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1. INTRODUCTION 

The electronic. structure of met a ls may be Lnves t í.gated by 
means of many spectroscopic techniques (e.g. by X-ray emission 
and absorption, X-ray photoemission, UV"photoemission, angle­
resolvent photoemission spectroscopy, etc). Results of these 
experiments are ,usually compared with the one-electron band 
structure calculations. Now it is well known that for some 
metaIs the photoemission measurements show a disagreement 
between experimental and calculated d-bandwidth. F{)r example, 
the width Df the valence-banà photoe~ission spectrum of nickel 
is by about 30% smaller than it is predicted by the band­
stru~ture calculations. Furthermore, in nickeI, there is 
a satellite structure about 6 eV below the F~rmi leveI in the 
experimental density of s t a t es /V • This .sa t e l.Li t'e .s t ruc tur e 
has received much attention in literature/2-7/ • 50me authors/6 / 
explain the resonant behaviour of the experimental 6 eV peak 
as a conventional intraband excitation effect arisiQg from 
a large enhancement in the projected joint density of states. 
A more wirlely accepted pointof view, however, is that the 
reduction in the bandwidth and the satellite structure can 
be shown to arise from many-body effects within the unfilled 
à-bando A convenient frame for a description of such proces­
ses is the degenerate Hubbard hamiltonian with a contact 
electron-electron interaction. The problem of electron corre­
lations is usually treated in T-ma~rix approximation (TMA)/S.4/ 
or usin~ the second-order perturbation theory (50PT) in 
U/W /7-t9 , where U is the strength of t he contact Coulomb 
interaction and W denotes the one-electron bandwidth. The 
advantage' of the 50PT approach is that it works for an arbi­
tzrary particle concentration whereas the TMA technique remains 
valid only for low particle concentrations. On the other hand, 
the SOPT treatment is limited to values of the U/W ratio smal­
ler than 0.5. 

AlI the above-mentioned 50PT calculations /7-191 have been 
however performed in a non-self-consistent way. Therefore, 
the self-energy calculated in such a manner at T = fY K vani­
shes at the one-electron Fermi energy Ef instead of quasipar­
ticle (many-body) Fermi energy EF, caus1ng the quasiparticles 
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at energy EF-Eo below the true Fermi leveI to have infinite 
lifetimes and these on E F to have short lifetimes / 9 / • For that 
reason, Kleinrnan and Mednick / 91 had to make some energy shift 
(the valueof which is not innnediately transparent) to restore 
the proper behaviour of the imaginary part of the self-energy 
at the many-body Fermi leveI. 

In this paper we report on self-consistent calculations of. 
the density of states for quasiparticles described by the 
Hubbard hamiltonian. The organization of our paper is as fol­
lows. -,In '~;~ction 2 we give a .shor t r,clpitulation of the SOPT 
approach develope~ by Tr~glia et a~. 7 and describe the self­
consistent procedure .. In Section 3we present some analytical 
results for the self...;energy we have found to be usefuI in 
progr~mming this or related problems at computers. In.Sec­
tion 4 we give a comparison. of the one-particle spectrum and 
the spectral d ens í t e s of s t at e s for t.he ·single and degenerateí 

band Hubpar~ hamilton~an calculated in a self-consistent and
 
non-self~consistent way. Finally, in Appendix, one can find
 
analytical formulas for the self-~nergy arising from the rec­

tangular uncorrelated densi~y of states.
 

2. THEORY 

Let us start with the degenerate Hubbard hamiltonian for
 
a d-band: .
 

H=H +.Q !, (l-8 ,8 ,)n n iv ", ( 1) O 2' vv CTa i 1ICT a1vl/'oo ' 

where Ho is the band hamiltonian; U is the average on-site 
Coulomb interaction, the same for each of the five d-bands 
(Labe l v); C1. denotes a. spin index and n i va s the part ic le­í 

number operator. The self-energy written in the first and 
second order in U/W reads as/ 71 (the spin index (J will be sup­
pre.ssed as we are dealing with the paramagnetic case): 

r., -+,(l-f-+)(l-f~ ~) +(1-f-+ -+) f -+ f.,. -+-+ 9 2 p+q q k +p p +q q k +p 
~ (k,E) = -UNe +.9U !, ----.,..------~--------,(2)

