be reversed). As o =0

the known result for a trans—(CH), model is obtained. Namely, @=0
at 0 =1/2 and @=*¢ at 6 =0 . However, small correctlons
1 20 to the kink charge persist (see also /15,16/ ) . In /15
this result has .been interpreted as a difficulty of the continuum
theory. Conversely, we suppose that the appearance of the small
local charge of a soliton is a general property both for the
continuum and discrete models. Ip the AB-pair the charges of the A-
and B=solitons are fully compensated.

2) The chain with a free boundary. In this case OL #0  and
one soliton can be oreated in a chain. Indeed, setting in (28)
(W= -4 (i.e. exactly one eleotron is removed from the

valenoe band), we obtain the condition

oL =a[-1+ F-4]. (29)

Thus, the creation of one kink should be aocompanied by the
change in the chain length on the value . For the B-kink the
valut of OL has the sign opposite to (29). It follows from (29)
that the value of increases with increasing of , which
can be energy unfavourable. We calculate now the creation energy of
an A-kink relative to the dimerized phase energy:

s
E =%Ek~%E?+Eu{ s (30)

Lis LA
K 4 % K{oA
where Elat = S}IE {:g./’.(A{aMh kom) dx "—lg'f dx] = - _—Tib, + O(z? .

The ’a.llowed magnitudes of a wave vector in the dimerized phase are
'},,I. = JXN whereas in the presence of a kink we obtain KL +5ﬂ‘n)=
= Jan where /= 0,%4,.. *Nfj  and 0(kn) 1s determined
above. By replacing the sum in (30) by an integral, one obtains

A ]

P

~ - S T(86) « &OLY dEy + oWy =

= —‘t—g[(é‘{k)Vfcﬂ.)Ek ‘:’+%§%@Ekd{‘ + %% jEk‘“ﬁ*dyan(JI)

where Y,,,_; characterizes the occupation of discrete levels with
E=to . Carrying out the integration in (31), we obtain from

A
$ 4[4 1 Y
EA A Y{M_L[E(m)‘- (4-m)K(m)] + W[K(m) + 2)
1 .
e ]J,:Li{ YR
(4 4 Ft OB S

where K(M) and E(Wl) are the complete elliptic integrals of the
firstiar_zd seoond_kind, r;spectivel,};‘;L_f 14 =£H+J’//H-¥“ 5 mt=
=[’/'3//{/~‘f j ,?-A/g?}o,!= /I.L. For *U and o = O we recover from
(32) the kn ( /10/

e known result for the trans— CH)ac model when the
finite-band corrections are taken into aoccount. It gives rise to a
e}ter accordance of the value E with the discrete calculations
17, 1n the 1imit #<1 ana J«1t  (32) turns 1nto

By = (b, f) + £ A - et f]+%’ﬂ(4-%). D)

The energy to crease a B-soliton can be obtained in an analogous
manner. In the case CjL =0 we obtain from (33) the creation energy
of an AB kink pair

2E $<))o+ Vo) = ol (4# V.- Voo ) + é[A - oémc+g§] (34

in accordance with the result of /5/. Thus, the creation energy

of spinless AB solitons is JE°(0,2) =("'/.7l)[A - oéa/u?tg(A/oC)]

whereas for solitons with spin 0 =1/2 we have a larger value
2ER(14) = 2E%0,2) + 2k It 15 clear that  4B°(41) =

= Jgs(oﬂz).—. Z,Ao/ﬁ at o=0. Using (29) we determine from (33) the cree~

tion energy of one soliton

5= don {%{o_c . %(%_4)1M3% ) (35)

11



where we set Vo,,:'{ in accordance with our proposal 5N= -1 .
For o =0 we obtain that ES= Ne . Thismgult should be
explained in detail.

First of all note that we have considered in (39) the energy
of the dimerized chain with an even number of atoms. Thus, we
obtain formally that the energy to creabe one soliton in such a
chain is ES = Ao , where we take into account both the increase of the
local energy in the vioinity of the soliton and the shift of the
end-effect energy due to the chain relaxation.

The situation is replaced in the chain with an odd number
of atoms where one unpaired R —eleotron is always present. In this
case the energy of the dimerized chain increases by the value J.Ao
needed to oreate the electron-hole pair by this 3 - electron. Herice,
the creation of one kink is favoured. We obtain that the chain with
an odd number of atoms (but, strongly speaking, with an even number
of O - bonds) always contains a kink in the grou?g'-?-itate configura-
tion. This result agrees with the analysis by Su within the
framework of the discrete tra.ns-(CH)x model. A more complicated
situation emerges in the AB polymer model. hg o =0 we obtain from

(35) that ES@!‘O)‘ A whereas as o A, ES@L*A<)= Do+ %[2%’ + %f(f-{)] > A, -

Hence, the critical value ol = e exists when the creation of one
soliton is energy unfavourable. At our choice of parameters we solve
the equation [F°(d) =JA, and obtain that of, = 0.23 eV. Thus, at
o> ol, the electron-hole pair will be oreated in the odd-membered
dimerized AB polymer chain. The lattice deformation at o = olp

has a maximal value L= F 0.32a for A-and B-soliton, respectively.

5. Summary

In our paper various aspects of a linear diatomic polymer model
are consldered. .

The analysis of the ground state of an AB polymer model shows
that the dimerization in such a system ooours only at ol<A,. The
electronic energy spectrum exhibits the gap iAo leading to
dielectric properties of the AB polymer. The phonon spectrum has both
aooustic and optical branches. The optical branch contains the gilant
Kohn anomaly as ol - A,. The - reduction of the velocity
of sound due to electron-phonon coupling takes place. The influence
of the next-nearest hopping processes on the solitonic propertles
arises only in the order (a/fs') .

