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1. INTRODUCTION

For a number of systems ranging from the quasilinear molecules 71/ up to
the metallic lattices 2/ and chain models 3/, Schroedinger equation has a simp-
le »’strong-coupling”’ form

CpZp1+3Zq+bpZyyy =0, (1.1)
where z, denotes the wavefunction components and coefficients a_, b, and

€, correspond to the matrix elements of the Hamiltonian. The boundary
conditions pertaining to (1.1) may have a form

2g=0, zy, ,=0 (1.2)
or
Zo = ZN+1r ®n T %2 (1.?)

(cf.,e.q.,// for details). .

In the models of the type (1.1), a number of properties and qualitati-
ve features of the system in question may be described numérically in an
extremely efficient manner., Formally, we may treat an imposition of the
boundary conditions (1.3) as a reformulation and conversion of (1.1) into
an N+1 — dimensional matrix equation (H-E)z =0, i.e.,
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cl al b’. Z]_
°2 3z b JZ2 | =0. (1.4)
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Such a linear equation is usually solved on the computer.
The trivial boundary conditions (1.2) may be reflected in the same way,
giving the matrix equation
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This equation has a simpler structure and différs from (1.4) formally by the
additional requirements zg =b,= ¢o=0. Moreover, its tridiagonality impli-
es a possibility of using the special recurrent diagonalisation algorithms /47,
They may save significantly both the computer time and storage.

In some cases, a physical interpretation as well as a structure of the
results happen to be more transparent for the periodic boundary conditions
(1.4)/ 5/ This inspired the present considerations — we intend to show that
the periodic chains of the type (1.4) admit also a use of the recurrent and
very simple recurrent computational techniques.

The three-term recurrent structure of the Schroedinger equation (e.g.,
eq. (1.1)) is not always sufficient in practice. A deeper theoretical analysis
of the strong-coupling systems as well as an interpretation of the measure-
ments may necessitate a transition to the more complex Hamiltonians. Hence,
we shall extend our attention immediately to the general multicomponent
recurrences,

2. SCHROEDINGER EQUATIONS

In the first step, let us introduce an adequate notation, After a parti-
tioning’ of the wavefunction components into p-plets Z[mk], k =1,2,.., p,
m =0,1,..., we shall postulate the Schroedinger equation as recurrences

CpZ g+ AgZ,+ByZ2,,,=0, (2.1)

where C,A/ and B are the pxp — dimensional matrices now.
The multiterm analogues of the boundary conditions (1.2) and (1.3)
read

2 —o, zl¥ o, k-1.2,.00 (2.2)
and
\]
(k] L (k] (e _ 5lkl] _
ztd szl 2 =2, k=12, p (2.3)
respectively.
2
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Of course, the partitioned-matrix generalisation of the Schroedinger
eq. (1.4),

Y
C, A, B, 2y
Cg Ag Bg 22 0
e =4 (2.4)
Cn-1 AN-1By-1 AN
LBy Cy An J L Zy
as well as the analogous generalisation of (1.5)
Ay By 2y
Cg Ag BAQ Z2
R ol =0, (2.5)
Cy-18§-1 By Zya
Cy Ay Zy

are to be analysed numerically. In this formulation, our main task may be
characterised briefly as an extension of the more or less standard recurrent
band-matrix methods /8:7/ to the more complicated periodic-boundary-
condition case (2.4). 4 ‘

3. THE RECURRENT FACTORISATION

The Hamiltonian entering the Schroedinger eq. (2.4),

Ag By Co ]
Cy Ay By
Ce Az Bg
H-E = (3.1)
CNn-1 An-1By-t
. By Cy Ax
is to be decomposed now, in the spirit of 8/ , into a product of matrices

H -E = UxL,where U and L have a simpler structure.
For the sake of definitness, let us postulate that

I X;-F; Xy Fy Xy Fy
U - I B, -F, 0o ... 0
I By-Fy - Q
o I By ¢ Fy (3.2)
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1/Fy

0

(8.3)

agd notice that the decomposition H -E=UL represents in fact the direct
generalisation of the continued-fractional formulas /67,

Due to the regularity of the first factor U, our Schroedinger equation
(2.4) may be re-written as a simpler matrix requirement

LZ=0. (3.4)

The explicit specification of its matrix elements is a recurrent procedure.
With the initial values
C

Y.=B

Fy = VA, X v =By (8.5)

NT Yo

it may be characterised as a recurrent definition of the auxiliary sequence
of matrices -

Fy =1/(Ay. - By Fry3Cyiy), k=N-1,N~2,..,1 - (36)

and of their products

Xy = X1 Fe1Cpyts k=N-1, N -2, ..., 2 (3.7)
and
Yy =-By FryoaYyi1s k =N-1,N-2,...2. (3.8)

The remaining items must be computed separately, with

Xl =—X2F2C2 +BO (39)
and
Yl =—Bl F2Y2 + Cl (3.10)

and, finally, by the formula
4

1/Fy A -X,F, Y - XpF, ¥p = o = X Py ¥ L (3.11)

The latter matrix differs from its continued fractional predecessors
encountered in the block-wise tridiagonal case (2.5)/6/, but an overall struc-
ture of the formulas remains only slightly modified.

