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1. INTRODUCTION 

For a number of systems ranging from the quasilinear molecules 111 up to 
the metallic lattices 121 and chain models 131, Schroedinger equation has a simp­
le "strong-coupling" form 

Cn zn-1 + anz n + bn Zn+1 = O, (1.1) 

where zn denotes the wavefunction components and coefficients a , b n and 
n 

c n correspond to the matrix elements of the Hamiltonian. The boundary 
conditions pertaining to (1.1) may have a form 

Zo = O , (1.2)ZN+ 1 = O 

or 

Z O = Z N + 1• Z N = Z_.1 (1.3) 

(cf., e.q./11 for detaíls), 
In the modeis of the type (1.1), a number of properties and qualitati­

ve features of the system in question may be descríbed numêrícally in an 
extremely efficient manner. Fonnally, we may treat an imposition of the 
boundary conditions (1.3) as a refonnulation and conversíon of (1.1) into 
an N+ 1 - dimensional matrix equation (H - E) z = O, í.e., 

ao b o Co Zo 
c1 a1 b1 zl 

c2 a2 b 2 z2 .. = O. (1.4) 
CN-1 ~N-l bN-1 zN-l 

b N cN aN zN 

Such a linear equatíon is usually solved on the computer. 
The -trivial boundary conditions (1.2) may be reflected in the same way, 

giving the matrix equation 
_., 

Ot9~'Hüít;'UJ'Í1J,ii\ RHcnrryt ~ 
'1~a~~~YX N(C~p.l0Bauuij ~ 

6\tlS}I~!CTEH.A ~ 



a1 b 1	 z 1 

C2 a2 b 2	 Z21 r
 . . ( = O. (1.5) 
ZN_lCN-1	 a N-1 b N-1 1 I
CN a N ZN
 

This equation has a simpler structure and diff~rs from (lA) formally by the 
additional requírements Z o = b O = Co =0. Moreover, its tridiagonality impli­
es a possibility of using the special recurrent diagonalisation algorithms /4/ . 

,\hey may save significantly both the computer time and storage. 
In some cases, a physical interpretation as well as a structure of the 

results happen to be more transparent for the periodic boundary conditions 
(1.4)/5/ . This inspired the present considerations - we intend to show that 
the periodic chains of the type (lA) admit also a use of the recurrent and 
very simple recurrent computational techniques. 

The three-term recurrent structure of the Schroedinger equation (e.g., 
eq. (1.1)) is not always sufficient in practice. A deeper theoreticaI analysis 
of the strong-coupling systems as well as an interpretation of the measure­
ments may necessitate a transition to the more complex Hamiltonians. Hence, 
we shall extend our attention immediately to the general multicomponent 
recurrences. 

2. SCHROEDINGER EQUATIONS 

In the first step, let us introduce an adequate notation. After a parti ­
tioningvof the wavefunction components into p-plets Z [k], k = 1,2,.. , p,m
 
m <::: 0,1, ... , we shall postulate the Schroedinger equation as recurrences
 

C n Z n-1 + An Z'n + Bn Z n + 1= O ,	 (2.1.) 

where C, A and B are the p x p - dimensional matrices now. 
n n fi 

The multiterm analogues of the boundary conditions (1.2) and (1.3) 

read 

Z[ k] - O Z l sl - O k=1,2., ... ,p	 (2.2)o -, N+ 1 - , 

and 
, 

Z [k]	 -' Z [k]' Z [k] = z[k] k = 1 2 . .. p (2.3)
O . - N + 1 ' N -1 ' , , , 

respectively. 

·2 

:. 

Of course, the partitioned-matrix generalisation of the Schroedinger 
eq. (lA), 

AO Bo Co 2 0
 

C1 A1 B1 Zl
 

Z2
C 2 A 2 B2	 1 I o. (204) 

CN- 1 A N-l BN- 1J l ZN-l
 
BN C N AN ZN
 

as well as the analogous generalisation of (1.5) 

A1 B1 [ZI '
 
C2 A2	 Z2 

B2 ] . .. I = o.	 (2.5) 
CN-l AN-l B N-l Z N-l
 

CN A N ZN
 

are to be analysed numerically. In this formulation, our main task may be 
characterised briefly as an extension of the more or less standard recurrent 
band-matrix methods /8. 7/ to the more complicated periodic-boundary­
condition case (2.4). 