* Since the characteristic length scale of the inhomogeneities
fi= ’U}-/A = O./z has a minimal value £ (ol.=0) = 9,5 , the
continuum approximation is correct. The use of the finite-band scheme

. . 12

.

gives a better convergence with the results from a discrete
model. The correct analysis of one-particle excitations requires the
inclusion of the effects of an order of O(f/L). It is shown that the
creation of an AB solitonic pair where each soliton has an irratio-
nal charge takes place in the chain with the fixed boundaries. The
creation of the charged excitations with spin 0 =0 gains an advan-
tage over the magnetic ( O =4/2, ) excitations. We have calculated
the creation energy of a solitonic palr taking into account the
finite-band corrections. In the case of an odd-membered chain the
one soliton with an irrational charge and O=1fg (V=1 )
should be presented in the ground-state configuration. The irratio-
nal charge is compensated due to the ohaln relaxation by the value
6L . e critical value of the parameter of 1s calculated. At
c)bolc the electron-hole.pair formation in the dimerized odd-membered
chain takes place instead of the soliton formation. At o =0 our
results are in accordance with 17 s where the finite discrete
trans-(CH):t odd-membered chain has been considered. Note that on
this basis the interpretation of a remark7bly high value of unpaired
spins in trans-(CH)m chains was given in 17, Nevertheless, the
situation with one soliton in a trans-(CH)I chain 1s rather exotic
because the polymerization process most likely adds carbon atoms
pairwise. In our opinion of most interest 1s the investigation of a
polaronic state in a chain. It was shown in that the finite
band corrections ‘to a polaron charge appears thus leading to the
analogous chaln relaxation in the presence of a polaron.
This 1mrestigation is in preparation. Other problems to be solved
in the AB-polymer model are the inolusion in (1) of electron-electron
interactions and QFF effecots as well as an interchain coupling:
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depnrmH B.A., Ocunos B.A.
K Teopuu nUHeNHbX ABYyXaTOMHLIX MNONUMEpPOB

E17-87-685

PaccmoTpeHa Mopens NMHERHOrO ABYXaTOMHOrO nonuMMepa. MccneposaHa CTPYKTY-
Pa OCHOBHOIO COCTOAHWA M (OHOHHLIM cnexkTp. BulumcneHa BenMuuHa cxopocTu 3Byka
B AB uenouke C y4eTOM 3NMEKTPOH-(GOHOHHOrO B3aMMOAENCTBUA. MOCTPOEHB KOHTMHY-
anbHLIe YpasHeHWA ABMKEHMA B KOHEUHO3OHHOW cxeMe. AHanU3WpyeTcs peueHue B BUfe
KMHKA C yueTom addekTos nopagka O0(1/L), L-gnmua uenouxu. BuumcCneHo WaMmeHeHue
3MEKTPOHHOM NAOTHOCTM B .MPUCYTCTBMM CONUTOHa. MokasaHO, YTO B UENOYKE C dUK-
CUPOBAHHLIMA PAHWUHLIMM aTOMaM1 BCeraa POWAAETCA CONUTOH-aHTUCONMTOHHaA napa,
npuYeM Kaxasii CONMTOH vMeeT APOGHLI depMUOHHWA 3apsaa M cnvb o = 0 (unn o =
=1/2). B uenouxke C HEUETHbM UMCNIOM aTOMOB M cBoBogHOM rpaHuuei B 3aBUCUMOCTH
OT BENUUWHLI NapaMeTpa a UMEeT MeCTO nMBO COMMTOH B OCHOBHOM COCTOAHWM, NMGO
POKAAETCA 3MEKTPOH-ABIPOUHAA Mapa B AMMEPWM3OBaHHOA (ase. lpU powpeHUW opHOro
COMMTOHA AfIA KOMNEHCAUMM HeUENOUMCNEHHOrO 33PAAA MUMEET MEeCTO M3MEHEHWE AMMHbI
uenouxkn Ha semmumHy &L . Mpy 3TOM POBHO OAMH BNEKTPOH YXOBMT M3 BaNEHTHOM 30-
Het. Mpu @ = 0 Bce peaynbTaT CNpaBeanMBH ANA MOAENM TPaHC-monMaueTHieHa.

PaGota BhnondeHa B flaBopaTopuu TeopeTuueckoi duanku OUAH .,

Mpenpunt O6LeNMHEHHOTO HHCTUTYTA ANEPHBIX HecnenoBarHil. [y6Ha 1987 .

Fedyanin V.K., Osipov V.A. E17-87-685

On the Theory of Linear Diatomic Polymers

The model of linear diatomic polymers is considered. Both the ground

state and the phonon spectrum of a discrete AB chain are investigated. Taking
into account the electron-phonon coupling as well as the finite~band correc-
tions, the expression for the sound velocity is derived. The continuum equa-
tions of motion in the finite-band scheme are constructed. The kink solution
is analysed when the effects of an order of 0(1/L), where L is a chain
length, are included. It is shown that the low-lying electronic excitations
of an AB chain with fixed end atoms are the kink pairs where each kink has
an irrational charge and a spin ¢ = 0 (or ¢ = 1/2). Depending on the value
of the parameter e the odd-membered chain with a free boundary is obtained
to contain either a soliton or an electron-hole pair in its ground state.
To compensate the irrational charge the creation of one soliton should be
accompanied by the chain relaxation. In this case exactly one electron is
removed from the valence band. At a = 0 the all obtained results are valid
for the trans-polyacetylene model.

The investigation has been performed at the Laboratory of Theoretical
Physics, JINR.
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