10 -+ -+ + -+ -J -+ -+ -+ 
pq. E + (p + q) -((k + p) -(q) 

where f R is the ]ermi d i s tr i.bu t i on function for the state 1
-+
k> 

of the energy (k) ; the N~ denotes the number of electrons 
per atam and t he indices p ~ q run over the -f í.r s t B. Z. of the 
crystal. It is convenient to subtract from the self-energy , 
its Hartree-Fock part (the first term of Eq. (2» ando to' re­

2 

;,. 

write its second-order part in U/W (the second term of Eq.(2» 
as 

-+ -+ +00
ik 'R deu1dcu2 dws

M(k, E) = 9U 2 e JH xI-+
 
R E+ +cu1-lU2-cuS
-00 

(3) 

x N (cu l'cu2 ,ws) Dii (cu l ) Dit (cula)Díl(CL) 3 ) , 

where 
-+ -+ 

1 ik· R -+ 
D-+(cu)' = - ~ e 8(cu - (k» • (4) 

R N k 

The function N(~1,cu2"CL)S) combines a l l fi factors appearíng 
in Eq. (2) ánd R denotes atomic positions in the crystal. The 
local afrroximation for the self-energy introduced by-+Treglia 
et al. 1 corresponds to retaining of thé first term (R = O) 
in Eq. (3) only; so we have 

-+ 2 +00 dWl deu 2dcu 3 
xM(k, E) => M(E) = 9U J.rJ . 

-00 E + +cu 1-cu 2 -lUa 
(5) 

x N (cu1 'W2 ,Cu 3 ) D (cu 1 ) D(cu 2) D (w 9 } , 

where Dlcu) == D R=O (cu) is the local densj.ty of states (LDOS) 
ccrrresponding to the band structure (k) (see Eq.(4». The 
main merit of the local approximation lies in the fact that 
the self-energy obtained through Eq , (5) is k -independent and 
directly connected to LDOS. 

Now we ~re in good position to describe a self-consistent 
procedure for a calculation of the quasiparticle density of 
states. At first, let us recaIl that ~he one-particle spectral 
density af states is given by the imaginary part of the pertur­
bed retarded Green function: 

-+ -+ -+ 1 
G(k, E) = (E+ - E(k) - I(k, E»- (6) 

and the quasiparticle LDOS (very often called the one-particle 

;;--Im r ----·--d71=--Im r +----~dlJ, 

spectrum) is obt~ned by summing the imaginary part of Eq. (6) 
over wave vector k.: 

D(E) = 1 . 1 -- Im- ~ 
tt N -+ 

k 

-'" Q(k, E) _ 

1 + 00 Do (71) 1 + 00 Do(Tt- 9Uv) ., 
(I) 

tt -00 E +-I (E) - 71 tt -00 E - M(E) - TI • 

3 



where 11 == Ne/l0 is the band filling and DO(11) is the local 
density of states corresponding to uncorrelated band structu- ' 
re (k). If ~ is the chemical potential of the quasiparticles, 
then a t the absolute zero of temperature we have (iJ. == E F ) 

EF
 
11 == J D(E) dE , ( 8 )
 

-00 

where the quasiparticle Fermi energy Er'may differ from the 
one-electron Fermi leveI Er found in the Hartree-Fock solu­
tion of the Hubbard hamil tonian..To find D(E) and E F in a se lf ­
consistent way we start with the one-electron density of sta­
tes per atem Do(E) and calculate the secônd-order part of the 
self-energy M(E) fro~ Eq. (5). Then, the quasiparticle LDOS 
(one-par t i.c l e spec t r um) and Fermi Leve L E'F are found f rom 
Eqs. (7) and (8) and usea as inpu~ data for an iteration pro­
ce s s carried out by Eqs . (5), (7) and (8). Let us note that 
at each i t er'à t í on ste'p the imaginary part of t he self-energy 
has the proper behavlour at Fermi leveI EF , and therefore, 
no artificial energy shifts are needed. ~he iteration process 
is terminated when a desired accuracy of O(E) and E F is achie­
ved (for numerical details s€e Section 4). 

