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I. Introduction 

The recent progress in the study of linear conjugated organic 
polymers i5 b'ased on t~e extensive investigation of the Su-Schrieffer­
-H~eger (SSB) model /1 formulated for the trans-polyacetylene, (CB~ • 
The tight-binding electron-phonon SSH model contain~ solitons as 
elementary excitations. The physical characteristics of solltons 
evaluated in /1/ are in good agre7ment with a lot pf experimental 
data (see, for example, a review 2 / ). The following.evolution of 
the SSB model includes two main lines: (a) The extension of the SSB 
Bamiltonian by.the electron-electron interaotion terms,by inoluding 
the three-dimensional effects and a more realistic phonon spetrum, eto. 
(b) The description of the novel types of polymers on the basis of 
the SSH-like models. In recent years the cis-polyacetylene /J/, 
polyynes (-C == C - \/4/ and polycarbonitrile (-C":: tJ-)x. /5/ 
models have interisiv~ly been studied. The last polymer is an ~xample 

of a diatomic (AB) system. 
. The lattice model for an AB polymer proposed in /5/ i6 a usual 
extenaion of the 8SH model on the diatomic ohain. In /5/ the phonon 
speotrum, ground state as well as one-particle exoitations of the 
AB system have been investigated. In /6/ the oontinuum Hamiltonian of 
the AB polymer haS been constructed and a soliton charge has been 
evaluated. It has been found that the low-lyin~ particle-like 
excitations of the AB polymer model are the pairs of solitons where 
each soliton carries spin (f =O (or (f = 1/2) and non-integral 
fermion charge. The soliton oreation energy is a function of a 
parameter 2.ÓtJ =E:A- EB whioh characterizes the diffeíence between the 
atomic p-orbital energy of the A and B atoms. In /7 the polaron-like 
solution of the AB polymer model has been studed • The behaviour of a 
soliton charge at finite temperature and ohemical potential has been 
investigated in /a/ • In /91 the possibillty of forming a 601iton 
lattice with increasing solitonio pairs in the AB chain has been 
oonsidered. 

In the present paper we study the~tended AB.polymer model when 
the next-nearest neighbour hopping processes are taken into account 
Both the ground state and the phonon spectrum are investigated and the 
sound velooity ls calculated. We construct the continuum equations of 
motion using the finite~band scheme introduced for the first time 
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in /10/ for the trans-(CH)x modelo In this case the basic pro­
perties of a discrete model are conserved. We show that the 
êorrect description of the one-particle excitations is essentially 
based on the consideration of the effects of an order of O~/L), 
where L is the chain length. The kink solution is obtained and 
the physical characteristics of kirucs are calculnted. In conclusion 
we summarize the obtained results. 

2. Hamiltonian, ground state and phonon spectrum 

•	 We start with the Hamiltonian in the site reprosentation 
which takcs the form 

H= Heat + ci~ a;~aj,õ - tJ.A ~(~~6~·~1,ff~h.c) -~~'d,j(~;~1'1,l h-C)­
J' "	 1' 

_ \: ~+ _ t \:' + +) + ) (I)«> 'i'õ6eo- l'ôLftf.(j,Ce..l(J h.c. -l-te+fe/~õabfÕ+ h.c. ,
l,~ J' ~õV I l,ã' \1 , II 

where Heo.t. describes the lattice energy 

MA ' J. K t Mf> •1. K J..
H&1~ = T'i- Uj + T ~ (~'~í~) + T l Ye ~ ;: 2- (Uttr tle) . (2)

J~ J ~ e e l 

In (1) j(e) labels odd(even) sites, a)ó' (ai'Õ) and te,; (te,ff)
 
are the creation (annihilation) operators of I -eleotrons with
 
s pí.n (J ( 1'1/2) at the site j (f) • The 5L - elootrons can be
 
treated in the tight-binding approximation with hopping integraIs
 

~+~j (i&~e) which can be expanded to f1rst order about the 

undimerized state ti;1t/ -= I:.O-I(~·d-Uj)1 te..u : i.,-t(Ue~1-!le); 
to is a hopp1ng integral for the undimerized chaf.n a?d (t 1s the 
electron-lattice coupling constant. Additionally to 5/, we included 
in (I) the next-nearest neighbour hopping prooesBes with the hopping 
integraIs lIA and t 2& • Lt has been shown in /11/ that these 
processes are important for the analysis of the electron loss data 
in tmns-(CH).x.. The parame ter ei.J Ls estimated in the introduction. 
'lhe energy leveI (E.A + E.~ jl i.- is chosen to be zero. we assume that 
there is exactly one jl -electron per atom. In (2) Uj (~e) are tha 
lattice displacements from the uniformly distributed atoms, ~~ 
and Me, are the atomio mas se s , We use the harmonic approxírnat í.on 
for the lattice energy, \< is a spring constant. 

