00bEAHHEHHDIN

HHOTHTYT

ALEPHLIX
LT HECCABADBANKA
’ 1YGHE
E17-87-574

E.A.Kochetov

A GENERALIZED N-LEVEL SINGLE-MODE
JAYNES-CUMMINGS MODEL

Submitted to ''Physica A"




I. Introduction

In recent years, much interest has been paid to the Jaynes~
~Cummings mode} exactly solvable in the rotating wave approximation
(R#A) (JC) /Y of a two-level atom linearly interacting with a
single mode of the quantized-fiéld radiation ‘<~ A distinotive,
from a physical point of view, feature of the J-C model is an infi-
nite sequence of quantum collapses and revivals of Rabi oscillations
revealed by Eberly et al . 2,3/ and Knight and Radmore /4/ . There
have been considered various possible generalizations of the J=C
model. In particular, Buck and Sukumar ‘"~ have found an exact
solution to the equations of motion for an atomic system with an
interaction nonlinear in bosonic variadles. Singh 2 has studied

photon statistical properties of such nonlinear systems, gxact wave
‘ functions and energy levels have been found for various J-C type
systems nonlinear both in bosonic and spin variabdles 10 . There
also should be mentioned a reoent series of papers by Agarwal and
Purt 711712/ 4ovoted to the generalization of the J-C model to

include the effect of cavity damping. ALl of these rather simple
models describe, however, the essential physics of radiation -
matter interaction. Apart from the above-mentioned vacuum—field
Rabl oscillations, these models are capable to describe such very
interesting phenomena now intensively studied theoretically and

experimentally as photon antibunching /13-14/ and squeezing/14"15/.

Another form of the generalization of the J—-C model deals with
adding other levels leading, in particular, to the appearance of
new branches of the Rabi fredyency comparing to the standard two-
-level J-C model, L1 and Bei 16/ bave extended the J-C model to
the case of a three-level atom interacting with a two-model radiation
field. Myltiphoton transitions in such a system have been considered,
as well 17/ . Very recently, photon antidbunching /18 and squeezing
19/ effects have been revealed in a three-level system. There are
two possible ways to generalize the J-C model to N-level systems:
considering an N-level atom interacting with a) N-1 modes or b) single
mode of the radiation fileld. Both the cases are exactly soluble due
to the existence of oonserved "charges". In particular, the mean
photon numbers and average values of the atomic level occupations
lave been studied by means of the operator equations of motion for
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an N-level atom, the yth level of which is coupled with the rest

of lower levels by N-1 modes of the radiation field /2% . There
have also been considered multiphoton transitions in such a system

In the present paper, I would like to consider an N-level atom
immersed in a lossless cavity and interacting with a single field
mode in a nonlinear way. Owing to the charge conservation, the
state space of a system can be decomposed into a direct sum of finite-
—-dimensional subspaces corresponding to feasible values of the cons-
tdnt of motion. An eigenstatevector of a system parametrized by
possible values of this constant 1s determined as an expansion over
the basis of an appropriate finite-dimensional subspace, with the
expansion coefficients being defined from 'the Schrddinger equation
that is reduced on every subspace to a finite system of algebdbraic
equations.

In sec.2 a multiboson variant of the N-level single-mode J-C
model 1s formulated; the structure of state space 1s thoroughly
analysed, exact wave functions and energy levels of a system are
found, and completeness of the obtained system of eigenfunctions is
discussed. Sec.3 is devoted to the discussion of the antibunching
and squeezing effects in the considered model. In sec.4 general
expressions for the average atomic level occupations are found.

2. The single-model nonlinear N-level J.-C problen
The Hamiltonian for an N_level single-mode system in RWA is

W=
Y. 3.
% Z <“ )*wiw “(Z Qs(wJQNj + C"Rh;) )
N4

The \?\’"X =\1>{{\ are the transition \fi 9(-&) -projection KQ—.S)
operators and also the generators of the SUQ'W group with the
commutation relations:

“R,\ ]Q,c\, ’\Qg 'S RH%\V/
3 |

\j> and Qj sy J =152y «es 5 N are the elgenstates and eigen-
values of an N-level atom. C and & | }j and W are the

creatinn and annihilation operators, the coupling constant and
freqiency of the field mode, respectively. Note that

Lo, d=1, TRy y= T2\ =0

.
Acoording to (1) the N'B level is coupled with any other 3'P level
by QS —photon dipole transitions ( \57,0 are integer, 4 ¢ jgN-{ ),

2

/21/.

