COOGHBHKA
0GbEAMHBHHOrO
HHCTHTYTA
AABPHBIX
MCCAGKOBAHMA

| m’na

E17:87-554

R.Taranko, E.Taranko, J.Malek

SELF-CONSISTENT TREATMENT
OF COULOMB CORRELATIONS
IN TRANSITION METALS .




1. INTRODUCTION

The electronic structure of metals may be investigated by
means of many spectroscopic techniques (e.g. by X-ray emission
-and absorption, X-ray photoemission, UV -photoemission, angle-
resolvent photoemission spectroscopy, etc). Results of these
experiments are usually compared with the one-electron band
structure calculations. Now it is well known that for some
metals the photoemission measuremernts show a disagreement
between experimental and calculated d-bandwidth. For example,
the width of the valence-band photoemission spectrum of nickel
is by about 307 smaller than it is predicted by the band-
structure calculations. Furthermore, in nickel, there is
a satellite structure about 6 eV below the Fermi level in the
experimental density of states/!’ . This satellite .structure
has received much attention in literature’/2-7/ . Some authors’®/
explain the resonant behaviour of the experimental 6 eV peak
as a conventional intraband excitation effect arising from
a large enhancement in the projected joint density of states.
A more widely accepted point of view, howéver, is that the
reduction in the bandwidth and the satellite structure can
be shown to arise from many-body effects within the unfilled
d-band. A convenient frame for a description of such proces-
ses 1s the degenerate Hubbard hamiltonian with a contact
electron-electron interaction. The problem of electron corre-
lations is usually treated in T-matrix approximation (TMA)/3.4/
or using the second-order perturbation theory (SOPT) in
Uu/w/T 1% | Ghere U is the strength of the contact Coulomb
interaction and W denotes the one-electron bandwidth. The
advantage’ of the SOPT approach is that it works for an arbi-
trary particle concentration whereas the TMA technique remains
valid only for low particle concentrations. On the other hand,
the SOPT treatment is limited to values of the U/W ratio smal-
ler than O0.5.

All the above-mentioned SOPT calculations’/7-19/ have been
however performed in a non-self-consistent way. Therefore,
the self-energy calculated in such a manner at T = O°K vani-
shes at the one-electron Fermi energy E} instead of quasipar-
ticle (many-body) Fermi energy Ep, causing the quasiparticles
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at energy E-Ep below the true Fermi level to have infinite
lifetimes and these on Ep to have short lifetimes/9/. For that
reason, Kleinman and Mednick’®/ had to make some energy shift
(the value of which is not immediately transparent) to restore
the proper behaviour of the imaginary part of the self-energy
at the many-body Fermi level.

In this paper we report on self-consistent calculations of.
the density of states for quasiparticles described by the
Hubbard hamiltonian. The organization of our paper is as fol-
lows. .In ‘Section 2 we give a:short recapitulation of the SOPT
approach developed by Treglia et al./m/ and describe the self-
consistent procedure..In Section 3 we present some analytical
results for the self-energy we have found to be useful in
programming this or related problems at computers. In.Sec-—
tion 4 we give a comparison. of the one-particle spectrum and
the spectral densities of states for the single and degenerate
band Hubbard hamiltonian calculated in a self-consistent and
non-self-consistent way. Finally, in Appendix, one can find
analytical formulas for the self-energy arising from the rec-
tangular uncorrelated density of states. .

2. THEORY

Let us start with the degenerate Hubbard hamiltonian for
a d-band:

H=H, + U 2 (-8,,.8, Ann ., (1)
iww’oo s
where Hg is the band hamiltonian; U is the average on—site
Coulomb interaction, the same for each of the five d-bands
(label v); o denotes a, spin index and Nj,, is the particle-
number operator. The self-energy written in the first and
second order in U/W reads as’?/ (the spin index ¢ will be sup-
pressed as we are dealing with the paramagnetic case):

f—;—». —-f_, ) -f, S)fs £, o
p+q(1 q)(1 rk+-3 )+ fp+q) q k+p

% (kE) - -2-UN, +0U° 3 , .
10 Pa E* +e(p+q) —e(®+p) -e(q)
where fp is the Fermi distribution function for the state ]§>
of the‘energy e(k) ; the N denotes the number of electrons

per atom and the indices p,q run over the -first B.Z. of the

crystal. It is convenient to subtract from the self-energy
its Hartree-Fock part (the first term of Eq. (2)) and. to re-
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write its second-order part in U/W (the second term of Eq.(2))
as