3. THE RECURRENT FACTORISATION 

The Hamiltonian entering the Schroedinger eq. (2.4), 

Ao Bo Co
 
C1 A 1 B1
 

C2 A2 B2
 
H - E =
 (3.1)I 

CN- 1 A N-l B N-l 

BN CN A N 

is to be decomposed now, in the spirit of /6/, into a product of matrices 
H - E = U xL,where U and L have a simpler structure. 

For the sake of definitness, let us postulate that 

x.. F 1 X 2·F2 XN·FN 

I B1 . F2 o Ou 
I B 2 · Fg Q 

(3.2)B F
N

_r N 
I 

3 



and 
A 

l/Fo
 
Yl l/F 1
 
Y2 O2 1/F'2
 

L = I (3.3)YS O Os l/F a .. 
YN O ... O C N l/F N 

aQd notice that the decomposition H -E =UL represents in fact the direct 
generalisation of the continued-fractional formulas ./6/. 

Due to the regularity of the first factor U , our Schroedinger equation 
(2.4) may be re-written as a simpler matrix requirement 

L2 = O. (3.~) 

The explicit specification of its matrix elements is a recurrent procedure. 
With the initial values 

F = l/A N, XN=C O ' YN=B N (3.5)N 

ít may be characterised as a recurrent definition of the auxiliary sequence 
of matrices . 

F k =l!(A k_ -BkFk+1Ck+l)' k=N-l,N-2, ... ,1 (3.6) 

and of theír products 

X k = -Xk+1Fk+1Ck+l' k=N-l, N-2, ..• ,2 ,(3.7) 

and 

Yk = -B k F k+ 1 Yk+l' k = N - 1 , N - 2, "', 2. (3.8) 

The remaining items must be computed separately, with 

(3.9)Xl = -X2 F2C 2 + B o 

and 

Vi =-B1F 2 Y2+C 1 (3.10) 

and, finally, by the formula 

l/Fo = A O - X 1 F1 Y 1 - X 2 F2 Y2 - ••• - X NFN Y N • (3.11) 

The latter matrix differs from its continued fractional predecessors 
encountered in the block-wise tridiagonal case (2.5) /6/, but an overall struc­
ture of the formulas remains only slightly modified. 

4. THE SOLUTIONS FOR THE PERIODIC
 
BOUNDARY CONDITIONS
 

In the light of eq. (3.4), the secular equation det (H - E) = O acquires 
here the simpie form det L = O . Moreover, when we assume that the recur­
rences (3.6) remain non-singular in a vicinity of an eigenvalue E , this zero 
E of our pN - dimensional secular determinant det L will coincide precisely 
with the zero E of detenninant of our only remaining and not necessarily 
regular diagonal submatrix of L, 

det l/F o = O. (4.1) 

Due to the validity of eq. (4.1) at each eigenvalue E, we may also find 
the corresponding p :- dimensional vector L O which satisfies the related 
p - dimensional homogeneous equation, 

L
p

(l/F )[i.k] [k]
k=l O Zo =0. (4.2) 

Up to an overall normalisation, it will coincide with the first p components 
of the wavefunction 2 in (3.4). 

The rest of our Schroedinger equation (3.4) acquires the recurrent form 
again, with the second initial vector 

2 1 =-F1 Y 1 Z 0 (4.3) 

and with the subsequent sequence of definitions 

2 k = - F k Yk 2 O - F kC k 2 k -1' k = 2,3, .•. , N (4.4) 

this is our final formula. 
We may summarise that the recurrences (4.3) - (4.4) and (3.5) - (3.11) 

enable us to extend an arbitrary auxiliary solution of equations (4.1) and 

5 4 



...
 

(4.2) to a full solution of our Schroedinger equation (2.4) related to the 
periodic choice of the boundary conditions (2.3). 