Note that the electron.-electron interactions between j ­
electrons as well as the interchain coupling are neglected in (I). 
Usually the lattice displacements are treated as classical quanti ­
ties. The quantum fluctuation effects (QFE) in~e lattice displacement 
fields Uj ( ~e) can be considered in such a manner as in the 

2 

;.. 

polyacetylene model /12/ • It is known /12/ that the QFE will not 
dcstroy either the dimerization or the soliton s t at es , 

The ground state is determined by makí.ng an adiabatic (Born­
-Oppenheimer) approximation where the ground state displacement 
fields are given by ~e. - U;. =- .: ur/t for 13.11 values of i J t and-e, 

~c consto Tue choice of signs here corresponds to the two possible
 
and entirely equivalent senses of the dimerization field. First of
 
13.11 let us note that the difference between the values of M~
 

and M~ 1eads to the doubling of the lattice constant 213. while the
 
distance between sites is Q • Thus, we obtain that the Fermi mo­

mentum of the valence ele ctrons is ti =- :K/;a • In the case of one
 

X - electron per atom the valence band is fully occupied while
 
the conduction band is empty. Tue gar in the electronic spectrum
 
opens at the Fe'rmi leveI t hus leading to the dielectric properties
 
of a diatomic polymer in accordance with the Peierls theorem. At
 

ilf=const	 the electronic energy spectrum i8 easily calculated and has 
the form 

Ev(t) =-(t1A+ t18)C012ta. :t ~~toC01ka}\. (Minkaf+ d~ J.c/.OCojlka 16WJ2*a) ~ (J) 

where in the first Brillouin zone -'l/J.a, ~ k!: JC/J.fL; 6,=')JW and 
S=t.l A- t~. Tue parameter ~ characterizes the dimerization gap. 

The energy gap at the Fenni leveI has the va Lue ti.(tf) =/~~d.l+&J.~Jd.Ó. 
Note that the terms with tlA,~ and dv in (I) break the charge 
conjugation symmetry. This is a qualitat1vely new effect beyond . the 
primary SSH picture. We can see from (J) that the processes with ~ 

are of direct interest because the parameter ~ determines the 
value of the g~p ~('kF). Conversely, the influence of the next­
-nearest neighbour h~pping processes is reduced only to the shift 
of a chemical potential of a sys t em, 1,'he terms wí.t h O in ~(ti.F) 
are much smaller iil comparison with ri • Me shall return to this 
discussion in the next section. It should be noted that the 1+1 
dimensional quantum~field-theorymodels with broken charge conjugated 
symmetry have b~en studied in /13/ • ~ 

Consider now the equations of motion ilo/) =- H\~>, 
wh€re H is definen in (I). For the one-particle excitations 
we obtain the following equations: 

i0•ci~, - tIA (~'l+ ~'l) - ia (~d+ ~.,) +![~,j'P)r,,+ (~-jí.')f-'] , (4) 

i ~ o -d 1ft - tJa(1M + "tu) - t.(!fl" + 1ft., )+J{(IJ.Mje)r"t ~rlll'I)~J 
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where. we determine IY(t» = (1//N) f (CPUlti (t)a;1It1 + 1m(t)b.t; ") lo> , 
~nH(t), 1fJ.n{lJ are the Sehrodinger wave funetions. The self-eonsistent 

eondition takes the form 

MÂ0= k (~i~1-1Uj + '/j~/) + {~'[ ~~(~t{- ~-1 ) + hoc] ) (5) 

[M~ ~e = K(Uf~1o-lYe 1" Ul -1) +;r ~ I 1((~d - ~-i) + h.e. ] 

• The	 sum in (5) is over the oeeupied states in the valenee bando 
In the ground state the self-eonsistent eondition i5 written as 

) 4i1-
-1 J..
 

7 ~ KN L I Ek din kfL ) (6)
 
k,f 

where Ek :. JeJ-lcCojkal"t- (!J41... kal t- J2 - Jd!Coj) ta t-(!CDJi.ita)Iv',
 
The expression for the gap parameter in the ground state will be
 
obtained be'Low 'in the oontinuum scheme , We note here that ts» O
 
and' the dimerization of the AB pol~er ohain takes place.
 