3. SELF-ENERGY 

To carry out the self-consistent process efficiently, one 
needs a fast' numericaI procedure for the evaluation of the 
complex tunction M(E) (see eq. (5)). From a numerical point 
of view the best way is at first to calculate the imàginary 
part of M(E) and then to find the real part of M(E) fram the 
dispersion relation 

1 +00 

Re M(E) = - - r ImM(77) d 
n 77·	 (9)

-00 E-77 

At temperature T = 0° K the imaginary part o f M(Ê) takes the 
fOnTI 

+00 

2
ImM(E) == -9fTU rrrdCUldú)2dcusN(eJ.)1,cu2,cus)D(aJ1)O(cu2)D(ws) x 

-00 

E F b b 
2 

x B(E +cu'1- cu2 -cus) == -9U 1T { J dcu1 r dCU r d!IJ D(cu ) O(cue)D (w ) x 
e s 1 s 

a E r EF 
b EF EF 

+ f dal 1 r dcu2 f dcus D(cu1) D(cux B(E +cu 1-cu 2-cu S )	 2)D«(i)s) x 
'E a a

F 

4 

x a(E + cu 1 - cu 2 - ú.l S )} == - 9fT U 2 (8 1 (E) + S 2 (E)) , 

where a and b, respectively, are the lower and upper limits 
of the energy band D(ú»). The function Sl(E) equal s zero for 
E <EFwhereas 8 2(E) ==0 for E >E r . From the definition of 
N(Wl, CU2, cus) it follows that ImM(EF) == O • It is also conveni> 
ent to express the function 81 (E) (and similarly S e(E)) as 

EF b 
III St(E) J dcu1 J d(U20«(Ul)D(cu2)D(E+wl-Ú)2~e(b-E-cul +<JJ2) X 

a EF 
EF cu l-E, 

CU2 ­x (J (E + ú) 1- EF) ==	 .r dcu1 f deu 2 D(Cl) 1) O(cu 1 - W 2 )D(E +W e )x (1 1)_ 
a cu i -b 

x O(E + ú)2 ~ - EF) • O(b - E - ú) 2 ) , 

where 

] for x ?: O
t9(x) (J2)'O for x < O. 

From the definition of 0(:) it follows that the integrand in 
Fq. (1 J) is nonzero only for b - E 2: ú) 2 2: E - E. A typical 
shape af an integration region is displayea in Figs. 1 and 2. 

W1 

W2 b E 

b-E
 
EF- b
 
a -EF 
EiE. 

-w 
IA 
I 
I IL- J 

Fig. 1. The 2D -integration area 
for numerical evaluation of the 
function 8 1(E) de fined by 
Eq. (11 J; E > E F and EF > a + W/2 
(eee al.eo textJ. 

W2 
W 

EF-o 
-E -E 
b-f. E 

F 

0- E i c----~.., 

a E	 w, 

Fig.2. The same as in Fig.1 
but for the function S2(E) ; 
E < E F and E F > a + W/2 • 

The parallelogram B (full line) is fixed in the plane of va­
riables (cu 1,cu 2 ) whereas the rectangle A (dasheq line) moves 
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along the ~2-axis in dependence of the energy E. The 2D-in­
tegration area is given by the overlap of the rectangle A and 
the parallelogram B. 

The density of states for realistic d-band is very of­
ten.l7.10/ approximated by a rectangular density of states with 
a width W fitted to band calculation data. In this case, we 
have (the spin index 17- is suppressed as we are dealing with 
the paramagnetic state; also, we work with an energy unit 
equal to half a bandwidth) ut 

1/2 for tE I < 1
DO(E)	 ( 13) 

O for IE 1-> 1 

and , of course, the func t í.ons S l(E) and S2(E) may becalcula­
ted analytically. For example, when leveI E F lies at the 
centre of the band (E F = O), one can easily find 

91TU 2 
ImM(E) =- --S(E)	 ( 14a) 

8 

where 

S(E) = O	 for E <-3 

.l(E + 3)2 for -3 < E < -2
 
2 2
 for-	 E - 3E -1 -2.s:E~-1 

.1. E 2 for -1 6 E _~ 1	 (14b)
2
 

=' _ E 2 + 3E - 1 for 1 <E < 2
-
= .1. (3 _ E)2 for 2 <E < 3
 

2
 
= O for 3 < E.
 