Mk, E) =9U®3 e [ x
R -0 E +&)l—w2—w3 (3)
XN(w1ﬂQ'ms)Dg(ml)Dﬁ(wa)Dﬁ(ws)'
where
1 k- R >
- T = e 5 - k . (4)
DR(a)) N %e (w - €e(k)) ‘

The function N(g;,wg,w3) combines all fy factors appearing
in Eq. (2) dnd R denotes atomit positions in the crystal. The
local approximation for the self-emergy introduced by Treglia
et al./gﬁcorresponds to retaining of the first term (R = 0)
in Eq. (3) only; so we have :

e doydegdeg
MG, E) = ME) =900 [ff x
- B +w -0y — Wy

(3)

where Dﬁm)EI)ﬁ=o(w) is the local density of states (LDOS)
corresponding to the band structure e(k) (see Eq.(4)). The
main merit of the local approximation lies in the fact that
the self-energy obtained through Eq. (5) isk -independent and
directly connected to LDOS.

Now we are in good position to describe a self-consistent
procedure for a calculation of the quasiparticle density of
states. At first, let us recall that the one-particle spectral
density of states is given by the imaginary part of the pertur-
bed retarded Green function:

GeE,E) =B —e(®) -2k, E))? (6)

and the quasiparticle LDOS (very often called the one-marticle
spectrum) is obtajined by summing the imaginary part of Eq. (6)
over wave vector K :

DE) = -1 imLl 3 QK E) =
T N 2

*eo Do(n oo DL (p-9Uv) ]
=-Lm [ 0¥ ——dn=——1—1m [ -—+—‘-’-—————-—— n, (7)
T e ET-X(E)-n 7T _oET-M®E) -n.



where v =N_/10 is the band filling and Dy(m) is the local }
densi_t;y of states corresponding to uncorrelated band structu-
re e(k). If p is the chemical potential of the quasiparticles,
then at the absolute zero of temperature we have (u=Eg)

Ep
v=[ DE)E, (8)
where the quasiparticle Fermi energy Ep may differ from the
one-electron Fermi level Ef found in the Hartree-Fock solu-
tion of the Hubbard hamiltonian. .To find D(E) and Erp in a self-
consistent way we start with the one-electron density of sta-
tes per atom Dg(E) and calculate the second-order part of the
self-energy M(E) from Eq. (5). Then, the quasiparticle LDOS
(one-particle spectrum) and Fermi level Ef are found from
Eqs. (7) and (8) and used as input data for an iteration pro-
cess carried out by Egqs. (5), (7) and (8). Let us note that
at edch iteration step the imaginary part of the self-energy
has the proper behaviour at Fermi level Ey, and therefore,
no artificial energy shifts are needed. The iteration process
is terminated when a desired accuracy of D(E) and Ep is achie-
ved (for numerical details see Section 4).

3. SELF-ENERGY

To carry out the self-consistent process efficiently, one
needs a fast numerical procedure for the evaluation of the
complex function M(E) (see eq. (5)). From a numerical point
of view the best way is at first to calculate the imaginary
part of M(E) and then to find the real part of M(E) from the °
dispersion relation

dn. ‘ (9)

At temperature T = O K the imaginary part of M(E) takes the
form
. + 00
ImM(E) - -9nU2£gdmldmgdwsmwl,mg,ws)n(mlm(wgm(ws) x
s . EF b b
x 8(E +w"1—m2 —wg) =-9Un{ [ dowg ['dcu2 ) dowg D(wl)D(wz)D(wg.)x
b Ep® Ep °F  EF
xS(E+m1-w2-—m3) +‘.Ef dmifdw2 [ dwsD(mi)D(mg)D(ms)x
F a a

xBEBt+oy-wy —wg)l = -0rUPE, E®) +5,®),

where a and b, respectively, are the lower and upper limits

of the energy band D(w). The function 8;(E) equals zero for

E <Ep whereas Sp®)=0 for E >Ep . From the definition of

N(w1, wg, wg) it follows that ImM(Ep) =0 . It is also conveni-
ent to express the function 84(E) (and similarly So(E)) as

