

объединениый институт пдериых исслвдований
 дубиа

E17-87-46

> E.I.Aliskenderov, K.A.Rustamov, A.S.Shumovsky, Tran Quang

ON THE JAYNES - CUMMINGS MODEL WITH MULTI-PHOTON TRANSITIONS IN A CAVITY

Submitted to "Journal of Physics A"

The Jaynes - Cummings model $/ 1-4 /$ of a twonlevel atom interacting with the electromagnetio field in a lossless cavity is one of the few exactly soluble models in quantum optics. It enables one to caloulate all the quantum-mechanical properties of a system. It predicts many interacting effects such as vacuum field Rabi oscillations, in the presence of a coherent field $/ 2-6 /$. eto. It is now becoming possible to test experimentally many of the prediotions of this model $/ 4,7 /$. In recent pepers, Agarwal and Puri 78,97 , Barnett and Knight $/ 10{ }^{\circ}$ and Filipowioz et al. $/ 11 /$ have studied the effects of dissipation in the Jaynes - Cummings nodel and their influence on revivals and other quantum features; in partioular, the absorption and emission spectra have been calculated. Single-mode m-photon absorption and m-photon emission processes in a two-level atomio system have been considered by zubairy and Yeh /12/ . Other multi-photon processes in a lossless cavity have recently been extensively investigated in a number of papers /3,13-17/

In this paper we oonsidered the Jaynes - Cummings model with multi-photon transitions in the presenoe of cavity-relaxation effects. In order to solve the problem we follow the prgcedure presented by Agarwal and Puri $/ 8 /$ and Shumovsiky et al.

Solution for density-matrix elements
The Jaynes - Cummings model with multi-photon transitions desoribes the interaction of a single-model eleotromagnetic field with a two-level atom via m-photon processes. The Hamiltonian for this model in the FWA and electric dipole approximetion is

$$
\begin{equation*}
H=\hbar w_{0} S^{z}+\hbar w a^{+} a+\hbar g\left(a^{+m} S^{-}+a^{m} S^{+}\right), \tag{1}
\end{equation*}
$$

where $S^{ \pm, z}$ are the spin-1/2 operators, $a\left(a^{+}\right)$is the anninilation (oreation) operator of the radiation field. The parameter g is the constant of atom-mode coupling. Here W_{4} is the transition frequenoy of the atom and W is the model frequency, and they obey the condition :

$$
\begin{equation*}
\omega_{0}-m \omega=\Delta \tag{2}
\end{equation*}
$$

where Δ is the detuning parameter.

Further, we shall assume that a field can deoay at the rate $2 K$. The density matrix for the combined atamifield system by the standard master-equation techniques is $/ 8,10 /$

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}=-i[H, \rho]-k\left(a^{+} a \rho-2 a \rho a^{+}+\rho a^{+} a\right) \equiv L \rho \tag{3}
\end{equation*}
$$

The Barilitonian H causes transitions between the states $\langle n, e\rangle$ and $\langle n+m, g\rangle$. Field and atom oooupation numbers change at the same time. The relaxation in the oarity ohanges only the photon number. For example, if the initial state of the system $1 s|h, g\rangle$, then the system aan be found in any of the states

$$
\begin{aligned}
& |p, q\rangle ; \quad p=0,1, \ldots, n ; \\
& |q, e\rangle, \quad q=0,1, \ldots, n-m
\end{aligned}
$$

For the initial state $/ 0, e\rangle$, the states to be considered are $|m, g\rangle,|m-1, g\rangle, \cdots,|t, g\rangle,|0, g\rangle$. The density-matrix eleanents now satisfy
$\langle 0, g| \rho|0, e\rangle=i(m \omega+\Delta)\langle 0, g\langle\rho \mid 0, e\rangle+i g \sqrt{m}\langle\langle 0, g / \rho / m, g\rangle$,
$\langle 0, g| \rho|m, g\rangle=(i m \omega-k m)\langle 0, g / \rho \mid m, g\rangle+i g \sqrt{m!}\langle 0, g / \rho \mid 0, e\rangle$.