whereas the mutual transitions between the remaining N-1 levels are
forbidden, Note that (1) at N=2 ang ) =1 reduces to a standard
J-C problem whose exact solution is known since 1963 1,22,23/
2.1, The structure of state space
The state space of system (l) is generated by the basis
{\Qi> = \ps>imd ?>o, «sm&d}\
where & o \p) = pipd
RM,\“"> \ww\ w> . Conservation of the charge of a system
M M)J Z') KSU {%{/ y\x (0 limits the range of variation of

numbers F and ™ by the condition = p- . (( - mﬂ)
where M is an eigenvalue of the operator M « In this way, the
state space can be represented dby ZGD'RM. where every subspace
’R,n corresponding to a certain value of the charge M is
generated by the basis

DALy = e la=had > 1y Mad gy y o,
The charge eigenvalues take the values
M=Mpz W=V, W= 04,2,

Here and in what follows ‘moxxbm =
v

. A3 a result, the basis of the subspace %'M may be rewritten in
the following form

[\, =\w—3*\vu-§w)>\w>) \we@w}
(2

@N - K\w\'\\'z‘. )N}n{m\w—_bwwkq-gm) >0, vv>,0§-

The dtate vector \‘\IM> .obeying the Schrddinger equation
CAANSI ALY | 2

With Hamiltonian (1) and corresponding to the oharge eigenvalue M
can be represented by the following expansion over the basis (2)

of the subspace VAR,‘“ 3

M=n )



\‘VW“’:Q) = Y. - Z Co \q)’:V> (a)
me®

2.2. Brergy levels and eigenfunctions

Inserting (4) into };he(schrb'dinger equation (J) and introducing
the detuning parameter 2L/ :

Azgé“‘QN 4 (*DJ

we obtain the following solutions?

j: 4,2, N-4 (5)
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b, = Quenld) + Av Y, -

where
N — NA
PO Q\}l) e By B ) i
1L A =
%.)= }\é@r\wa J) /Q‘» §~>\
Besides, for oy \) N-2 eigenfunctions
\ JC &z% RSERINIL e Sl AN K))(e)
9 €K< N-4

correspond to elgenvalue

‘8 = 9_\* wL\—GN,\) == SLN_\ + wbk,——\j \-14-«) )
W (9

where

2
]\( :ML Mo = Qe / .
K PR K 3
3 =
It should be mentioned that the (N-2)-fold degeneration of the
level E’w is due to (N-2)- supplementary conditions (s) imposed
on the systenm,
For O¢h (D the eigenfunctions

\"c‘t:?): W =3 40> lm> s (10)

where WV runs over the set { L, ,N-’\‘} nlt‘”\ W-Vk Om ‘7,0}
correspond to the elgenvalue )

\&V = Win -9 +0) « 2 v

Formulae (6)-(11) at N=2, Vv =1 go over into well-known results
of the standard two-level J-C model /1,22,23/ ’ Whﬁreas at v »0

we arrive at the results of paper Lo/ . At N=3,

\)‘1/1 Vi = 4 formulae (6)-(11) reduce to author's previous results
/24

2.3. Completeness of the system of eigenfunctions

Let us verify the completeness of the orthonormalized system of
functions (6), (8),(10). Composing of these functions the operator

ZWOC‘\’&\ we get the Nx N matrix

“'M &’\‘2_ Y OVJ\N
Qyy Bam o By

Q’N( Ny, o Q’"”
where, for instance, R’N\B = \v\,><w \ lé + "6/ 7}
N Bu,ty"

Due to the relation ;\* = - _A‘ + ﬁ}l\ + N( the expression in the
4 T - :i .

braces is equal to unity and, consequently, CLM =4 . One can

easily verify also that Ry = (X\N = 8: L2, o, N-4
VoAw EL
Fur ther, we have Le K‘): Q. + C\K ) 54 R ¢ N-dy
"
where the operator < is
P Z \ O - 1)(31 ‘L\ Z w)(\'\,\ @)
constructed from the functions belonging to system (10), and X

from the appropriate functions belonging to systems (6) and (8):
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Taking into account the relationship
N- ¢ 3 .
L &L = { R ENA
Oy, - w
i VIkeA (’L“ Q Q\K

that can be easily proved by induction, we obtain

Z \w><vv\{ %—L ¥ } Z Te> Ly

[ Ry D
and finally

Loy = Z W eyt Z twyint = 4.

n(Vy Wy
Analogously, it is easy to see that

.Q‘K"\: 0; kg A T N A - U
3. Antibunching and squeezing effects

Here we apply the above results to discuss the photon anti-
bunching and squeezing effects in the considered model. Both the

photon antibunching and squeezing are aspects of the guantum nature of

light; the former being a particle effect and the latter, a wave one.
These unique properties are related to the decrease of quantum
fluctuations in the photon number and phase below those of coherent
light. The photon antibunching is charadterised by a nonolassical
state of the field in which the variance of the number of photons
is less than the mean number of photons, i.e. the photons exhibit
sub-Eoissonian atatistics. ‘

