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The theoretical description of the physical properties of the
trans-polyacetylene molecule, trans-(CH)x, is essentially based on
the soliton conception. In our leotures / we presented a different
aspects of polyacetylene physics as well as a some alternative ideas.
The soliton excitations in trans-(CH)x can be described on the baw
81s of the dlscrete Pelerls model where the j=-electrons are
treated in a tight-binding (Debye - Huckel) approximation. Su,
Schrieffer and Heeger derived the one~dimensional lattice Hamiltonian
which has the form
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where C,, is aun annihilation operator of an JF —~electron on the
n-th (CH) group (the spin index ¢ 1n (1) 1s droped), 4, (£)(t) is
the displacement f£ield of the n~th (CH) group from the equilibrium
state, M 1s a chemical potentlial of electrons, M 1s the mass
of the (CH) group and A/ is the spring constant. The hopping
matrix elements f%,nfl in the linear approximation take the
form fy g4y = Lo oA f(‘,f,,,, -d%) where of 1s an electron-phonon
coupling oonstant. )

Brazovskii and Jakayama, Lin-Liu and Maki independently introdu-
ced the continuum version of the polyacetylene model which admits
an exact analytioal sclutions. It was shown that the stationary
excited states of this aystem are amplitude solitons. However, these
authors used the adiabatical approximation negleocting the real
phonon dynamics., In this case the investigation of the effects due to
the soliton motion lles without the self-oonsistent approach.

We have been studying the dynamical version of the primary
polyacetylene model (1) in the continuum limit. The equations of mo-
tion have the form
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together with the self~consistent gap equation

M 8, tot) #KaPdy, (1 0) =~ 1K AKY - XGRS (w2 i) s005%20)

where /& ¢/ /"yﬁ’rﬂ 1s a gap parameter, ¥ A7) and rit) are the
single—~particle alectronic wave functions, ;- = z?&', fo is the Fermi
velooity, ¢, 1is a lattice constant. The summation in (2b) is
assumed over all occupled states up to the Fermi level chosen to be
zero. Bxoluding in (2b) the electronio subsystem ( A = ¢ ) we obtain
the well knewn optical phonon dranch. The acoustic phonon mode can
be introduced by analogous manner. On the basis of the acoustic
phonon interaction effects the “guasirealistic™ model of trans- Cﬂ)x
has been constructed which possesses a moving soliton solutilon 2 .

An exact nontrivial sglutions of the system (2) are unknown at
the present time. However we can see that the derivative coupling
terms in (2) are smaller than the nonderivative coupling term by the
order of [%/g/ where ¢ 1s a soliton width. For the kinks in
trans—(CH)_ we have ¢~74, and terms with 4° can be omitted. In
the case of the slowly moving solitons we obtain from (2) the follow~
ing system
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It sheuld be noted that all phonon dynamios in (3) is oonnectad with
the dynamics of the JI -¢lectronic subsystem, Moreover, the aystem
(3) 1s fully equivalent to the integradle /Y= 2 Gross-Neveu model
which 1s actively investigated in the quantum field theory (aee, for
review{l]). It is very important for our analysis that the system (3)

is invariant under the Lorents transformaticns with the charaoteristic

velcolity I/,{- « Hance a moving soliton solutions arep related to the
known statio solutions in a simple way, and we can exactly ocaloulate
all physical oharaoteristics of moving solitons / .

The kink solution has the form

4(E) -4, Lanh 3/& , @)

where E2X-3L* X% ¥, 1s the kink velooity, & =&// /%

=%/ » E- V/p, 1s the width of the statical kink. In the
case of the uniformly di.nerized trana—(CH) chain we obtain from
(3) the oonstant band gap A, & 0.7 eV. The electronic wave
functions in the presence of the klnk are gilven in /1'3/.

The electronic energy spectrum is essentially modifled. The
valence band electronioc astates have the same dispersion E a

Mzﬁ/"x? as in the uniform system but suffer phase shifts.
It is Mportant when we calcoulate the soliton creation energy. More-
over the discrete zero emergy band state appears kn the presence
of the kink,

The polaronic solution ias found 4o be
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where gt 'X‘Vf rx, , %> _is a polaron veloclity, X;D =
=K, (I- /99 % a.nd )'(,,zf 4, 00‘ « A polaron deformation gives
rise to the appearance of the two local levels symmetric with reaspect
to the gap oentre { F = 1‘&)‘, ) in the electronic spectrum. It 1s
conneoted with the symmetry of the Hamiltonian (1) under charge
conjugation. In the oase of the kink deformatlion the two eleotronio
states are degenerate in energy, and as a oonsequence, the unusual
charge~apin relation takes place: charged solitons are spinlesas and
neutral solitons oarry spin 1/2. In the trans-(CB) model the level
4J, 1s determined and has a value &,=d. /2.