The results following from (4) and (5) are $\langle 0, g| \rho|0, e\rangle=\frac{1}{z_{1}-z_{2}}\left\{\left[\left(z_{1}-i m \omega+k m\right)\langle 0, g / \rho(0) / 0, e\rangle+\right.\right.$
$+i g \sqrt{m!}\langle 0, g| \rho(0)|m, g\rangle] e^{z_{1} t}-\left[\left(z_{2}-i m \omega+k m\right)\langle 0, g| \rho(0)|0, e\rangle+\right.$
$\left.+i g \sqrt{m!}\{0, g / \rho(0) / m, g\rangle] e^{z_{2} t}\right\}$,
$\langle 0, g| \rho|m, g\rangle=\frac{1}{z_{1}-z_{2}}\left\{\left[\left(z_{1}-i m \omega-i \Delta\right)\langle 0, g / \rho(0) / m, g\rangle+\right.\right.$
$+i g \sqrt{m!}\langle 0, g / \rho(0) / 0, e\rangle] e^{z_{1} t}-\left[\left(z_{z}-i m \omega-i \Delta\right)\langle 0, g / \rho(0) / m . g\rangle+\right.$
$\left.+i g \sqrt{m!}\{0, g / \rho(0)|0, e\rangle] e^{z_{2} t}\right\}$.
${\underset{X}{1,2}}=i\left(m \omega+\frac{\Delta}{2}\right)-\frac{k m}{2} \pm \frac{1}{2}\left[(k m+i \Delta)^{2}-4 g^{x} m!\right]^{\frac{1}{2}}$.

Using these solutions we oan oaloulate an absorption speotrum for the model, assuming additionally that our model interacts with a weak-probe pield. Then, the master-equation (3) will be

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}=L \rho-i\left[\left(G S^{+} e^{-i \nu t}+H . c\right), \rho\right] \tag{9}
\end{equation*}
$$

where the coupling constant G is

$$
\begin{equation*}
G=-\frac{\vec{d} \vec{\varepsilon}}{\frac{1}{h}} \tag{10}
\end{equation*}
$$

The time-average rate of absorption W is

$$
\begin{align*}
& W=\frac{d}{d t}\langle P\rangle \vec{\varepsilon}=i v(\vec{d} \vec{\varepsilon})\left\langle s^{+}\right\rangle e^{-i \nu t}+c c= \tag{11}\\
& =-2 v /\left.\frac{\vec{d} \dot{\varepsilon}}{\hbar}\right|^{2} \operatorname{Re} \int_{0}^{\infty} d \tau e^{-i \gamma \tau} \bar{T}\left(s^{+} e^{i \tau}\left[s^{-}, \rho^{(\theta)}\right]\right)
\end{align*}
$$

where $\left\langle S^{+}\right\rangle$oan be calculated in the usual manner by evaluating the induced dipole moment to the first order in G.

In the oase, when our cavity is at zero temperature, the initial density matrix $\rho(\sigma)$ is

$$
\begin{equation*}
\rho^{(0)}=|0, g\rangle\langle 0, g\rangle \tag{12}
\end{equation*}
$$

and henoe

$$
\begin{equation*}
\left.W=2 \dot{v}\left|\frac{\overrightarrow{d \vec{\varepsilon}}}{\hbar}\right|^{2} \operatorname{Re} \int_{0}^{\infty} d \tau e^{-i v \tau} \operatorname{Tr}\left[s^{+} e^{L \tau}(10,0\rangle\langle 0, e|\right)\right] \tag{13}
\end{equation*}
$$

The operator $\left.e^{L T} / 0, g\right\rangle\langle 0, e /$ satisfies (4) and henoe

$$
\begin{equation*}
e^{L \tau}|0, g\rangle\langle 0, e|=\alpha(\tau)\langle 0, g\rangle\langle 0, e\rangle+\beta(\tau)|0, g\rangle\langle m, g\rangle \tag{14}
\end{equation*}
$$

where

$$
\begin{align*}
& \alpha(\tau)=\frac{z_{1}-i m \omega+k m}{z_{1}-z_{2}} e^{z_{i} \tau}-\frac{z_{2}-i m \omega+k m}{z_{1}-z_{2}} e^{z_{2} \tau} \tag{15}\\
& \beta(\tau)=\frac{i q \sqrt{m!}}{z_{1}-z_{2}} e^{z_{1} \tau}-\frac{i g \sqrt{m!}}{z_{1}-z_{2}} e^{z_{2} \tau} \tag{16}
\end{align*}
$$

Substituting (14) in (13) and simplifying (13) we get

$$
\begin{equation*}
W=2 v / \frac{\vec{d} \vec{\varepsilon}}{z} /^{2} \operatorname{Re} \hat{\alpha}(i v) \tag{17}
\end{equation*}
$$

where

$$
\hat{\alpha}(i \nu)=\int_{0}^{\infty} e^{-i \nu \tau} \alpha(\tau) d \tau
$$

We will consider the oase of exact resonance when $\Delta=\omega_{0}-m \omega=0$ and

$$
\begin{equation*}
\mathcal{z}_{1,2}=i \omega_{0}-\frac{1}{2} k m \pm \frac{1}{2}\left(k^{2} m^{2}-4 g^{2} m!\right)^{\frac{4}{2}} \tag{18}
\end{equation*}
$$

Here, we can consider the following cases:

1) $K^{2} m^{2}-4 g^{2} m!>0$.