In the computations, we may also recommend taking the final k = N re­
sult of eq. (4.4) and using its backward insertion in the first row of eq. (2.4) 
as a selfconsistency check 

COZ N + AoZ 0+ BoZ 1 = O. (4.5) 

In the case of stability of the employed recurrences, a riumerical in­
yestigation of the N -. 00 limit becomes then feasible in the full analogy 
with the purely tridiagonal case 17/ • 

5. A REMARK ON APPLICABILITY
 
OF THE PERTURBATION TECHNIQUES
 

In practice, an approximation of some p > 1 chain models by the simp­
ler Hamiltonians H' with .p' <p is usually very natural /1,5/ . In such a set­
ting, we may treat the general Hamiltonian as a superposition of H' with 
some small perturbation and, in accord with our preceding methodical pa­
per /8/, employ simply a suitable form of the standard Rayleigh-Schroedin­
ger perturbation theory /9/. A necessary and sufficient condition of appli­
cability is merely an availability of inverse of the matrix H'-E . 

In this context, our present factorisation of sect, 3 may immediately 
be recalled as a suitable technical background of the formalism, with the 
binding energíes and wavefunctions given in the quoted papel' /8/. The input 
''unperturbed'' propagator 

(5.1)R = l/(E - H) = - (l/L) x (1/U) 

(with the sim plified H = H') may easily be constructed in terms of the inverse 

I -001 0 02 -D OS O 04
 

I -012 01S -O 14
 
u-1 = (5.2) ..1 
where-

The two-term recurrences should be used again as definitions of the 
necessary matrix elements 

k=j+l,j+2..... N (5.4)Djj = 1, D jk = Djk -1 B k -1 F k ' 

j = 1, 2, .... N - 1 , 

The derivation of these formulas as well 'as their modification for the lower:/~ 
triangular matrix L is entirely straightforward. 

{, We may summaríse that the analogy between eqs. (2.4) and (2.5) is 
. almost complete - both cases admit a use of the recurrent construction of 
the solutions, by the methods with almost the same structure. 

6. AN ILLUSTRATION ON THE EXACTLY
 
SOLVABLE EXAMPLES
 

6.1. The Exactly Solvable Model with the Trivial 
Boundary Conditions 

Let us recall first a p = 1 example of eq. (2.5) or (1.5) /10/ 

-2x 1 . zl
 

1 -2x 1
 z2 

1 -2x 1 I I =0 (6.1)~3. 
1 -2x J I zN 

as a methodical inspiration of the present considerations. Without the 'first 
and last line (boundary conditions), this is a set of equations satisfied identi ­
cally by any superposition 

Z n = a U n (x) + b T n (x) (6.2) 

of 'I'chebyshev polynomials U and T of the second and first kind, respecti­
vely /11/. Obvíously, the boundary conditions «2.2) or (1.2» restrict this 
freedom. 

J
At n = O, we may insert the values of polynomials (To = U O = 1) and 

get a + b = O, í.e., 

Zn == b[T (x) - U (x)] = - bx U _ 1 (x). bx = O. (6.3)n n n 
j 

I 
D ( k+ 1 (5.3) At n == N + 1, we may write x = cos t and get the complete admissibleD0 1 =X 1F1 , 00k = ex-r B k -1 F k + -1) X k F k ' • 

spectrum of energies in an elementary forrok = 2, S••••• N • 

'6 :7 



I 
;1 

x = x k = coa [k 17 / (N + 1)], k = 1 , 2 , ... , N 

6.2. An Exactly Solvable Model with the Periodic 
Boundary Conditions 

In the spirit of eq. (6.1), let us consider its analogue 

-2x 1 1 Zo 

1 - 2x 1 zl 
1 -2x 1 z2 

... I 
= O 

1 -2x 1 zN -1 
1 1 -2x zN 

with the general solutíon (6.2) re-written in an altemative form
 

Zn=cUn(X) -dUn_ 1(x)
 

where c =a+ b and d;:: d(x) = bx .
 

(6.4) 

(6.5) 

(6.6) 

The periodic boundary conditions (2.3) or (1.3) acquire here the more 
complicated character, 

c = CUN+l(x) -dUN(x) 

cUN(X) - dU N_1(x) = d , 

Let us assume that cd = O and eliminate this product from 

U2
N = (U +1 - 1) (U -1+ 1).