It has been investigated in /5/ that in oaloulating the phonon 
speetrum, it is essential to take into acoount the polarization of the 

X-eleotrons to seoond order in O • The phonon frequenoy 
is determined from (4,5) by the solution of 

" 1 A

dd 1\ lJ)(~) - º(~)I \1 ~ O ,	 (7) 

where 

/1 -1/t { .2	 }C
'1J~'(~) =(I1AM8) J~'[ik-8dr1(~)1+(1-d~)l~k~~-gttX"J(tt)1, (8) 

d~ is the Kronioker J funetion, 1=>6~) • The oontributions 
from the .rt - ele etrons are .determined by /, 

'Xi (~) = (1/Iv)L $di,k~t)F(k/h~)/(Ek~ 'Jt) (9)E1t +k,Ó 

with ~(*/-kl) :::.1:1"1~) $tCk,e)-= l.~*"I.it/ ,l1t=1in*~ and
 

f(1.,'k') =1 + [(.HoM'ka)(ii-o~'k'Q)- Ll191tt~ +cl]/(E~Eit/) .
 
Fro'm (7) and (8) we immediately obtain the aeoustie .Q_ (cy) 

and pptioal º + (q,) phonon bra~n....:...-eh_es-=--...,.....- ---::----. 

º~ (~) ~ (M,+M6)&('0 ± 1(1'1,- HB)Lt('!-) +4K.M.l'('l-), 
CIO) 

- lMAM b 
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where GeOy) '" iK - 8,/X~ (q.), p(tt):::. ~Ko:nll'l - 8'/'rJ. (q.) ,and the 
wave veotor lies in the range -:F.j;.a f ~f 5i.J).Q, • At 8 =O these 
two branohes have been plotted in /5/, where the values of the 
parameters to =3 eV, K = 68,6 eV/Á

L 
, ):: 8e.V/Á and MA and 

M~ for polyoarbonitrile were used. It should be noted that the 
restoring foroe for long-wavelength opt ieal displaoements (14 - O) 
whieh i3 purely eleotronie in origin, inorea~es with ~ leading 
to a giant Kohn anomaly as c1-d o' 

Finally, we obtain the sound velooity in the A~poiymer. Neglee­
ting the eleo-tron-lattioe ooup11ng C Õ= O ) -it immediately follows 
:from (10) that 

52:L(~) :: k{(.i + 1.) ± [(1 + ..if _ 4Júája l1/
t 
} and the sound - M~ MI!> M,. Mfl) MAMf>J 

velooity is determined as So:: (aQ~/i)q) ~ .. o -= a VK/M' where 
:LM -:: MA + HB • At Õ 1- O we obtain from (10) 

(11)Q-(~) =Ja(V~p('l-)' + O[(1~tJ ' 

where oM -:: MA - M! • We as sume that \8M\« M • The sound 
velooity is found to be 

$ = So (i- 5\ F(~~)'	 (12) 

7f}. 
with 

1 C95~dt t rOO'}+.d.t 
(13)F('l,t) = (I+t)'ft U({-/l6tiNf/L + J . (Hl1l1in'-! )'11J 

and wi th our ohoioe of parameters .í\:= 4J';.;fkt ~ 0, ~ , 1= IJ/J-to )o 

Y= d/J.:/;o' mJ..>:: (1-11.)/(1+:11..) ,An exact evaluation of (13) 

leads to the result 

1 J. -mi.. J. {-IHi) i ~ 
(14)El~'3) = (üt>'/t l~ [(/li) -~ K(m)+ !r(K(mJ- E(m)) 

In the limit 1 «1 and #<~ 1 we obtain that F(~I~)"'-{ 
and ~ -- 0.78 So • When the values of '). and )j are 
inereased the sound velooity g deoreases. 
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J. The continuum model 

The continuaI variant of the AB polymer mOdjl excluding the 
terms w1th t1A,'O has been considered in /5,6 • We shall obtain 
the' oontinuum equations of motion immediately from (4) and (5) using 
the finite-band scheme /10/ • Namely, the eleotronic wave funotions 

are expressed in the form <fj =: IFAU)exf{i~'Q,) 7 t1fe :cIia'B(e)exp(itea.), 
where the wave vector k is measured re ative to ir = [fi/ta and we 
assume that - J'~a. ~ 'k. ~ JC/J.a.. by analogy w.1th /10/ • The lattice 

• displacement fields h~ve the f o.rm 4tYfi)e.if(ítfta) e!1 (i) J 4!U~)exp(ittia):-l1y'), 
where 1 t: J.fii ~ A(J)) B(e) , 6 Cj) and '6. (e) are slowly varying 
functions of {(f) • Introducing the. spatia1 continuum location 

