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The theoretical desoription of the physical properties of the 
trans-polyacetylene moleoule, trans-(CH)x' is essentially based on 
the soliton oonception. In our leotures III we presented a different 
aspeots of polyaoetylene physios as well as a some alternative ideas. 
The soliton exoitations in trans-(CB)x can be described on the ba­
sis of the disorete Peierls model where the l'-electrons are 
treated in a tight-binding (Debye - Huckel) approximation. Su, 
Sohrieffer and Beeger derived the one-dimensional lattioe Hamiltonian 
which has the form 

H =E c./( "/~ /1) G. - {(tJ4JIt~1 '''"(''1-1 f-h.c)rlrj: -;. f~~hfl1·)'~l) 
where Cit is an annihilation operator of an 1'f -electron on the 
n-th (CH) group (the spin index (5' in (1) is droped),}" (t)(t) is 
the displacement field of the n-th (CH) group from the equilibrium 
state, "M is a ohemioal potential of electrons, M is the mass 
of the (CH) group and k' is the spring oonstant. The hopping 
matrix elements th, ".;./ in the linear approximation take the 
form tl'l}IJH:: to -.,l.(/jH/-jloJ) where 0( is an eleotron-phonon 
coupling oonstant. 

Brazovskii and Jakayama, Lin-Liu and Maki independently introdu­
ced the oontinuum version of the polyacetylene model Which adm~ts 
an exaot e.n.alytical solutions. It was shown that the stationary 
exoited states of this system are amplitude solitons. However, these 
authors used the adiabatioal approximation negleoting the real 
phonon dynamics. In this case the investigation of the effeots due to 
the soliton motion lies without the self-oonsistent approaoh. 

We have been studying the dynamical version of the primary 
polyacetylene model (1) in the continuum 11mit. The equations of mo­
tion have the form 

i~(x,t-) ,,- r'~ Zi;«x,c-) f-lJ'/Xd) a 6/1-) f ~(~.('A t~..:1)C f {LJpj,
Z (2a ) 

z'l{.~dJ:r illF ~ ()flf! + Z,lk1t)4(xd) of ~~M·.::1 f~dx f j Ax! 
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together with the self-consistent gap equation 

/J( 4l! (x1 6J f /(tJ,1.4xx (XI t) '" ~ rf(4fi',iJ • /b.,(~L~-r.1?WY~tCY("2b) 

where L1~,t/= f"')~(t) is a gap parameter, 21 ~/"¢J and i"fxtt) are the 
singl_particle electrOnic wave functions, VF:: :la, to is the Fermi 
velooit~, a~ is a lattioe constant. ~e summation in (2b) is 
assumed over all oocupied states up tc the Fermi level ohosen to be 
zero. Ixoluding in (2b) the eleotronio subsystem ( d. =0 ) we obtain 
the well known optical phOnon branoh. ~e acoustic phonon mode can 
be introduoed b~ analogous manner. On the basis of the acoustic 
phonon interaotion effects the -quasirealistic- model of trans-(CB)x 
has been construct,ed which possesses a mOving soliton solution /2/. 

An exaot nontrivial sQlutions of the system (2) are unknown at 
the present time. However we can see that the derivative coupling 
terms in (2) are smaller than the nonderivat1ve coupling term by the 
order of til" /t)l. where t is a sol1ton width. For the kinks in 
trans-(CH)x we have t!Y r4;. and terms with tl,/ can be omitted. In 
the case of the slowl~ mOTing solitons we obtain from (2) the follow­
ing s~stem 

l'lIt- (Je,t) - 7'V; /()(611f;) + flYxdJ·.t1 
(Ja) 

z't; fxd) -'" l' PI: V; (xd) " ttN,t-).ll 
and 

Ll =' - 1t~2.C;() z/(14:frf/l' -f lJ'~1J. (Jb) 

It should be noted that all phonon dynamios in (J) is oonneoted with 
the d)'1lalllios of the Jr -eleotronio subsystllll\. lIoreover, the system 
(J) is fully equivalent to the integrable /Y::< 2 Gross-JIenu model 
which is aotively investigated in the quantum field theor~ (see, for 
reviaw(11). It is ver~ important for our anal~sis that the systllll\ (J) 
is iurariant UDder the Lorentz transformations with the charaoteristio 
Telooit~ ~ • Henoe a moving soliton solutions arB related to the 
known statio solutions in a simple way. and we can exaotl~ oaloulate 
all ph7sioal Oharaoter1stics of moving solitons Ij/ • 

'!'he kink: solution has the form 

(4).a/v: t1" tlMth. ~4 ' 
where 1: 111)( - lI] t "Xtl v; is the k1Dk veloo1t~, F-r :: F" /1-ftJ, 
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, =&l'S/tI'F ' f. ~ 2Il:At is the ,width of the statical kink:. In theo 
case of the Uniformly dimerized trans-(CH)x chain we obtain from 
(J) the oonstant band gap ~q ~ 0.7 eY. The electronio wave 

functions in the presence of the kink are given in /1,3/. 