In this case, from (15), (17) and (18) we get

$$
\begin{aligned}
W & =2 V / \frac{d \vec{\varepsilon}}{\hbar} /^{2} \frac{g^{2} m!}{\sqrt{k^{2} m^{2}-4 g^{2} m!}}
\end{aligned} \frac{1}{\left(\nu-\omega_{0}\right)^{2}+\frac{1}{4}\left(\pi m-\sqrt{k^{2} m^{2}-4 g^{2} m!}\right)^{2}}-(19) .
$$

In the oase of badmcavity $\quad k^{2} m^{2}>4 g^{2} m!\quad \mathrm{B}_{\mathrm{q}}$. (B) beoomes approximately equal to

$$
\begin{equation*}
i \omega_{0}-k m+O\left(\frac{g^{2} m i}{k^{2} m^{2}}\right) \quad ; \quad i \omega_{0}-O\left(\frac{\theta^{2} m}{k^{2} m^{2}}\right) \tag{20}
\end{equation*}
$$

and the speotra have only a single peak in the position $V=\omega_{0}$ 2) $K^{2} m^{2}-4 g^{4} m!<0$.

In this case by substituting Eqs. (15) and (18) into E_{q}. (17), we obtain
$W=2 v\left|\frac{\vec{d} \vec{\varepsilon}}{\hbar}\right|^{2} \frac{\frac{1}{2} k m}{\sqrt{4 g^{2} m!-k^{2} m^{2}}}\left\{\frac{\gamma-\omega_{0}+\sqrt{4 g^{2} m!-k^{2} m^{2}}}{\left(\nu-\omega_{0}+\frac{1}{2} \sqrt{4 g^{2} m!-k^{2} m^{2}}\right)^{2}+\frac{1}{4} k m^{2}}\right.$
$\left.-\frac{\nu-\omega_{0}-\sqrt{4 g^{2} m!-k^{2} m^{2}}}{\left(\gamma-\omega_{0}-\frac{1}{2} \sqrt{4 g^{2} m!-k^{2} m^{2}}\right)^{2}+\frac{1}{4} k^{2} m^{2}}\right\}$.

For the good cavity case $k^{2} m^{2} \ll 4 g^{2} m$!
E_{q}. (21) shows that the spectrum is a doublet $V=\omega_{0} \pm g \sqrt{m!}$ the width of eaoh doublet being $k \mathrm{~m} / 2$. It should be noted that in the case of multi-photon absorption the withs of lines are proportional to m.

Emission spectra for multi-photon processes

Following Agarwal and Puri $/ 8 /$, we define the transient speotrum of the radiation that leaks out as

$$
\begin{align*}
& S(\gamma, T)=2 \Gamma \beta R e \sum_{y} A_{i j}(2 \Gamma+\eta)^{-2}\left[\left(\Gamma+\eta+i \nu-\lambda_{i}\right)^{-1} x\right. \tag{22}\\
& \left.x\left(e^{\eta \cdot T}-e^{-T\left(\Gamma-\lambda_{i}+i \nu\right)}\right)-\left(\Gamma+\lambda_{i} \cdot i \nu\right)^{-1}\left(e^{-\left(\Gamma+i \nu-\lambda_{i}\right) T}-e^{-2 \Gamma T}\right)\right]
\end{align*}
$$

Where we assume that the correlation function has the structure

$$
\begin{equation*}
\left\langle a^{+}(t+\tau) a(t)\right\rangle=\sum_{i j} A_{i} e^{\lambda_{i} \tau+\eta \cdot t} \tag{23}
\end{equation*}
$$

Γ is the bandwidth of the detector, T is the time at whioh the spectrum is evaluated, and β is a measure of the leakage of the field energy.

Using regression theorem, one can show that

$$
\begin{equation*}
\left\langle a^{+}(t+\tau) a(t)\right\rangle=\operatorname{Tr}\left[a^{+} e^{L \tau} a e^{L t} \rho(0)\right] \tag{24}
\end{equation*}
$$

where the initial density matrix $\rho(0)$ is $|0, e\rangle\langle o, e|$. This initial state is ohosen keeping in view the problem of pure spontaneous emission.