J:. :; ma, (m=/J t) w~ obtain from (4) and (5) the fo11owing
 
equations of motion:
 

iA' =(<1' -ÚAI)A-(E:.- iil.)B- il1. B': 4ia-tJAjÍh2faÁ+ fJinka(&Á t 
l 

I a[ . L. rs a /I tt a') Q/I I Ali ]
40 .t1J8) + T tC0A'alIu/1 + i1& +/i o - Jtk l) 't~tJA'k ,(15a) 

i 5=(- li + iJB*)B-(t'kT{f1\)A - lVúA'- 4iat28in 2i:a. &'- ~1itdlQ(A~+ 

1/') aJ.[. 1(IA AI' 'AI) A" In"]+)!J.A -y iC05lia 1 fJ +fj +/i - -lt.k +4t.!81t D ) (15b) 

where A=A('l,i)} &:: ~('XJ)} ~ '=' 6. (xA.) 7 À=- -at>'/Ot ti..:: ô~/?JX}7 

E:'k -=. 2t-1Úl.ia. }'lJfk =VíCOjha }1Jf =)toa) tJA,Bk :JfJ.A,~Co12*Ci J L1i=~~kQ. 
We l'egard in (15) the terms up to the se oond order of (a/fs)\ 
where fs is the characteristic length of exoitations. Note 
that the continuum approximation may be app1ioab1e at fs »a.. • 
The 'e1ectronic fields are normalized acoording to rda:(If\\'\IB{)::1, 

L .1 ·'Ilo
where :: NQ is the length of the chain. We obtain from ( 5) 
the self-consistent oondition 

00 " " 9. I[ v-r; 1. ( ~ 111.) '1 ') lM~ + KQ li = - 4Kl1 +1GiQl 8tÜf)j 1iQ lA +- aAjJ. +JinK:aA t he.J. (16) 
(j 

It can be seen that the t erms with 
o'l:i. and tl" 

in (16) 
are of the sarne order • We must regard both these terms in ana1ysing 
the so11tón dynamios as we11 as the soliton 1attice formation at 
high ;oliton densities. For trans-(CH)~ the value of t

L 
ia 

6 

;,. 

known /11/ tJ. (0.05+0.1)t • Assuming i». tx t. we obtainZ! o l B
 
that O"'" 0.01 -1:. 0 • Tb.us, to lowest order we oan neg1ect the
 
difference between the values of tlA. & in (15).

1 

Consider now the stationary equations of the model (15) in the 
leading approximation 

(En - ri - [.tk) An(OC) = - iV;k B~ (~) - (ék-i~k (X)) B" (X) 
(17) 

(En+d - f.l*) f)n (X) == -i1Jn.A'n·(1.) - (f~+ it1k(tX.))At\(x.) } 

together with the self-oonsistent gap equation . 

J::,(:r.) ~ 4{~!aL'(A"" (:t)l)n (:r) - El~(:r)A,,(:J:)) ~-ka.,- (lS) 
~6 ' 

It is ea sy to see t'Itim (17) that the terms with tl.k 
on1y renorma1ize the Fermi energy. In the fo11owing ca1cu1ations 
we set ~11 =. &n - iH. · To investigate the infl uence of the hopping 
prooesses with tJA.B on the physical characteristios of solitons, 
one needs to solve the fu11 system (15,16). The role of the para­
meter ~ in (17) is more essentia!. At eX- =O equations (17) 
are reduced to those in the continuum trans-(CH),r modelo For the 
oase ri =O and i d . :: O the system (15,16) has been obtained for 
the first ttme in/14/. 

Three olasses of solutions for (17,18) are known: ground state, 
kink and polaron. In the present article we oonsider the ground 
state and kink solutions. 

a) In the uniformly dimerized phase ( ~: const) the solu­
tiona of (17) are the plane-wave states with 

A =(M L)-~/1 -Ej,t{ÂL (19)1'>" = (tJ~ ~ )'11~ ~ E -dv
'V 

",here N~ :: 1~/(F.4,-d..) and the energy spe qtrum takes the form 

E ~ I. 1 ti 
~ = 1: E:1 ... !::l.o., -to rf.. • The gap parameter b. is determined 

fram (18) 
8 1 'lI! 1f 

~=~rdt~~ 
JrK j /t..~ + Ô

1
l/ ti). 