N N 

In terms of the trigonometric functions, this equation reads 

sín ê s = sin 2s cos 2 t - sin 2 t (1 - coss)2 , s = (N + 1) t 

(6.7) 

(6.7), 

(6.8) 

(6.9) 

and leads immediately to the compact and explicit eigenvalue formula again, 

x = cos t = cos [2k 17 / (N + 1)], k = O, 1 , ... , [(N + 1) /2] . (6.10) 

6~3. The Numerical Tests 

In contrast to the simple spectrum (6.4), our periodic solution (6.10) 
does not possess N +1 different energies. The more detailed analysis recovers 
that unless k = O or k = [(N + 1)/2], the eigenvalues (6.10) are doubly de­

8 

generate. We may also see immediately that all the degenerate energies coin­
cide with the even non-degenerate eigenvalues of the subsystem (6.1). Hen­
ce, the pairs of the related eigenvectors may still be obtained very easily, 
namely, from the pair of normalisations Zo= 1 and Zo = Oand Z 1= 1. 

In a numerical test of properties of our recurrent method, we intend 
to study the behaviour of the secular equation (say, (4.1» .and "selfconsis­
tency" (condition (4.5» in a vicinity of the exact "energies" x , 

For the different choices of the free parameters N and k , the results ~ 
1 

are summarised in two tables. Table 1 illustrates a reliability of evaluation 
of the energies. Under certain restrictions (admitting the degenerate leveIs 
at even N only), our sample of results illustrates nicely the stability of roots 
of the secular equation in our recurrent methodical framework. 

It is worth emphasising that near the degenerate energies, we encoun­
I	 ter in fact a singularity of our whole decomposition of the Hamiltonian 

(l/Fi .... 0 in (3.3». This makes our test very persuading. It is really rather 
surprising that we obtained the correct energies for the even N'S • In the more 
complicated examples (including the odd N'8 here) , the singularities will 
not cancel so nicely due to the larger rounding errors, 

In fact, a "decay" of the doubly degenerate root into a pair of the simple 
roots of l/Fo and l/F1 represents. an important and rather unexpected merit 
of the present method. Indeed, the general numerical determination of the 
doubly degenerate roots of the secular determinant is very difficult. In our 
approach, functions l/FO and l/F1 are more easily tractable since their roots 
are simple. 

Table 2 displays the behaviour of the test identity (4.5) after the recur­
rent evaluation of the wavefunctions. We may notice again a remarkable 
stability of recurrences for even dimensions N (where the singularities of 
Fo and F 1 cancel each other. wíth a very good precisíon). For odd N , the 
second wavefunction still remains precise enough, but the first wavefunc­
tion may be seen to suffer from the mutual interplay of both the singulari­
ties (by chance, both of them are seen at N = 11). The exceptions (markedI	 
by the asterisk * ) appear whenever the energy becomes non-degenerate. 

j 
We may summarise that, rather surprisingly, even the degenerate leveIs 

may be treated sometimes by the present method, Nevertheless, our main 
interest concem the simple, non-degenerate roots. There, no problems ap­

\j 
pear and, by the way, all the values of l/F and Q practically coincide. Hence, 
also the recurrently evaluated wavefunctions are sufficiently precise and 
satisfy very well our testing identity (4.5). This confirms our belief in a re­
liability and numerical stability of the proposed recurrent algorithm when 
applied to the more realistic physical models in the future /12/ . 

9 



Table 2 Table 1 ­
Recurrent method for wavefunctions - verification of eq. (4.5) 

Recurrent method for energies - verification of eq. (4.1) 
normalisation Zo = 1	 Zo = O , Z 1 = 1 

4 
deviations	 a (y) = 10 x (au Z a+ bo z 1 + co Z N) first leveI (k = O, exact x =1) 

i N x y=x-d x x+d x-d x x+d
dimension error y = x - d y=x y=x+d \

li 
104/F

i 2 -0.50 28 0.35 -27 18 0.23 -18.N d	 a(y) 
3 1.00 41 0.000 -41 104: 10 4 10 4 

4 0.31 16 -0.39 -17 -5.5 0.132 9.10 -4 55 0.00045 -55 I	 5.7 

3 5.10 -4 41	 0.0021 -41 
4 3.10 -4 33	 0.00078 -33 

48 3.10 -6 3.3 -0.00077 -3.4 
49 3.10 -6 3.3 -0.00024 -3.3 
50 3.10 -6 3.2 -0.00027 -3.2 

second leveI (k = 1) 

dimension 

N 

2 
4 

18 
20 

energies 

X 

-0.500 
0.309 
0.946 
0.956 

y = x - d 

27 
17 

4.4 
3.9 

y=x 

104/F
a(Y) 