The eleotronio energy spectrum is essentially modified. The 
valenoe band electronio states have the same dispersion E. 
• - IlJ"t+V;/1f2 as in tJl,e uniform system but suffer phase shifts. 
It is important when we calculate the soliton creation energy. lIore­
over the discrete zero energy band state appears kn the presenoe 
of the kink:. 

~e polaronio solution is found to be 

~ (x/f) :: .all' - ~tt;: [faA! It Jy f,. f tMfA. kffJ / (,) 

where fr =X-~ t t x() , • 'Zf is a polaron nloo1ty, 0/:::
-;% I I. t.'"XI> (1- fil) '2. and KoV} = 4 -v() • A polaron deformation gives 

rise to the appearance of the two looal levels sfmllletric with respect 
to the gap oentre ( E.::f V" ) in the electronic spectrum. It is 
conneoted with the symmetry of the Hamiltonian (1) under charge 
oonjugation. In the oase of the kink deformation the two eleotronio 
states are degenerate in energr, and as a oonsequenoe, the unusual 
charge-spin relation takes placel charged solitons are spinless and 
neutral solitons oarry spin 1/2. In the trans-(CH)x model the level 

lJ is determined and has a value tJIJ = ..1 ... /fi·o 
We oaloulate now the eleotrio charge of solitons. ~e total 

'ohange in the looal electronio density in the presence of 1I1e kink: 
deformation is given b1 IJ/ 

(6)J'fa) =(h" - j ~d.! ~1j!12f N!d
Ll ' 

where IV is a full band_1dth (HI1Jf 10 eY), 110 .0,1,2 is an 
oooupation number of the discrete local at E.. o. ~e situation 
with no· 1 can be realized in the undoped trans-(CH)x as a deriva­
tion in a pure bond alternated conformation and kink carry unpaired 
spin 1/2. !he oharge of the kink is zero beoause the oommon oharge 
of the trans-(CH)x ohain is conserved. The oases no .0,2 take 
plaoe in the doped trans-(CB)x • We obtain an additional oharge 
fJl =.te but a spin is oompensated. 
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From (6) we have 

Q :: e r1J(1 - j. 4I!c:ij )vI~ 1. (7)
21J, J' 

In the limit HI» LI" the all above results are reproduced. However 
it is followed from (7) that a small contribution to the charge of 
the kink appears due to the finite value of HI. Note that the 
effect of the soliton motion is additionally reduoed by the small 
pa:rameter l" A~1;.1 «1... 

Contrary to the kink oase the polaron has an additional oontribu­
tion to the value of charge which is not reduoed by the small para­
meter C • The polaronic deformation can arise in the trans-(CH)(;,- . x 
c~in by doping. Polaron-like excitation has a usual spin-charge 
relation: Q= :t e and S • 1/2. The change in the local denSity has 
the form 

k. J q (f. ,,{ 
,ff{[):! 'if (au.?k, f, f secA/-Jy l-) Z(IJ~ t2) - !fJ!. . 

z 2 f~ (8) 

• tl'ltl hi f j3Z ~)(rJ t-; (LJ o Ml'h jf/(I-ftV a 
j 2Kol/}: .Ji!i(/r/(/.j1!)_4()zlL~zt; -~£ 2LJ'o ­

'J ~ .it. jj- 0:f1~ Z M dj- Z~zir. ,I 

where we propose that the level E = - 47" is occupied as the va­
lenoe band states and no is an oooupation number of the level E=~p 
For polaron we have I1D :: 1 • In the limit W>'> 40 at jJ 
tain from (8) an exaot result, that the polarontc oharge 
At f f 0 the correction to the charge appears 

ttl :: e!2 .do - A;, ~ . 
4,1-k;V; 

= 0 we ob­
(!J '" e. 

(9) 

At Qo'" 0 the Talue of IIQ -:1> 0 in accordance with the result 
for the kink case. In trans-(CH)x we obtain 4J () = A" /(.2.' and 

J'6( ~ 0.17 ~j>2.. It is a sufficiently small correotion but very 
important that the reduotion by the small parameter l- is absent. 

Using (6) and (8) we can caloulate the eleotrioal moment 
p", '" 4.J!"'ft(fJ".!! of solutions. It is easily shown that tilt) 

is an eTen funotion of '% for both deformations. Hence, all the 
odd electrioal moments turn to be sero. In the 11mi t l <.'-:,,1 the 
quadrupole moment of the kink is i..

Ii If '" -e4<t1uz. I (17, -I) (;-jJl.j ';'.J7 fJ. (10 ) 
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Taking into aocount the value of l we obtain for (CH)x 

-1~:= 1.5 .e4"z, ~tr:::: 17-€4"z, where ~() and gt: are the quadru­
pole moments of neutral and oharged solitons, respectively. 