(20) 

Note that (20) is a .contí.nuum analog of (6). In the 11mit ~« 1 
and Y« 1 we obtain from (20) 
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where fls(x) c (ta/J,)Jtcl/i,x. andJ/l+ d/~ ::; ~o =(8iofe)ey.p (- ~!:>\) ) (21) 

where e = 2.718 ••• and .Â Ls introduced in (12). At d '= O we 
have !J.=: ~o • V/hen the val ue of d. is increaaed the gap parameter 
~ decreases and Is:> O at cf. -:: b.. o • Thus, the dimerization in the 

diatomic polymer takes place onll at ri <: /).0 • At our choice of 
parameters we obtain 2~o = 1.4 eV. 

b) At ti < ~o the system (17,18) has the exact kink solution 

~(oc) ::: ± ~o tanh ~o:X: • (22) 

We determine the state with plus (minus) in.(22) as a soliton (anti ­
soliton), respectively. The electronic energy spectrum consists of 
a localiz ed state wi th energy E::o ± dv , 1ying in the gap , and a 
continuum of plane-wave conduction-band and va1ence-band states 
with the energi1es E.~:: ±J€t+~J.~+cl:"" • At E.:: +dv we obtain 
from (17) that &0= O and 

Ao(x) ::: No Jec!rt'X. (23) 

with to ~ ô /7fF and Na: J(tv/t)eth(l"it). The continuum states in the 
presenoe of a soliton have similar energies as in a uniform system 
but they allow phase shifts. we obtain 

A~ (X) ~ f.', ~~ [-f~ -r {Ôrl:anhtxl . &~ ::: (Nt L)~/l, (24) 

where 1 b1 

M - -[t - 1k (25)
k - Ei-ci k tT(F.L-rLl 

and the phase shift a(i) Ls determined by 8(k)::: - Metj (f1k/tt). 

4. Physical characteristics of kinks 

Let us consider the change in the local electronic density 
in the presenoe of an A-kink excitation. We propose that an 
occupat í.on number of the discrete leveI E = du Ls 'Vo (Vo:: 0,1,2) 
whereas in the valence band is ~ = 2. We have 

S I~ s '\ o (26)8f(x) = Vopo (:r) + 'Ji- fis. (~) - v~ fl\ (~) , 

t "4~ 

8 

s -.i 
fi (~) - L

j The 1ast term 
wi th a 

1. ,JJ.L .t ~Jt.L. 
_ I1fc jfL1l X Ai: -!li .tcn "A:oX O(i )

.tE4(Ek-tt)L i' F:k(Ek-c/,)l~o 19;(f:k-rt,Ytlk t rto 
s (: S 

in'p~ = LJfk C!X)d:x. can be omitted because it enters 
factor that is nlgligible wi th respect to O(f/L) • Froro 

(19) we obtain the value fi = f/L' fo~ the dimerized ohain. We 
admi t at this stage that the 1ength L of the dimerized chain 
can differ ~n the general case from the length L of the chain wi th 
soliton. Note that this assumption is essential for a detailed 
anal;ysis of one-particle exoitations. Moreover, as it will be shovm 
below the creation of a single soliton in a finite chain leads to a 
chain relaxation (the effect of "solitonostriction" takes place). 

Expression (26) can be written as 

~(~) :: (Vo - ~ I +) fos (X) + ~ i.+ + tI ~ - T: l1 + a(~) J (27) 
1t ~ 

where li = ~~~At(E\:!:Il)U:o' We have 1_ f.or a B...soliton. The last 
two terma in (27) determine the change in the density of states in 
the valence band in the presence of a soliton. We can rewrite these 

terms in the form 8N/1.. .. IJSL /L'" ,where óN = N-N' and &L= L- L.I ; 
N(N') is a number of states in the valence band in the pres-en­

ce (absence) of a soliton. Expression (27)inc1udes an inhomogeneous 
term with jO:(x) and a homogeneous part (~ackgroundn). Setting 
the homogeneous part to be zero, we obtain the following condition 

JL
ÔN = IV T - ~ I.. . (28) 

The value of 1+ mal be eva1uated in terms of elliptic integ­
raIs. In the limit 'i'<.< 1 and Jl« 1 we obtain that I+=J/fL - '/1., 
where ~} =Ô/riJ • Note that in. the general case &tJ has an 
unrea1 irrational value. Thus, there are restrioted abilities 
to orease a 8ingle soliton in the iso1ated chain. 

Consider now two types of the chains. 
1) The chaí,n with fixed boundaz-Le s , In this case &L =O.
 

It 1mmedia~el;Y~llows from (28) that kinks in a such chain can be


J created only in AB-pairs where the Â-soliton nas ~ energy leveI
 
E= li whereas for the B_soliton E. =- - d., • Note that this rasul t
 

i 
agress'with a topological requirement. The condition (28) for a 801i­
tonic pair takes the form õN.=- - V(1++1_) ,where ·LQt~-JIs.+1./1. 
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...
 