Ye oaloulate now the electrlo charge of solitons. The total
-ohange in the local electronlio density in the presence of the kink
deformation 1s given by

J}’[F‘) =[/I, "ﬁg“ A//H i { okt f, (®

where W 1s a full band-width (W= 10 &), Y, #0,1,2 1s an
oooupation number of the discrete local at £ = 0. The asituation
with /], = 1 can be realized in the undoped trans—(CH), as a deriva-
tion in a pure bond alternated conformation and kink carry unpalred
spin 1/2., The oharge of the kink is zero because the oommon oharge
of the trans-(CH)_ chain 1s conserved. The oases /I, =0,2 take
place in the doped trans—(CH)_ . ¥e obtain an additional ocharge
®=2€ but a spin 1s oonpenaated.
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From (6) we have
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In the limit H/é) 4, the all above results are reproduced. However
it is followed from (7) that a small contribution to the charge of
the kink appears due to the fiuite value of W . Note that the
effact of the soliton motion is additionally reduced by the small
parameter £ = 4o/ <4,

Contrary to the kink case the polaron has an additional contribu—
tion to the wvalue of charge which is not reduced by the small para—
meter & . The polaronic deformation can arise in the trans—(CH)_
chain by doping, Polaron-like excitation has a usual spin~charge
relation: Q= Y€ and 8 = 1/2. The change in the local density has
the form
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where wWe propose that the level £= -4, is occupled as the va-
lence band states and //, 1is an occupation number of the level £=4),
For polaron we have /), = 1 . In the limit W2> A4, at = & we 0b=
tain from (8) an exaot result, that the polaronic charge (9 = €.

At Ffo the correction to the charge appears

Ay
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(8)

(9)

At &, >0  the value of SR >0 in accordance with the result
for the kink case. In trans—(CH) we obtain W, =do /Y2  and
IR =~ 0,17 ~Q/3 . It is a au;t’i’iciently small correction but very
important that the reduction by the asmall parameter £ 1is absent.
Using (6) and (8) we can caloulate the slectrical moment
Prn = € SE”Ip(¥ )0l of solutions. It 1s easily shown that 4§27
is an even funpgtion of ; for both deformations. Hence, all the
0odd electrical moments turn to be gero. In the limit & ¢« 7/ the
quadrupole moment of the kink is

Y= g [n-00p9 4 EE o)

Taking into account the value of & we obisin for (CH),
fé’ x 1.5 €a” , ,@t"’ 17 €4,%, where /’ and ﬁ‘t are the quadru-
pole moments of neutral and charged solitons, respectively.

The gquadrupole moment of polaron has the form
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and the main contribution gives }f,,_’ﬁ “‘-"33@40
The soliton creation energy is expressed in terms of the solu-
tions of (3) in the followlng way
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where =’4"( da/fk”k o The first term in {12) determines the
contribution from the electronic subsystem due to the phase shifts in
the electronic wave functions in the valence band. In the case of
polaron an additional correction from the discrete levels S = f&r)‘,
is appeared. The other two terms in (12) determine the lattice
contribution to the creation energy of solitons. If the soliton
motion the first two forms in (12) give the contribution the kinetic
energy of solitons and the soliton mass renormalization takes place.
The kink creation energy has the form

Vs
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At ﬁ =0 we obtain the well known result for the static kink 5(0«‘

ES = z"%—» 1/ . The second term in the brackets detemmines the
contribution from the kinetical term in (12) and we calculate the
kink mass Me:6M¢ , where Me 1s an electronic mass. The first
term determines the correction to the kink mass and we obtain

SMk = 2% /pay? = o.09My

By an analogous manner we obtain the polaronic creation
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where X = /(;VF/AO « In the tra.nau(cﬂ)x model we have 4y =
A Y = Ao V2 . At /B = O we obtain from (14) the result

Ep =212, /r 1n accordance with that for the statical polaron. The
polaronic mass 1s determined by the kinstical term in (12) and has
the value Mp=/3Me ( the latter term in (14)). The other temm
at }52 in (14) determines the correotion to the polaronic mass
which is very essential /Mp x 0.37/7;. Note that contrary to the
kink oase in (14) there is a contribution to the kinetlocal energy of
polaron due to the electron subsystem.

2
In conclusion we note that the use of the small parameter ﬂ%y@)

in (2) may be correct only at small politon densities. In the highly
doped 1;raus---(cl!)x the soliton width deoreases, and as a congeguence
we must take into aocount the droped terms in (2). It is important
in a study of the soliton lattice formation at high soliton densi-
ties. One should, however, keep in mind that the continuum approxima~
tion may not be applicable at high soliton densities. The quasistatilo
approximation for moving solitons 18 applicable because in the real
system the highest velocity of the soliton is governed by the lattice
and for the kinks its value 1s % £ Wuuwf << Uz . However, the
investigation of the real soliton dynamics in the model (1) is still
an open problem, The results may be relevant to the Gross -~ Neveu
model where the dynamical mass of solitons appears when the dynsmical
effects are taken into account.
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Munamudyeckne sddexTn B KOHTHHYANBHOR
MOLen® TPaHC-NONHAueTHIeHa

OGcyxpawTCR AHHaMudecKue CBORCTBA KoHTHHYAanbHOH Moge-
M TPaHC~NOMMALETHIEHAa. B paMkax CaMOCOrNacOBaHHOA CXeMbl
BAMHCIEHN $H3MUeCKHe XapaKTePHCTHKHM LBHEAYEHXCA COMMTOHOB
/xnux, nonspou/.

PaBora BumonHeHa B JlaGoparTopuu TeopeTHHECKOR GHIuKH
OWAN.,

TNpenputt OGvenmuenHOI0 RECTATYTS ARSPHLIX Hocnenosasnl. Ly Gus 1087

Fedyanin V,K., Osipov V.A. E17~87-47
Dynamical Effects in the Continuum
Trans~Polyacetylene Model

The dynamical properties of the continuum trans-poly-
acetylene model are discussed., In the self-consistent
scheme the physical characteristics of the moving soli-
tons (kink, polaron) are calculated.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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