0.088 
0.098 
0.035 
0.028 

y =x + d 

-27 
-16 

-4.3 
-3.9 

eleventh leveI (k = 10) 

dímension energies y=x-d Y = x y=x+d 

N x 10 4 I FO(y) 

18 
20, 

-0.986 
-0.989 

4.2 
4.1 

- 0.16 
+0.16 

-4.5 
-3.8 

10 

5 -0.50 14 6.2 -15 8.9 -0.24 -9.4 
6 -0.90 12 -0.18 -12 55 -0,85 -57 
7 -1.00 (*) 21 0.000 -21 10 4 104: 104 

8 -0,94 9,3 0.14 -9.0 74 1.1 -73 
9 -0.81 9.5 -12.0 -8.4 20 0.57 -19 

10 -0.65 7.8 0.31 -7.2 8.9 0.35 -8.2 
11 -0.50 3.7 0.088 0.094 4.8 0.23 -4.3 
12 -0.35 6.7 0.38 -5.9 2.7 0.16 -2.4 
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3HOHJI M. 
Mo,D;eJIH CHJibHOH CBH3H c rrepHO,D;H'IeCKHMH 
rpaHH'IHbiMH ycnOBHHMH 

E17-87-681 

ilpe,D;naraeTcH HOBaH peKyppeHTHa.H cxeMa t~HcneHHoro pewe­
HHH ypaaHeHHH Ill pe,D;HHrepa ,D;nH CHCTeM C CHnbHOH CBH3bl0 Me)K)l;y 
6nH3KHMH COCTOHHHHMH ,ll;a.HHOrO 6a3HCa. Tpa,D;HI..UfOHHaH TeopHH 
B03MymeHHH paCXO,ll;HTCH H CTa.H,D;apTHbie peKyppeHTHbie cxeMbl 
OKa3biBa.IOTCH He IIpHMeHHMbl IIpH HMH'IHH rrepHO,D;H'IeCKHX rpa.HH'I­
HbiX ycnoBHH. B cTaTbe rrorronHHeTCH 3TOT MeTo,D;H'IeCKHH rrpo6en 
H o6a Ha3Ba.HHbie IIO,ll;XO,D;a ycoaepWeHCTBYIOTCH COOTBeTCTBY­
IOmHM CIIOC060M. ,llnH HX HJiniOCTp3.l.UfH OIIHCbiBaeTCH TaK:>Ke O,D;Ha 
TO'IHO pewaeMa.H IIpOCTa.H MO,ll;eJib, 3HeprHH H COCTOHHHH KOTOpoH 
BOCIIpOH3BO,ll;HTCH IIO'ITH TO'IHO IIpH HCIIOnb30Ba.HHH HaCTOHmero 
MeTO,D;a. ,[(enaeTCH 3aKniO'IeHHe, 'ITO peeyppeHTHble IIO,ll;XO,ll;bl K 
CTa.H,D;apTHbiM (TpHBHanbHbiM) H rrepHO,ll;H'IeCKHM rpa.HH'IHbiM 
ycnoBHHM BIIOnHe 3KBHBaneHTHbl. 

Pa6oTa BbmonHeHa · a Jia6opaTopHH TeopeTH'IecKoH: <f>H3HKH 
OH.HH. 

Coo6Uleture 061>e.IlHHeHHoro HHCTHTYfa Jl.llepHhlX Hccne,lloBaHHii. ,[{y6Ha 1987 

Znojil M. E17-87-681 
Chain Models with the Periodic Boundary Conditioils 

The well-know recurrent tractability of the tridiagonal Hamil­
tonians and their band-matrix generalizations is extended to the 
similar strong-coupling quantum systems (chain models) with the 
periodic boundary conditions. Keeping in mind, e.q., the possible 
applications to the polyacetylene-like quasi-one-dimensional mole­
cules, the recurrent method of diagonalising the resulting more ge­
neral Hamiltonian matrices is destribed in detail. On a simple exactly 
solvable example, it is demonstrated that the method may be expected 
to work well in the realistic applications in the future. 

The investigation has been performed at the Laboratory of 
Theoretical Physics, JINR. 
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