"'
 

We obtain that 6N :: -2 at
 
are removed from the va~ence
 

created. The k1nk charge has
 
t on nurnber of t'he leveIs with
í 

pa1r of k1nks w1th sp1ns (J 

~ == 2. Thus, exactly two electrons 
band when the pair of kinks 1s 

I 

an 1rrational value at any occupa- 'I 
E. -= ± ri.. • At ~o; 1 we have the 

= 1/2 and charges QA,B = ± e(1/fl)OJLCia (rI../l1), 
where e 1s an electron charge, and we neglect the contr1bution 
terms :t le . At 'Vo = O ( Vo = 1. ) we have the pa1r of k1nks 

w1th sp1ns	 (j:o O and charges QA,&:::t: ee'/~) o.net8(à/ó,) 
• (for "Vo ::' 2 the s1gns in QA,& should be reversed). As r;i.. ... O ~ 

the known resu.lt for a trans-(CH),x. modelis obt af.ned , Namely,Q:O ,
at (J = 1/2 and Q -= ± e at (f = o • However, sma.ll corrections 

. 
:t i:e to the ki~ charge persist (see also /15,16/ ) • In /15/
 

this result has been interpreted as a difficulty of the continuum
 
theory. Conversely, we suppose that the appearance of the small
 
local charge of a soliton is a general property both for the
 
continuum and discrete models. In the AB-pa1r the charges of the A­

and B-solitons are fully oompensated.
 

2) The chain wi th a free boundary. In this oas e óL 1- O and
 
one soliton can be oreated in a chain. Indeed, aett1ng in (28)
 

ôN = .:. ~ (1. e. exactly one eleotron is removed from the
 
valenoe band), we obtain the condition
 

&L =a[-i+ 4J-1].	 (29) 

Thus, the creation of one kink should be aooompanied by the
 
change in the ohain length on the val ue <SL • For the B-kink the
 
val.ue of 6L has the sign opposite to (29). It follows from (29)
 
that the value of 8L increases with increasing ~ ,which
 
can be energy unfavourable. We calculate now the creation energy of
 
an A-k1nk relative to the dimerized phase energy;
 

ES 
:lo L Ec. -LtiL + Eto.tk .. I} r 

K[LI! .i 
where Ew = i":I':" ~ (trl.ak1h kox' Jx 

8~Q -t/t j 
The allowed ~agn1tude5 of a wave 

(JO)
) 

i/1 t]	 I<t t\ - J/j.d~ =- -± + 0(/)' . 
~L'/J. J.~ 
vector in the d1merized phase are 

~nt =lxn "hereas in the presence of a k1nk we obtain *nL +- Mtn)= 
. ::. }Jln , "here n::. o) '!-f) ." :!: NIJ. and ô(tn) is determ1ned 

above. ~ replacing thesum in (JO) by an integral, one obtains 

I •• 
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t EIt - ~ E~ -.-~ j (8(i) + i 8L) atlt -t ti vo+ = 

== - 1 (Ó(t) +tJL)' E I*F + .i r~ E dk -+ v8L rr. Jic + dY. (JI)sx k ~k JXJ d-k 1t Jr J[.k 01" ) 

F 

where ~t characterizes the occupation of discrete leveIs with 
t=±<X', . Carrying out the integration in (31), we obtain from
 

(JO)
 

l 

E~ = ,âo• + ~.1 {:. [E(m)- (j_m1
) K(IIl~ + *iK(nJ) + 

(32) 

. + 7 (!-1t')]} + .l;~ ÓLtf1+fE(m)- f] 
where K(m)	 and E(m) are the complete el11ptic integraIs Of'J..the 
first ~ second kind, respectively; ig'tf1 = ~(1t(jJ.'I!llf-ll') . !ri -= 

=(-1-1.;/((+1)) ;=IJ/ttOJj =r1!J.;.; For 8L=($ and J. -/0 O we reoover from 
(32) the known result for the trans-(CH)x model 1 V when the 
f1nite-band correotions are taken into aocount. It gives rise to a 
jetter accordance of the value E~ w1th the discrete' calculations 
1/ • In the	 limit ;«1 and j<d (J2) turns into 

E~ ~ li Uo. '1) + .: [ ll- <>Í /lU' JJ• ~~o JL(~- f). (?J) 

The energy to crease a B-so11ton can be obtaihed in an analogous 
manner. In the case 6L = O we obtain from (JJ) the creation energy 
of an AB kink pair 

.tE \ Vo+ ' q ~ oC (b Vo. - V._) + i[~ -<lallC~ ~ 1 (J4) 

/5/in aocordance with the result of • Thus, th~ creation energy 
of spinless AB soli tons is 2. ES(o,.t) = (4/J()[ Ô - cf-~ (.I.i./ri) ] 
whereas for 801itons with spin () =-1/2 we have a larger va'lue 