The corresponding real part of M(E) obtained from Eq.(3)
 
reads
 

9U2 
ReM(E) = -- F(E) J 

( 15a)
 
8
 

where 

F(x) =~-{(3+x)21nI3+xl + (3_x)2 1n \3 - X! +3(2-x)2lnr2-xl
 
2
 

(l5b)
 
_ 3(2 +'x) 2 ln \2 + xI + 3(1 + x) 2 In \1 + x \ - 3(1 - x) 2 1n 11 - x 11 •
 

Let us note that for the rectangular DJE) the function M(E) 

6 

can be found directly from Eq. (5) without using any disper­
sion relation. The relevant formulas for an arbitrary filling 
of the band are given in Appendix and they may be used for 
a discussion of the non-self-consistent results. The self ­
consistent procedure, however, can be carried out in the nume-· 
rical way only (even for a starting rectangular LDOS). Hence, 
the knowledge of the analytical formulas helps us to debug 
appropriate numerical procedures. 

4. NUMERIÇAL RESULTS AND DISCUSSION 

We have numerically solved equations (5),(7) and (8) for 
the paramagnetic state. We have used a discrete energy mesh 
with the step equal to 0.05 times half a bandwidth W,;2 and 
0.01 xWI2., respectively. The step 0.05 x W:/2 has appeared quite 
reascnable because more fine division of the energy scale has 
brought no significant effects. During the iteration process 
we have checked variations in the value of Fermi Le ve L e (f) = 

= IE~) _E~-l) I, Eq.(8), and in the shape of D(E) , Eq.(7), 
M 

(1)	 =.L ( :l:, (D (1) (E ) _ D(1-1)(E )) 2) 112 , ( 16) 
2 M a= 1 a a 

where the index i counts the iterations and Mis the numb~r 

of points of the energy mesh lying within the band limits of 
D(E). To terminate the iteration process we have used the 
condi tions (~) ~ step of the energy mesh and (~i) ~ 10-4 , 
where i is the number of the iteration step. The self-consis­
tency has been achieved after 5-12 iterations, 

Since equations (5) and (7) derived for the single band 
and the degenerate Hubbard hamiltonian, respectively, differ 
in multiplicative factor 9 only, one can study both the ha­
miltonians using the same numerical procedures. The calculated 
one-particle spectra are displayed in Figs. 3-9, where the 
lower part of the Figure corresponds to the non-self-consis­
tent one-particle spectrum and the upper part to the self­
consistent one. The origin of the ene~gy scale is always set 
to the Fermi leveI and one half of the uncorrelated bandwidth 
W/2 is used as an energy unit. Furthermore, for each studied 
case (the rectangular or fuc uncorrelated LDOS) the value of 
U/W has been set to 0.5 and 0.25, respectively; so we have 
been able to estimate an influence of the strength of Coulomb 
correlations on a shape of LDOS. 

At first, let us start to discuss the results obtained for 
the single-band Hubbard hamiltonian. The self~consistent cal ­

7 
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Fig.3. The one--particle spectrum 
for the single band Hubbard ha­
miltonian calculated for the rec­
tangular uncorrel~ted Do(E). The 
band filling is 0.5; U!W = 0.5 
{full line} and U/W =0.25 {dash­
ed l:ine} ~.. The Loioer and upper 
panel displays the non-self­
consistent and self-consistent 
results~ respectively. The half 
of the uncorrelated bandwidth 
W/2 is taken as an energy uni t. 
The origin of the energy scale 
is set to the Fermi level. 

Fig.4. The same as in Fig.3 but 
for the band filling set to 0.9. 
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-1.6 - o.a 
E- E
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w-­o 

-1.6 -0.8 O 0.8 -2.4 -1.6 -0.8 O 

E-E F E-E F 

Fig.5. The same as in Fig.3 Fig.6. The same as in Fig.5 
but for the case of the fcc but the band filling is 
uncorrelated LDOS. The band set to 0.9. 

1,6 

1.2 

w
o 

0.6 

0.4 

0.2 

filling equals 0.5. 