4, THE SOLUTIONS FOR THE PERIODIC
BOUNDARY CONDITIONS

In the light of eq. (38.4), the secular equation det (H ~E) =0 acquires
here the simple form det L.=0 . Moreover, when we assume that the recur-
rences (3.6) remain non-singular in a vicinity of an eigenvalue E, this zero
E of our pN — dimensional secular determinant det L will coincide precisely
with the zero E of determinant of our only remaining and not necessarily
regular diagonal submatrix of L. ,

det1/Fy=0. (4.1)

Due to the validity of eq. (4.1) at each eigenvalue E, we may also find
the corresponding p — dimensional vector L, which satisfies the related
p — dimensional homogeneous equation,

P ;
21 (1/F0)[1,k] ng] _

E s 0. (4.2)

Up to an overall normalisation, it will coincide with the first p components
of the wavefunction Z in (3.4).

The rest of our Schroedinger equation (3.4) acquires the recurrent form
again, with the second initial vector

Z,=-FY 2, (4.3)
and with the subsequent sequence of definitions
Zy=-Fy Y, Zg-FCyZy 4, k=2,3,..,N (4.4)

this is our final formula.
We may summarise that the recurrences (4.3) — (4.4) and (3.5) —(3.11)
enable us to extend an arbitrary auxiliary solution of equations (4.1) and

.
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(4.2) to a full solution of our Schroedinger equation (2.4) related to the-

periodic choice of the boundary conditions (2.3).

In the computations, we may also recommend taking the final k=N re-
sult of eq. (4.4) and using its backward insertion in the first row of eq. (2.4)
as a selfconsistency check

Coly +AgZ o+ BgZ; =0, (4.5)

In the case of stability of the employed recurrences, a numerical in-
yestigation of the N +o limit becomes then feasible in the full analogy
with the purely tridiagonal case /7/.

5. A REMARK ON APPLICABILITY
OF THE PERTURBATION TECHNIQUES

In practice, an approximation of some p > 1 chain models by the simp-
ler Hamiltonians H’ with p’<p is usually very natural 1.5/ . In such a set-
ting, we may treat the general Hamiltonian as a superposition of H’ with
some small perturbation and, in accord with our preceding methodical pa-
per’ 8/ , employ simply a suitable form of the standard Rayleigh-Schroedin-
ger perturbation theory /% . A necessary and sufficient condition of appli-
cability is merely an availability of inverse of the matrix H'-E.

In this context, our present factorisation of sect. 3 may immediately
be recalled as a suitable technical background of the formalism, with the
binding energies and wavefunctions given in the quoted paper /8/. The input
“unperturbed” propagator .

R=1/E-H) =-(1/L) xQ/U) (5.1)
(with the simplified H=H") may easily be constructed in terms of the inverse
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The two-term recurrences should be used again as definitions of the
necessary matrix elements

B F k=j§+1,§+2,..,N (5.4)

D, =1, D, =D eot P

3 i k-1

j =1,2, ..,N=1,
The derivation of these formulas as well as their modification for the lower

triangular matrix L is entirely straightforward.
We may summarise that the analogy between eqs. (2.4) and (2.5) is

-almost complete — both cases admit a use of the recurrent construction of

the solutions, by the methods with almost the same structure.

6. AN ILLUSTRATION ON THE EXACTLY
SOLVABLE EXAMPLES

6.1, The Exactly Solvable Model with the Trivial
Boundary Conditions
Let us recall first a p =1 example of eq. (2.5) or (1.5)/10/

r e
-2x 1. Z 1
1 -2x 1 22
1 ~2x 1 23 =0 (6.1)
1 -2 N
J

as a methodical inspiration of the present considerations. Without the first
and last line (boundary conditions), this is a set of equations satisfied identi-
cally by any superposition

z, =al (x) +b T, (6.2)

of Tchebyshev polynomials U and T of the second and first kind, respecti-
vely 11/ Obviously, the boundary conditions ((2.2) or (1.2)) restrict this
freedom.