.tES(~I~) :: JES(O,.t) + lo.. • It is clear that ,1l?,S(-f,i) ... 
. S 

• J. E (o,J.) =4Ô."hr at cL=O. Using (29) we dete:rmine from (3J) the crea­
t10n	 energy of one soliton 

S (" J.d 810 (J( )~ _. _J ~ . ) E: ~ ri., -t ~ + l ~ + ~ r -1 1 10M/l.3"""K ) (J5 

II 



gives a better convergence with the results from a discrete"here we set 'V += 1 in accordance w1th our proposal lJN =- ~ " o
ES	 modelo The correct analysis of one-particle excitations requires theFor cf, =O we obtain that =- ~o • Thismsult should be 

inclusion of the effects of an order of O(1/L). It is shown that theexplained in detail. 
First of alI note that we have considered in (30) the energy creation of an AB solitonic pair where each soliton has an irt'atio­

nal charge takes place in the chain with the fixed boundaries. Theof	 the dimerized chain with an even number of atoms. Thus, we 
obtain formally that the energy to create one soliton in such a 
chain is ES 

":: Ô • where we take Lnto account both the increase of theo
 
local energy in the vioinity of the soliton and the shift of the
 

• end-effect energy due to the chain relaxation. 
T.he situation is replaced in the ohain with an odd number 

of atoms where one unpaired ~ -eleotron is always presente In this 
case the energy of the dimerized chain increases by the value l~o 
needed to oreate the eleotron-hole pair by this ~ -eleotron. Rence, 
the creation of one kink is favoured. We obtain that t~e chain with 
an odd number of atoms (but, strongly s~eaking, with an even number 
of ~ - bonds ) alwa.ys contains a kink in the grOjd-state oon:figura­
tion. This result agrees with the analysis by Su 17/ within the 
framework of ,the discrete trans-(CR),t modelo A more oomplioated 
situation emerges in the AB polymer modelo As ~ -O we obtain from 
()5) tha t rS(rl"O)" ~owhereas as o/. ~!lo tS~"A~ =~o -+ f (2;0 i" ~;(f-i)J>!~l\. 
Renoe, the criticaI value ol -=: de. exists when the creation of one 
soliton is energy unfavourable. At our ohoice of paramete~s we solve 
the,equation ES(<i) =1.11 0 and obtain that de. = 0.23 eV. Thus, at 

d.) oc the electron-hole paii w111 be oreated in the odd...membered e
 
dimerized AB ~olymer chaf.n, Tlle lattice deformation at o/, = (/,c.
 

ba s -a maximal value e5L = + 0.32a for A-and B-aoliton, respectively. 

5. Swnmary 

In	 our papar various aape ct s of a linear diatomio polymer model 

are considered. 
The analysis of the ground state of an AB ~olymer model shows 

that the dimerization in such a system ooours only at ~<~o. The 
eleotronic energy spectrum exhibits the gap Jl10 leading to 
dielectric ~roperties of the AB polymer. The phonon spectrum has. b,oth 
aooustic and o~tical branches. The o~tical branoh contains thá giant 
Kohn anomaly as d .... /1

0 
• The ' reduction of the velocity 

of sound due to electron-phonon coupling takes place. The influenoe 
of the next-nearest hopping processes on the solitonic ~roperties 

ari~es only in the order (a/f~L. 
Since the characteristic length scale of the inhomogeneities 

f~: 'ÚF/11 =a/~ has a min:1lnal value fs(ol.=O) Of 9.5a , the 
continuum approximation is correct. The use of the finite-band scheme 
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J 
creation of the charged excitations with spin ff=o gains an advan­
tage over the magnetic ( O- =~/J. ) excitations. \Ve have calculated 
the creation energy of a solitonic pair taking into account the 

! finite-band corrections. In the case of an odd-rnembered chain the 
t 

one soliton with a.n irrational charge and ([=1/1 (Vo:t.,.~) 

should be presented in the ground-state configurat1on. Tte irratio­
nal charge is compensated due to the ohain relaxation by the value 

cfL • The criticaI value of the parameter ti. is ca'lcu'lat ed , At 
~}i~ the electron-hole.pair formation in the dimerized odd-membered 
chain takes place instead of the soliton formation. At ~ =0 our 
results are in accordance with /17/, ~he~e the finite discrete 
trans-(CH)~ odd-membered chain has been considered. Note that on 
this basis the interpretation of a remark,blY high value of unpaired 
,spins in trans-(CH)~ chains was "given in 17/ • Nevertheless, the 
situation with one soliton in a trans-(CH)~ chain i8 rather exotio 
because the polymerization process most likely adds carbon atoms 
pairwi8e. In our opinion of most inte~est i8 the investigation of a 