Ep b
S1(E) = | dwy [ dsz(wl)D(wz)D(E+w1—m2)6(b-E-m1 +wg ) x
a E
! Ep wy-Ey
x B(E +w-1_m2 ~Ep)=f dwy f dweD(a)l)D(col—wg)D(E +twg ) x (11)-
a Wy ~-b

x0(E+awy ~ Ep) -6(b-E-wy),

where

I for x>0

() 0 for x <0. (12)

From the definition of 6(x) it follows that the integrand in
Fq. (11) is nonzero only for b -E >wy>Eg -E. A typical

shape of an integration region is displayed in Figs. | and 2.
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Fig.1. The 2D -integration area  Fig.2. The same as in Fig.1
for numerical evaluation of the but for the function Sp(E)
function 8 () defined by E<Epand Ep>a +W/R.
Eq.(11); E>Ep gnd Ep>a +W/2
(see also text),

The parallelogram B (full line) is fixed in the plane of va-
riables (@y, @wy) whereas the rectangle A (dashed line) moves



along the wg-axis in dependence of the energy E. The 2D-in-
tegration area is given by the overlap of the rectangle A and
the parallelogram B.

The density of states for realistic d-band is very of-
ten/7:10/ approximated by a rectangular density of states with
a width W fitted to band calculation data. In this case, we
have (the spin index o is suppressed as we are dealing with
the paramagnetic state; also, we work with an energy unit
equal to half a bandwidth)

_ 1/2 for |[E] L1
D® = 7 for E|>1 (13)

and, of course, the functions Sy(E) and Sp(E) may be calcula-
ted analytically. For example, when level Ep lies at the
centre of the band (Ey= 0), one can easily find

. .
ImM(E):—i%H—S(E), (14a)
where
SE) = 0 . for E <-3

- %(E+3)2 for -3 <E < -2

= ~BE?-38 -1 for -2<Eg<-1

- -%-Ez for -1 <E <1 (14b)

~-E2+3E -1 for 1<E <2

- > 6-B)F for 2 <E <3

-0 for 3 SE.

The corresponding real part of M(E) obtained from Eq.(3)
reads

2
ReME) = _9_;1- RE) , (15a)
where

F(x) =712—¥(3+X)21nl3+ﬂ +(@3-x)%I!8-x +32-x)2me-x| -

A 2 (15b)
-—8(2+x)21n|2+xl +3(1 +x)21n\1+x\—3(1 -x)*In|l-x|}.

Let us note that for the rectangular D(E) the function M(E)

can be found directly from Eq. (5) without using any disper-—
sion relation. The relevant formulas for an arbitrary filling
of the band are given in Appendix and they may be used for

a discussion of the non—self-consistent results. The self-
consistent procedure, however, can be carried out in the nume-
rical way only (even for a starting rectangular LDOS). Hence,
the knowledge of the analytical formulas helps us to debug
appropriate numerical procedures.,

4, NUMERICAL RESULTS AND DISCUSSION

We have numerically solved equations (5),(7) and (8) for
the paramagnetic state. We have used a discrete energy mesh
with the step equal to 0.05 times half a bandwidth W2 and
0.01 xW/2 , respectively. The step 0.05 x W/2 has appeared quite
reascnable because more fine division of the energy scale has
brought no significant effects. During the iteration process
we have checked variations in the value of Fermi level eq) =
= IE(;) —E(Ff"l) |, Eq.(8), and 1in the shape of D(E), Eq.(7),

M
Wl o®@)-pibe )R, (16)
2 M ooy a a

where the index i counts the iterations and M is the number
of points of the energy mesh lying within the band limits of
D(E). To terminate the iteration process we have used the
conditions sq)g step of the energy mesh and ¢{) < 107% |
where i is the number of the iteration step. The "self-consis-
tency has been achieved after 5-12 iterations,

Since equations (5) and (7) derived for the single band
and the degenerate Hubbard hamiltonian, respectively, differ
in multiplicative factor 9 only, one can study both the ha-
miltonians using the same numerical procedures. The calculated
one-particle spectra are displayed in Figs. 3-9, where the
lower part of the Figure corresponds to the non-self-consis-
tent one-particle spectrum and the upper part to the self-
consistent one. The origin of the energy scale is always set
to the Fermi level and one half of the uncorrelated bandwidth
W/2 is used as an energy unit. Furthermore, for each studied
case (the rectangular or fce uncorrelated LDOS) the value of
U/W has been set to 0.5 and 0.25, respectively; so we have
been able to estimate an influence of the strength of Coulomb
correlations on a shape of LDOS.