The quadrupole moment of polaron has the form 

liP ::. ~a..~ If 'i6 -1 ~ 
l...z- no t .If l)'! b f iii' Md/' f­

ell) 

f J</(3- 2(2)(t f jztIJZdj,l/iJiij· PI} 
and the main oontribution gives /i..f ~ 33 ea,/-. 

The soliton oreation energy is expressed in terms of th~ solu­
tions of ()) in the following way 

ES :: ~ /(E/- () f (2).JTlf)Jt, /4rv-4r jj~tq,fi'~"/(12) 
t 

where ~::::. '!;"/Y,fo/Jiklli:- • The first term in (12) determines the 
oontribution from the eleotronio SUbsystem due to the phase shifts in 
the electronio wave functions in the valence band. In the oase of 
pOlaron an additional correotion from the disorete levels E~ t~Q 
is appeared. The other two terms in (12) determine the lattice 
contribution to the creation energy of solitons. If the soliton 
motion the first two forms in (12) give the oontribution the kinetio 
energy of solitons and the soliton mass renormalization takes plaoe. 

The kink oreation energy has the fom 

" of- gz/.,Ao -r (13 )EK ..r r {.::ur 

A.t I!"O we obtain the well known result for the static kink .f;/: 
C~o= za~ /1/. The seoond term in the braokets detemines the 

oontribution from the kinetioal term in (12) and we oaloulate the 
kink mass NK~6 m~ ,where 11I~ is an eleotronio mass. The first 
term determines the oorrection to the kink mass and we obtain 

i',M1( :: 24" I,Q.,A If 2 c:t' V. 0 g A1K • 

By an analogous manner we obtain the polaronio creation
/)/ . . 

energy 

E' :: J (ko 1f'F t tJ() tV'U;{,j k,,4J~j f (IJ~ .2) CUD f 
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f 8Z! zk,* -I- 2~V;li~3(~)lJftctJ(-&f)} r (14)r ;:lIT 

f 	 MI1,:U; fix). It(I.Xl) Ie, LH -2X)'!JJ2g( t;.3 (1 I-X 'jf ) 
, 11 '" 

where K::: 1G?if: I LlO • In the trans-(CB)x model we haTe tV(I = 
= k" ~ ='Llo/fi • At J3 • 0 we obtain from (14) the result 
Ef' =l;.T4>p,.1n aooordanoe with that for the statioal polaron. The 

Q 

polaron1o mass is determined b;r the k1nstical term in (12) and has 
the value Mft:::' /,Jhlf ( the latter term in (14». The other term 
at 132. in (14) determines the oorreotion to the polaroniO maslS 
whioh is ver;r essential f"fl1f~ 0.J1~. Rote that contrary to the 
kink oase in (14) there is a oOntr1but1on to the k1netioal energy of 
polaron due to the electron sUbs;rstem. L 

In oonolus1on we note that the use of the small parameter ~k) 
in (2) may be oorreot only at small soliton densities. In the highly 
doped trans-(CB)x the soliton width deoreases, and as a con~equenoe 
we must take into aooount the droped terms in (2). It is important 
in a studT of the soliton lattice formation at high soliton densi­
ties. One should, however, keep in mind that the oontinuum approxima­
tion maT not be applioable at high soliton densities. The quasistatio 
approximation for moving solitons is applioable beoause in the real 
s;rstem the highest velooit;r of the soliton is governed b;r the latt10e 
and for the kinks its value is 1'; ~ v.;u,~ «z..-; • However, the 
iuvestigat10n of the real soliton d;rnamios in the model (1) is still 
an open problem. The results m", be relevant to the Gross - IIn'eu 
model where the dynaaioal mass of solitons appears when the dynaaioal 
effeot. are taken into aoooUDt. 
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~8MHqeCKHe 3~KTW B KO~THHyanbHoA 
MOAenH TpaHC-nOnH~eTHneHS 

06CYZA~TCR AHH~eCKHe CBo~cTBa KOHTHHyanbHo~ MOAe­
nH TpSHC-nOnHa~eTKneHa. B paMKax c8MocornaCOB8HHO~ cxeMW 
B~HcneHN ~H3aqeCKHe xapSKTepHCTHKH AB~CR COnHTOHOB 
/KHHK, nonRpoH/. 

Pa60Ta BYnonHeHa B na6opaTopHH Teope~ecKo~ tHSHKH 
OHHH. 
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Fedyanin V.K., Osipov V.A. EI7-87-47 
Dynamical Effects in the Continuum 
Trans-Polyacetylene Model 

The dynamical properties of the continuum trans-poly­
acetylene model are discussed. In the self-consistent 
scheme the physical characteristics of the moving soli ­
tons (kink, polaron) are calculated. 
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