/16/polaronic state in a chain. It was shown in that the finite 
band corrections 'to a ~olaron charge appears' thus leading to the 
analogous ohain relaxation in the presence of a polaron. 
T.his investigation is in pre~aration. Other problems to be solved 
in the AB-polymer model are the inolusion in (1) of electron-electron 
interactions and'QFF effeots as well as an interohain ooupling; 
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~eARH~H O.A.• Oc~nOB B.A. E17-87-685 
1< Teop~~ n~He~HblX AByxaToMHblX noru-xepoe 

PaccMoTpeHa MOAenb n~He~Horo AByxaToMHoro non~Mepa. HccneAoBaHa CTPYKTy­
pa OCHOBHoro COCTORH~R ~ $OHOHHbl~ cneKTp. Bbl4~cneHa Ben~4~Ha CKOpOCT~ 3BYKa 
B AB 4en04Ke c Y4eTOM 3neKTpoH-$oHoHHoro B3a~MoAe~cTB~R. nOCTpoeHbl KOHT~HY­

anbHble ypaBHeH~R AB~~eH~R B KOHe4H030HHO~ cxeMe. AHan~3~pyeTcR perneH~~ B B~Ae 

K~HKa c Y4eTOM 3$$eKToB nopanxa o(I/L), L-An~Ha 4en04K~. Bbl4~cneHo ~3MeHeH~e 

3neKTpoHHO~ nnOTHOCT~ B.np~CYTCTB~~ con~TOHa. nOKa3aHo, 4TO B 4en04Ke c $IIIK­
c~pOBaHHblM~ rpaHlII4HblM~ aTOMaM~ BcerAa pO~AaeTCR con~TOH-aHT~con~TOHHaR napa, 
np~4eM Ka~Abl~ cona roa ~MeeT AP05HbI~ $epM~oHHbllii 3apRA ~ cn~H a = O (~n~ a = 
=1/21. B 4en04Ke c He4eTHblM 4~cnOM aTOMOS ~ cB050AHO~ rpaH~4e~ B 3aB~C~MOCT~ 
OT Ben~4~Hbl napaMeTpa a ~MeeT MeCTO n~50 con~TOH B OCHOBHOM COCTORH~~, n~50 

pO~AaeTcR 3neKTpOH-Ablp04HaR napa B A~Mep~30BaHHolii $a3e. np~ pO~AeHIII~ oAHoro 
con~ToHa AnR KOMneHca4~~ He4en04~cneHHoro 3apRAa ~MeeT MeCTO 1113MeHeH~ AnlllHbl 
4en04KIII Ha Ben~4~HY õ.L • np~ 3TOM pOBHO OA~H 3neKTpoH YXOAIIIT 11I3 BaneHTHolii 30­
Hbl , nplII a = O ace pe ayns r aru cnpaaennaau AnR MOAenlll rpauc-nonaauerwneua . 

Pa50Ta BblnOmfeHa B Jlaõope ropaa r eoce ravecxoa $1II3111KIII OHRH. 

Ilpenpanr D6'Le,ltHHeHHOrO IIHCTHTYTa lI,ltepHblX HCCJle,ltOBaHHIL )ly6Ha 1987 

Fedyanin V.K., Osipov V.A. E17-87-685 
On the Theory of Linear Dlatomlc P01ymers 

The mod'e1 of 1 inear diatomlc p01ymers is considered. Both the ground 
state and the phonon spectrum of a discre~e AB chain are investigated. Taking 
into account the e1ectron-phonon coup1 ing as we11 as the finite-band correc­
tions, the expression for the sound ve10city is derived. The continuum equa­
tions of motion in the finite-band scheme are constructed. Th~ kink solution 
is ana1ysed when the effects of an order of O(I/L), where L is a chain 
1ength, are inc1uded. It is shown that the 10w-1ying e1ectronic excitations 
of an AB chain with fixed end atoms are the kink pairs where each kink has 
an irrationa1 charge and a spin a = O (or a = 1/2). Depending on the value 
of the parameter a the odd-membered chain with a free boundary is obtained 
to contain either a sol iton or an e1ectron-ho1e pair in its 9round state. 
To compensate the irrationa1 charge the creation of one sol iton shou1d be 
accompanied by the chain re1axation. In this case exact1y one e1ectron is 
removed from the va~ence bando At a = O the alI obtained resu1ts are vaI id 
for the trans-po1yacety1ene mode1. 

The investigation has been performed at the Laboratory of Theoretical 
Physics, JINR. 
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