At n=0, we may insert the values of polynomials (Ty=U,=1) and
get a+b=0,ie,,
z =b[T (® -U, ®]=-bxU _,(x, bx=0. (6.3)

At n=-N+1, we may write x = cost and get the complete admissible
spectrum of energies in an elementary form

7



X =%y =cos[kn/(N+1D], k=1,2,...,N (6.4)
6.2. An Exactly Solvable Model with the Periodic
Boundary Conditions
In the spirit of eq. (6.1), let us consider its analogue
_2x 1 1] [ zp ]
1 -2 1 Zq
1 -2X 1 Zp -0
ce .. B (6.5)
1 -2% 1 ZN -1
\ 1 1 <X ) L, N )
with the general solution (6.2) re-written in an alternative form
z, = cUn (x) -dU,_;® (6.6)

where c=a+b and d=d(x) = bx .
The periodic boundary conditions (2.3) or (1.3) acquire here the more
complicated character,

c = CUN+1(X) —dUN(X)
(6.7)
cUpy(x) - dUy_3(®x) =d.

*

Let us assume that cd = 0 and eliminate this product from (6.7),

2 6.8

Uyg= WUy -1 Oy g+ . (6.8)
In terms of the trigonometric functions, this equation reads

sin®s - sin®s cos®t - sin®t(l ~coss)®, s =N+ Dt (6.9)

and leads immediately to the compact and explicit eigenvalue formula again,

x = cost =cos[2kn/(N+ 1)1, k=0,1,..,[(N+1)/2]. (6.10)

613. The Numerical Tests

In contrast to the simple spectrum (6.4), our periodic solution ¢6.10)
does not possess N +1 different energies. The more detailed analysis recovers
that unless k=0 or k =[(N+1)/2], the eigenvalues (6.10) are doubly de-

8

generate, We may also see immediately that all the degenerate energies coin-
cide with the even non-degenerate eigenvalues of the subsystem (6.1). Hen-
ce, the pairs of the related eigenvectors may still be obtained very easily,
namely, from the pair of normalisations zg=1and 23=0and 2z ;=1.

In a numerical test of properties of our recurrent method, we intend
to study the behaviour of the secular equation (say, (4.1)) and ’’selfconsis-
tency”’ (condition (4.5)) in a vicinity of the exact ’energies’ x .

For the different choices of the free parameters N and k, the results
are summarised in two tables. Table 1 illustrates a reliability of evaluation
of the energies. Under certain restrictions (admitting the degenerate levels
at even N only), our sample of results illustrates nicely the stability of roots
of the secular equation in our recurrent methodical framework.

It is worth emphasising that near the degenerate energies, we encoun-
ter in fact a singularity of our whole decomposition of the Hamiltonian
(1/F1 -0 in (3.3)). This makes our test very persuading. It is really rather
surprising that we obtained the correct energies for the even N’s . In the more
complicated examples (including the odd N’s here), the singularities will
not cancel so nicely due to the larger rounding errors.

In fact, a “’decay’’ of the doubly degenerate root into a pair of the simple
roots of 1/Fg and 1/F; represents an important and rather unexpected merit
of the present method. Indeed, the general numerical determination of the
doubly degenerate roots of the secular determinant is very difficult. In our
approach, functions 1/Fy and 1/F; are more easily tractable since their roots
are simple,

Table 2 displays the behaviour of the test identity (4.5) after the recur-
rent evaluation of the wavefunctions. We may notice again a remarkable
stability of recurrences for even dimensions N (where the singularities of
Fy and F; cancel each other.with a very good precision). For odd N, the
second wavefunction still remains precise enough, but the first wavefunc-
tion may be seen to suffer from the mutual interplay of both the singulari-
ties (by chance, both of them are seen at N =11). The exceptions (marked
by the asterisk * ) appear whenever the energy becomes non-degenerate.