Let us introduce the mormally ordered variance V(ﬁ) of the

o —

photon number in an arbitrary state:
L 2
Vi) = {wWBY - (winy - {wi®) - (12)

where W) = u{fﬂ/,\t) . e’-'K,t Ct(o)&(u) e—x‘ﬂ.t_

The quantity (12) is proportional to the excess of coincidences
in counting rates measured in the Hanburry Brown and Twiss-type
experiment /25,26 . The sign (+) or (~) of V(t) shows that the
photon statistics of the field is super- or sub-Polssonian an
indicates whether the photon bunching or antibunching occurs 27'28/,
respectively. Usually, to examine the number and-.phase—dependent
field fluctuations in the J-U — type models, the radiation field
is initially assumed to be in a coherent state }nteracting with an
initially excited atom. Very recently, Knight ’ has considered
the two-level J-C model for an atom interacting at t=0 not with a
coherent state but with a vacuum field, provided the atom 1s exoited
to a coherent superposition of upper and lower states. To generalize
Knight's prodedure to an N-level J-C model, we assume

\Wie=0)) = | @) = Xc 13105 (1)

where z;\ Gj\i = 4 \()> is a field-vacuum state and | 5)
is one of the pure atomic states.

Let us put N =0 for simplicity and assume also that all D;)O
J= 1,2, «e., N1, Then using the complete set of functions (6),(8),
(10) one can easily obtain the state vector at t b3 0

= @) @ ‘E(ﬂ
lwiyy = e ey - > P0SCYD| P> 6
W)S .
TR U =L R R R 0
*ZW >wwl<P>e + Z ! D 1Py
h/)/ M=y =0
-16Q, N-{

e {(_. Pint {5, 2—— [DD‘\ D 4 (14)
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where it is assumed that

where Sus

. Nt
tands f =
stands for Q. E 2 (V Y

lhz ﬁ
The average value of a time-dependent functfon lb(cu-) e, i

is then

(R @\ @y = (RO vw)
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N--4
L - — 2 X
NN L A %! !,@-\),
1=
‘(vm\: 0 - With the help of (15)
we have

VU)‘ \QN v t“\su\ Z Ay O\l D - K—N\ MW*'JSM
B =4 S (16)
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For ’};=3)0 P 1EAR ) N-A ) S = DAY and
formula (16) goes over into

'8 —
V() = Ml A £1G, {0- A= VlCul mf’tdsn-\}‘ Qa7

This implies that the light field generated from the initial vacuum
by an atomic-field interaction has sub-Polssonian photon statistics,
and, hence exhibits the photon antibunching for all times t satis-
fying the condition

AT (10)
[ *rwv\',\\Su.‘ S 3% 18

It should be stressed that formula (17) reveals an interesting Q -

dependence of antibunching phenomena. Namely, for any V>O there |

exists a sequence of such time intervals, that on each of them
antibunching occurs. is b increases, 1l.e. the total number of
emitted (absorbed) photons per an atom grows, the length of each
of these inmtervals decreases,' and the effect
asymptotically disappears . . There is also a simple N-depen~
dedce of antibunching through the Rabl frequency \]S,“

Another nonclassical effect , the so-called squeezing effect,

has recently become a subject of intense studies. #4s for anti-
bunching, the light field in a-‘squeezed state has no classical
i counterpart. Strictly speaking, squeezing is characterized by a
field state in which the variance of one of two noncommuting
observables is less than half the absolute value of their commuta-

FEN

b tor /1% 59"33 ). We define the Hermitian field operators 0y and q,
’;l through 1
’ -~ A &

&&_ E\U‘»’km) and &0&, ou)

.

so that Y_u,lu;t] = 1|a and the variances kA(l, j (a S- g >
1 =1,2 satisfy the incertainty relation

) (8 3 e

The field is squeezed if (Aa) <1ly for either 1=1or 2 .
With the aid of the state-vector (14) it is easy to obtain

() = (YO 1 way

(19>
) 'MJ?S" ZC“C N N
provided that as be:‘.’ore N=0 and a11 DJ. S 0 . Relation (19)
leads to .
() - i;d—wsij\an > AT - Culy éiw>
1=y
WWV\&E. - N % _WQ
(0 - - e Z a b e (e L ).
14

Taking into account the relations
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we have for the variances

palfs 5o lenm it s o,

* 26w ¥ -2itW . (20)
(e e @ ) et
48
- * t kb
— AN -
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1=y 400
) N -4
\ i - 2
o) = o Sl s )
-y 1\
avn £ By htw % 20t
23S Z Sue (e Sttt )
3 JE WA 2
s B Swa 1tw b
- — > A Sq C ¢ C_ e .
48y o & ut A ) (21)
V=4