0.4 

0.2 

Fig.? The one-particle w 
spectrum for the degenerate o 
Hubbard hamiltonian calcula­0.4 
ted for the rectangular Da (E) . 
The band filling is 0.5;~	 U;W z: 0.5 {full l.ine ) and 0.2 
0.25	 {dash line}. For the\,J 

~.~	 symmetry reasons only the 
1	 

left-hanâ side of the spec­
trum is shown. S~e also 
the text in Fig. 3. 

-2.4 -16 -0.8 
E-E• F 
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0.1	 

0.3 

0.1 

-3.2 -2.L -1.6 -0.8 0.0 

E- EF 

Fig.9. The same as in Fig.? 
but for the case of the fce ~ 
uncorrected DoCE). The full 
spectrum is displayed. 

-
w
01"2 

lO 
n3

0.8 

~~6 (\ n)I 

Fig.lp. The fue one-particle 
spectrum for successive ite­
rations steps (the upper in­
dex). The band filling is 0.5 
and U/W =0..25. 
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Fig.8. The same as Fig.? but 
the band filling equals 0.9. 
The full spectrum is shoum. 
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I -~ ImGlk,Êl
0.8 

0.6 

O.L 

0.2 

a 

-4.0	 -2.0 o 2.0 I 
E-s, 

Fig.l1. The non-self-consistent :),'one-particle spectral density 
for the degenerate Hubbard 
hamiltonian ealculated for the 
rectangular DoCE). The band 
filling is 0.5 and U/W =0.5. 

Fig.12. The same as in Fig.ll-w ImGlk,EI but	 calculated in a self-consis­
0.8 

b 

,'''''''- ' 
"" 7 

tent way. 

0.6 

O.L 
satellite peaks on the non­
self-consistent one-particle

0.2	 
spectrum whicq have however 
disappeared during the self­

a consistent processo Similarly, 
the self-copsistent procedure 
removes any additional struc­
ture on the non-self-consistent 
rcc one-particle spectrum, too. 

-LO	 -20 O This smoothing process is illu­
E-E r strated in Fig.10 where we 

show changes in the tcc D(i) (E) 
during successive iteraction steps. Finally, in Figs.11 and 12, 
one can compare one-particle spectral densities calculated in 
a non-self-consistent and a self-consistens way for the rec­
tangular DoCE) using different values of f (k) • The non-self­
consistent spectral densities (Fig.11) agree well·with the 
results of Ref.!7! whereas Fig.12 once again demonstrates the 
smoothing properies of the self-consistent procedure. 

SUMMARY 

Based on our numerical results we have found out that for 
values of the ratio U/W ~ 1/6 there are serious differences 
in shapes of the one-particle spectrum calculated for the de­
generate Hubbard hamiltonian in a non-self-consistent and 
a self-consistent way. The. additional structure on the one­
particle spectrum which can appear in a non-self-consistent. 
approach, is always smoothed-out by the self-consistent pro­
cess regardless of the shape of a starting LDOS (rectangular 
or fuc ), a band filling and a strength of Coulomb correlations. 
For single-band Hubbard model the situation is somewhat diffe­
rente For the rectangular uncorrelated LDOS there is no addi­
tional structure on the one-particle spectrum and the self­
consistent process brings no significant effects. However, 
for the fuc starting LDOS a satellite peak can appear depen­
ding on the value of the band filling but it is remqved by the 
self-consistent procedure. Hence, we conclude there is no 
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additional structure due to Coulomb correlations on the one­

particle spectrum for the single-band or degenerate band Hub-· 1 - ImM(E) - ImM(E)


+ - [ aretg , _ - arctg	 ] J , (A.5)bard hamiltonian if the problem is treated in the self-con­
tt E - 1 - ReM(E) E + 1 - ReM(E)

sistent way for rectangular and Cce starting Do(E). 

where M(E) is given in Eqs. (14), (15). 