At first, let us start to discuss the results obtained for
the single-band Hubbard hamiltonian. The self-consistent cal-




05 Fig.3. The one-particle spectrum
I 7 N\ for the single band Hubbard ha-

01l o ; ; miltonian calculated for the rec-
e tangular uncorrelated Dgy(E). The
o1f / \ band filling is 0.5; UMW = 0.5

=2 PSRN 4 (full line) and UMW = 0.25 (dash-
ed line). The lower and upper
panel displays the non—-self-
, o1 consistent and self-consistent
7 N results, respectively. The half
- of the uncorrelated bandwidth
. W/2 is taken as an energy unit.
The origin of the energy scale
18 set to the Fermi level.

1
! 03
1

DIE]

Fig.4. The same as in Fig.3 but
for the band filling set to 0.89.

culations have been performed
for the rectangular and for fcc
starting local density of states
DO(E). In both the cases the band
filling has been set to 0.5 and
0.9, respectively. For the rec-
tangular LDOS the band filling
0.5 gives rise to the symmetri-
cal D(E) around the Fermi level
(a useful property to test an accuracy of numerical procedu-
res), whereas v = 0.9 roughly approximates the nickel value
(the case investigated by many authors’/7:9/ ), The results

are shown in Figs. 3-6. One can immediately observe (Figs.3
and 4) that for the rectangular Dgy(E)the self-consistent pro-
cess has no influence on the shape of D(E) regardless of the
strength of Coulomb correlations. For the f¢¢ starting LDOS
the situation is slightly different. At the band filling 0.5
and the ratio U/W = 0.5 there is a peak at the right-hand
side of the non-self-consistent one-particle spectrum (Fig.5)
which disappears during the self-consistent process. At the
band filling 0.9 (Fig.6) no additional structure appears at
all regardless of a value of the ratio U/W. The one-particle
spectra calculated for the degenerate Hubbard hamiltonian

are displayed in .Figs.7-9. In accord with calculations of
Treglia et al.’/? for the rectangular D (E) we have found two

8
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Fig.5. The same as in Fig.3

but for the case of the fcc

uncorrelated LDOS. The band
fZlling equals 0.5.

Fig.7. The one-particle
spectrum for the degenerate
Hubbard hamiltonian calcula-

ted for the rectangular Dy (E).

The band filling is 0.5;
UMW=0.5 (full line) and
0.25 (dash line). For the
symmetry reasons only the
left-hand side of the spec—
trum is shown. See also

the text in Fig. 3.
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Fig.6. The same as in Fig.5
but the band filling is

set to 0.9.
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Fig.9. The same as in Fig.7

but for the case

of the fce

uncorrected Dy (B). The full
spectrum is displayed.
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Fig.10. The fcc
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spectrum for successive ite— -

rations

steps (the upper in-

dex). The band filling is 0.6

and UMW =, 25.
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Fig.8. The same as Fig.7 but
the band filling equals 0.3.
The full spectrum is shouwn.
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Fig.11. The non-self-consistent
one-particle spectral density
for the degenerate Hubbard
hamiltonian calculated for the
rectangular Do(E). The band
filling s 0.5 and U/MN =0.5.
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Fig.12. The same as in Fig.11
but calculated in a self-consis-—
tent way.

- % ImGlk .E)

satellite peaks on the non-
self-consistent one-particle
spectrum which have however
disappeared during the self-
consistent process. Similarly,
the self-consistent procedure
removes any additional struc-
ture on the non-self-consistent
fce one-particle spectrum, too.
This smoothing process is illu-
strated in Fig.10 where we

show changes in the fec D (E)
during successive iteraction steps. Finally, in Figs.ll and 12,
one can compare one-particle spectral densities calculated in
a non-self-consistent and a self-consistenf way for the rec~
tangular Dg(E) using different values of €(k) . The non-self-
consistent spectral densities (Fig.l11) agree well -with the
results of Ref.’? whereas Fig.12 once again demonstrates the
smoothing properies of the self-consistent procedure.