As a consequence of relations (20)—(21) there is no squeezing if all

3 % 3. The squeezing might occur provided at least one of Ve
belongs to the set 1,2 % J

Let us put for instance

bjtf, J~:(|1,‘ ) N-A ) A\:/\g_: T AN 2 A
then (20), (21) go over into
N 2
KNL“ = lz\ ¢ \C”\ R O 4 o rdiy LA ZILEN Z\@.J &% e é‘m(ZZ)
Tawey i SEPR
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Not that for N=2 and Cy= WAy, ci= &' ¥y 0y formulae
(22),(23) reduce to the appropriate results of paper 715/
For
. ) 4\2,
Un= 0¢ v L4 y Gz == Qg :&'\N—_: ) (24)
. A 1 A 2
KMM\ = 3 £ VoAl aBUN— \ Ao (A= T) hw wt} (25)

and \LQW\ is squeezed for all times satisfying the relation

NS
)Y\)\\/U)b > mk) ) Y'W\,i/.;\t\lﬁ ‘.f: 0.
In the case
'3)‘: 2», ) Ay N-A M= AL 2 Ao E,~>‘

taking into account (24) it is easy to obtain

L2532 BT
'y

and Khﬁ&\ is squeezed for all times satisfying the relation

ok (Y
B = & v P a b - ) P e e )

a L
pw Lt Y [2"

4‘2'
4—#) . ’Kv\,.\tum)? I i 2t 2 (6-4) >< 0

Squeezing consi?ered above 1s due to the initlally excited atomic
coherent state ?ere is a number of papers dealing with

that type of squeezing 34-35/ s including the models where many
atoms coherently interact with the field 3e-38/ . It is interesting
to note that like in the antibunching formula (17), the only
N-dependence of squeezing in (25) and (26) is through the Rabi
frequencies. That seems to be a general feature of single-mode

J-C type models.
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4. The average atomic level occupations

Here we apply the results of sec.2 to find the N-dependence of the
mean atomic level occupations for system (1). To simplify the cal-
culations, we put

(27)
P R PRt U sVt = e = A , A=o0.
The wave functions and energy levels (6)—(11) go over into
for n\'} 1

E _ x

W > - W(IZ\M\P NH-A7 - ">\N>> (28)
¢ - o
+ Wt Ay wAN-A

< ) (29)

» -z |
\\b?v% = fewe] (- Z\vmp v e ) gy

nw= o9

3
)
Eos Qe 2 LK ¢ N1 oD
for n = 0
\&ev_> oSy A€ N (2)
()
., - Q. Q:Qu-o. 29>

Let us assume that at an initial moment t = O the atom is on a level

3 Cj=1,2, «.. ¥ ) and the field is in a coherent state 12>

WU*’DE\‘PS): SPAEDE (34)

The expectation value of the Jth level occupation operator EZ

in the state (34) at a time t % 0 is then )

LR OBy = 2 CHMDI R0 B >0 - gp

12

——

b ———
R i P

where 1§y , & i5 a complete set of orthonormalized wave
functions (28), (39), (32) and energy levels (29), (30), (33). 4s
a result, the average atomic level occupations are found to be

o«

CHWIE = Vot (i‘%f; Lert

(V8]
&
N %%Z PR toaat Thine1) « o
1

[VA)
2
mzZ\k’k\w\ & oA %Xt TN & ¢>) 1¢ iswi
; .

\ ®
<(PNRWB)\ > = %Z\(&\n N (M W\M\L/WD (36)

It should be pointed out that 4@* Rﬂ(b)] CD > does not depend

on J due to the relations (27). From (35) (36) we conclude

that the Rabi frequencies of the vacuum-field oscillations grow
with ¥ as VN , whereas the oorresponding amplitudies, in gener7l,
diminish. For N=2 (35) and (36) reduce to the results of paper .

5. Summary

Thus, we have constructed the complete set of wave functions
such energy levels of the nonlinear ( V ~dependent) N-level single-
-mode J-C model and then used the obtained spectrum to investigate
the antibunching and squeezing effects. There have been revealed the

T) - and N-dependences of parameters characterizing the strength
of these effects. It would be interesting to compare the obtained
results with those of the multimode Nalevel J-C model to clear up
in detail the 'E) N -behaviour of the physical parameters now
experimentally observed.
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Kochetov E.A. E17-87-574
A Generalized N-Level Single-Mode

Jaynes—-Cummings Model

A quantum statistical model for the interaction of an
N-level atom with a single mode radiation field is pre-
sented. A complete system of eigenfunctions and eigenva-
lues is found. Application of this model to the investi-
gation of photon antibuncing and squeezing effects is al-
so discussed.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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