APPENDIX 

REFERENCESThe second-order part of the self-energy M(E) calculated 'i 

at T = OOK from Eq. (5) for the rectangular uncorrelated local Jr; 
J 1. KiskerE. -J,PhYs:Chem.,)983, 87, p.3597.density of states Do(E) (see Eq. (13)) reads (energy unit 

2.	 Oh S.-J., Allen J.W., Mikkelsen J.C.,Jr. - Phys.Rev.,equals half an uncorrelated handwidth): 
• ! 1982, B26, p.4845 . 

u2 II
 
a ! 3. Penn D.R. - Phys.Rev.Lett., 1970,42, p.921.
M(E) = - 2 (I1 (E) - li+S(E)),	 (A. 1)

8 1= 1 4.	 Liebsch A~ - 'Phys.Rev., 1981, B23, p.5203. 
5.	 Dietz 'R.E. et a I , -: Phys v Rev , , 1981, B24,! p.6820.where 
6.	 Kanski J., Nilsson P.O., Larsson C.G. - Solid State 

Comm., 1980 1 35, p.397.I 1 ( E) = !..(E + A 1 ) 2 (In IE + A}" I _1..) + l!É..(A1 + E) 2 (A.2)
2 2· 2 7~	 Treglia G., Ducastelle F., Spanjaard D. - J.Physique, 1980, . 

41, p.281. ,and 
8. Treglia ~., Ducâstelie F., Spanjaard D. - J.Physique, 

A 1 = EF -2, A g = -As, 1982, 43, p.341. 
A 2 = -E F-2, A lO c::: - A 6 ' 9. Kleinman'L., Mednick K. - Phys.Rev., 1981, B24, p.6880. 

10. Kajzar F., Friedel J. - J. Physique, 1977, 39, p.397. 
As = A 2 ' A 11 = AlO ' 

A 4	 = -E F , A 12 = - 1 - 2E F ' 

A l\	 = 1 - 2E F ' A13 = A 4 ' 
(A.t~) 

As	 = 1, A 14 = 2 - E f' 

=A 7 A 6 A 15 = A 14 ' 

As	 = 3, A 16 = -A 2 ' 

and 

(p=0 for E +A 1 >0, 

~=rr for E +A 1 <O,	 (A.4) l
li = O for E + A 1 "-, c;. 

We	 also give formula for the one-particle spectrum in the Il
case of~a rectangular uncorrelated LDOS (the non-self-consis­ i 
tent result) and E F = O (the middle of the band):	 ,

1	 . " 

D(E) = -10(-1- E - ReM(E») - 00. - E - ReM(E» +
8	 ' Received by Publishing Departrnent 

on July 16, 1987. 
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TapaHKO P., TapaHKo 3., ManeK H. £17-87-554 
CaMocorJiacoBaHHaH TeopHH KoppeJIHIJ;HOHHbiX 3qxpeKTOB 
B nepexo,IJ;HbiX MeTanJiax 

B Mo,o;eJIH Xa66ap,o;a B paMKax caMocorJiacoBaHHOH TeopHH 
B03MYmeHHH BO BTOPOM nopH,IJ;Ke no napaMeTpy pa3JIO~eHHH U/W 
(TJ- KYJIOHOBCKOe B3aHMO,IJ;eHCTBHe, VJ - WHpHHa 30Hbl) paCCMO­
TpeHO BJIHHHHe KOppeJIHWIOHHhlX 3$¢eKTOB Ha O,IJ;HO~aCTH~HYID 

nJIOTHOCTb COCTOHHHH B nepeXO,IJ;HbiX MeTaJIJiaX, lloKa3aHO, ~TO 
B caMocorJiacoBaHHOM paclleTe HC~e3aeT paHee npe,o;cKa3biBaeMbiH 
,IJ;OnOJIHHTeJibHhlH ITHK B ITJIOTIIOCTH COCTOHHHH, 

p a6oTa BblflOJIHeHa B JJaoopa TOpHH TeopeTH~eCKOH ¢JH3HKH. 

Coo6meHHe 06'beAHHeHHoro HHCTHTyTa H.IlepHbiX Hccne.IlOBaHHH. )ly6Ha 1987 
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Electron correlation effects in transition metals are 
studied within the Hubbard model by the self-consistent 
second-order-perturbation theory in U/W (U: Coulomb in­
tegral; W: bandwidth). It is shown that a satellite 
structure on one-particle spectrum predicted by the non­
self-consistent second-order-perturbation theory disap-· 
pears when the problem is treated in a self-consistent 
way. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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