\
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SUMMARY

Based on our numerical results we have found out that for
values of the ratio U/W > 1/6 there are serious differences
in shapes of the one-particle spectrum calculated for the de-
generate Hubbard hamiltonian in a non-self-consistent and
a self-consistent way. The additional structure on the one-
particle spectrum which can appear in a non-self-consistent
approach, is always smoothed-out bv the self-consistent pro-
cess regardless of the shape of a starting LDOS (rectangular
or fcc ), a band filling and a strength of Coulomb correlations.
For single-band Hubbard model the situation is somewhat diffe-
rent. For the rectangular uncorrelated LDOS there is no addi-
tional structure on the one-particle spectrum and the self-
consistent process brings no significant effects. However,
for the fcec starting LDOS a satellite peak can appear depen-
ding on the value of the band filling but it is removed by the
self-consistent procedure. Hence, we conclude there is no
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additional structure due to Coulomb correlations on the one-
particle spectrum for the single-band or degenerate band Hub-
bard hamiltonian if the problem is treated in the self-con-
sistent way for rectangular and fec starting D,(E).

APPENDIX

The second-order part of the self-energy M(E) calculated
at T = 0°K from Eq. (5) for the rectangular uncorrelated local
density of states Dy(E) (see Eq. (13)) reads (energy unit
equals half an uncorrelated handwidth):

o~ _ U8
ME) = -8-—121 I E) -1 ,g(E), (A.1)
where
() - 2E +A ) WE+A | - 3)+ 2@, +B)* (A.2)
and '
A1=Ep—2, Ag =‘A8 ’
Ag=-Ep-2, Ajo=-Ag,
Ag = Ay, Ay =By,
A4=—~EF, A12= —1—'2EF,
Ag=1-2Bp, Ay =Ay )
Ae:l' A14=2'—EF,
A7 =A°, ) A15=A14y
A8=3, A10=-A20
and

¢ =0 for E +A; >0,
¢=n for E +A; <0, (A.4)
I, =0 for E+A; =C.

We also give formula for the one-particle spectrum in the

case of ,a rectangular uncorrelated LDOS (the non-self-consis-—
tent result) and Ep = O (the middle of the band):

D(E) = 5 [6(-1-E ~ReME)) - 6(1-E - ReM®)) +

12

~ImM(E) )
E -1 — ReM(E) E + L - ReM(E)

+ -l—[arctg i, (A.5)
w .

where M(E) 1is given in Eqs. (14), (15).
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Tapanko P., Tapasko 3., Manek H. F17-87-554
CamocormacoBaHHasg TEOpPHA KOPPEJSIAIHOHHMX 3bdheKTOB
B NepexOomHbIX MeTamnuax

B Mopmenu XaGb6apna B paMKax CaMOCOTI1acOBAaHHOH TeOpHH
BO3MYWEHHH BO BTOPOM NopsAKe MO rapaMerpy pasnoxeHus U/W
(11— xysioHOBCKOe B3auMopeiicTBHe, W — mmpuHHa 30HH) paccMo-
TPEeHO BJIHAHHE KOpPPeJIAUMOHHBX 3hdeKkTOB Ha ogHOYAC THUHYIO
INIOTHOCTE COCTOAHHH B MepexofHbiXx Meramnax. llokasaHo, 4To
B CaMOCOrJjlaCOBAHHOM pacueTe HCYe3aeT paHee IpenckasblBaeMslil
OOINIOJIHUTESIbHbIA MK B MNJIOTHOCTH COCTOSHUI.

PaboTa BhimonHeHa B JlaBopaToOpHH TeopeTHYeCKOl $GU3HKH.

Coo6ienne Ob6benuHeHHOTO HCTHTYTA AAEPHbIX HccnenoBaHuit. Jy6ua 1987

Teranko R., Taranko E., Malek J. E17-87-554
Self-Consistent Treatment of Coulomb
Correlations in Transition Metals

"Electron correlation effects in transition metals are
studied within the Hubbard model by the self-consistent
second-order-perturbation theory in U/W (U: Coulomb in-
tegral; W: bandwidth). It is shown that a satellite
structure on one-particle spectrum predicted by the non-
self~consistent second-order-perturbation theory disap-:
pears when the problem is treated in a self-consistent
way.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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