We may summarise that, rather surprisingly, even the degenerate levels
may be treated sometimes by the present method. Nevertheless, our main
interest concern the simple, non-degenerate roots. There, no problems ap-
pear and, by the way, all the values of 1/F and G practically coincide. Hence,
also the recurrently evaluated wavefunctions are sufficiently precise and
satisfy very well our testing identity (4.5). This confirms our belief in a re-
liability and numerical stability of the proposed recurrent algorithm when
applied to the more realistic physical models in the future / 127,



Table 1 -
Recurrent method for energies — verification of eq. (4.1)
first level (k = 0, exact x =1)
dimension error y=x-4d y=Xx y=x+d
oN d 104/ F, (v)
2 9.10 55 0.00045 55
3 5.10 ~* 41 0.0021 -41
4 3.10% 33 0.00078 -33
48 3.107° 3.3 -0.00077 -3.4
49 3.10 % 3.3 -0.00024 3.3
50 3.1078 3.2 -0.00027 -3.2
second level (k =1)
dimension energies y=%x-4d y=Xx y =%+d
N X 10* /Fy(y)
2 -0.500 27 0.088 .27
4 0.309 17 0.098 -16
18 0.946 44 0.035 -4.3
20 0.956 3.9 0.028 -3.9
eleventh level (k =10)
dimension energies y=x-d y=x y=x+d
N X 104 /F‘0 (y)
18 -0.986 4.2 -0.16 4.5
20 -0.989 4.1 +0.16 -3.8
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Table 2
Recurrent method for wavefunctions — verification of eq. (4.5)

normalisation Zg =1 Zg=0,2z; =1
deviations Gy = 104 x(a0 Zy+ bgZ  + ey Z N)
N X y=x-4d X X +d x-d X x+d
2 -0.50 28 0.35 27 18 0.23 -18
3 1.00 41 0.000 -41 10¢ 104 104
4 0.31 16 0.39 17 5.5 0.13 5.7
5 -0.50 14 6.2 15 8.9 -0.24 94
6 0.90 12 -0.18 12 55 0,85  -57
7 21.00M 21 0.000 21 10¢ 104 10*
8 0,94 9,3 0.14 9.0 74 1.1 .73
9 -0.81 9.5 -12.0 8.4 20 057  -19
10 -0.65 7.8 0.31 1.2 89 0.35 8.2
11 -0.50 3.7 0.088 0.094 48 0.23 4.3
12 -0.35 6.7 0.38 5.9 2.1 0.16 2.4
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3uHomn M. E17-87-681
Monenu cCWIbHOH CBA3M C IePHOIMUeCKUMU
r'paHUYHBIMHA yCJIOBUAMH

IIpennaraeTcA HOBaA pPeKYPpEeHTHasA CXe€Ma YHCJIEHHOro pellle-
HuA ypaBHeHuAa lllpenuHrepa miA cuUCTeM C CHIBHOH CBA3BI0 MEXIAY
ONMM3KUMM COCTOAHWAMM JaHHOTro 6Gasuca. TpagunmonHas TeopHAa
BO3MYILIEHHH pacXOOWTCA M CTaHOApTHble peKyppeHTHble CXeMEbI
OKAa3bIBalOTCA He IIPUMEHHUMBI IPH HATWYMH [EPHOJHYECKHX I'DaHHY-
HbIX yCIOBMil. B cTaThe ITONOJIHAETCA 3TOT METOOWYECKHil mpobern
# o00a Ha3BaHHbIE T[IOAXOAa YCOBEpPUIEHCTBYIOTCA COOTBETCTBY-
oMM crnocoboM. A MX WUTIOCTPAUMH OIMCHIBAETCA TAK)Ke OIHa
TOYHO pellaeMast [IPOCTad MOAeNb, JHEPruM M COCTOSAHHA KOTOPOH

BOCIIPOHU3BOJIATCA IIOYTH TOYHO IIPH HCINOJh30BaHHM HACTOALLET'O

MeToma. [Jlenaerca 3aKiloueHHe, YTO PeKYpPpPeHTHhIe NOAXOAbl K
CTaHOAPTHHIM  (TPHUBHAIBHBIM) M [EPUOAUYECKMM TIpPaHH4YHBIM
YCJIOBHAM BIIOJIHE 9KBUBAIEHTHBI.

Pa6ora BeinonHeHa B JlaGopaTopuu TeoperHueckoit (H3HKH
OHUSIN.

Coobuienne O6beaNHEHHOro HHCTHTYTA AEpPHRIX Hecnenopauyis. Jy6ua 1987

Znojil M. ) E17-87681
Chain Models with the Periodic Boundary Conditions

The well-know recurrent tractability of the tridiagonal Hamil-
tonians and their band-matrix generalizations is extended to the
similar strong-coupling quantum systems (chain models) with the
periodic boundary conditions. Keeping in mind, e.q., the possible
applications to the polyacetylene-like quasi-one-dimensional mole-
cules, the recurrent method of diagonalising the resulting more ge-
neral Hamiltonian matrices is destribed in detail. On a simple exactly
solvable example, it is demonstrated that the method may be expected
to work well in the realistic applications in the future.

The investigation has been performed at the Laboratory of
Theoretical Physics, JINR.
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