Using (3) we define equations of motion for the operator $e^{L t}|0, e\rangle\langle o, e| \equiv(|0, e\rangle\langle 0, e|)_{t}$
$\frac{d}{d t}(|0, e\rangle\langle 0, e|)_{t}=-i g \sqrt{m!}(|m, g\rangle\langle 0, e|)_{t}+i g \sqrt{m!}(|0, e\rangle\langle m, g|)_{t},(25)$
Resulting is a closed set of equations

Resulting is a closed set of equations

$$
\left[\begin{array}{lccc}
d \tag{26}\\
d t & d \\
i g \sqrt{m!} & (k m-i \Delta) & 0 & -i g \sqrt{m!} \\
-i g \sqrt{m!} & 0 & (k m+i \Delta) & i o \sqrt{m!} \\
-i g \sqrt{m!} & 0 \\
0 & -i g \sqrt{m!} & i g \sqrt{m!} & 2 k m
\end{array}\right]\left[\begin{array}{lcc}
0 & 0, e\rangle\langle 0, e| \\
|m, g\rangle\langle 0, e| \\
|0, e\rangle\langle m, g| \\
|m, g\rangle\langle m, g|
\end{array}\right]=0
$$

These equations are solved by the Laplace transforms, the results of which are given by the matrix relation

$$
\hat{\psi}(z)=P(z)\left|\begin{array}{lcccc}
z_{0}\left(z_{0}^{2}-k^{2} m^{2}+4 g^{2} m!\right) & i \Delta\left(z_{0}^{2}-k^{2} m^{2}\right) & 2 \Delta k m g \sqrt{m!} & 2 \Delta z g \sqrt{m!} \\
i \Delta\left(z_{0}^{2}-k^{2} m^{2}\right) & z_{0}\left(z_{0}^{2}-k^{2} m^{2}\right) & 2 i z_{0} k m g \sqrt{m!} & -2 i z g \sqrt{m!} \\
2 \Delta k m g \sqrt{m!} & -2 i z_{0} k m g \sqrt{m!} & z_{0}\left(z_{0}^{2}+\Delta^{2}+4 g^{2} m!\right) & k m\left(z_{0}^{2}+\Delta^{2}\right) \\
2 \Delta z_{g} g \sqrt{m!} & -2 i z_{0}^{2} g \sqrt{m!} & k m\left(z_{0}^{2}+\Delta^{2}\right) & z_{0}\left(z_{0}^{2}+\Delta^{2}\right)
\end{array}\right| \psi(0)
$$

$$
z_{0}=z+m k ; \quad \psi_{\frac{1}{2}}=\langle m, g| \rho|0, e\rangle \pm\langle 0, e| \rho|m, g\rangle
$$

$$
\psi_{4}=\langle 0, e| \rho|0, e\rangle \pm\langle m, g| \rho|m, g\rangle
$$

where the polynomial $P(z)$ is

$$
\begin{equation*}
P(z)=(z+m k)^{4}+(z+m k)^{2}\left(\Delta^{2}+4 g^{2} m!-k^{2} m^{2}\right)-k^{2} m^{2} \Delta^{2} \tag{28}
\end{equation*}
$$

If we denote by M the 4×4 square matrix in (26), then it can be shown that

$$
\begin{align*}
& e^{L \tau} a e^{L t} \rho(0)=\left(e^{-M t}\right)_{12} e^{L \tau} \sqrt{m}|m-1, g\rangle\langle 0, e|+ \\
& +\left(e^{-M t}\right)_{14} e^{L \tau} \sqrt{m}|m-1 . g\rangle\langle m, g| \tag{29}
\end{align*}
$$

We can further show that for the operators
and

$$
e^{L \varepsilon}|m-1, g\rangle\langle m, g|=(|m-1, g\rangle\langle m, g|)_{\tau}
$$

we have

$$
\left[\frac{d}{d \tau}+\left[\begin{array}{lc}
-i(\omega+\Delta)+(m-1) k & -i g \sqrt{m!} \tag{30}\\
-i g \sqrt{m!} & (2 m-1) k-i \omega
\end{array}\right]\left[\begin{array}{c}
|m-1, g\rangle\langle 0, e| \\
|m-1, g\rangle\langle m, g|
\end{array}\right]=0\right.
$$

The following results are obtained from (30):

$$
\begin{align*}
& (|m-1, g\rangle\langle 0, e|)_{\tau}=\frac{1}{x_{1}-x_{2}}\left\{\left[\left(x_{1}-i \omega+(2 m-1) k\right)|m-1, g\rangle\langle 0, e|+\right.\right. \\
& +i g \sqrt{m!}|m-1, g\rangle\langle m, g|] e^{x_{1} \tau}-\left[\left(x_{2}-i \omega+(2 m-1) k\right)|m-1, g\rangle\langle 0, e|+\right. \\
& \left.+i g \sqrt{m!}|m-1, g\rangle\langle m, g|] e^{x_{2} \tau}\right\}, \tag{31}\\
& (|m-1\rangle\langle m, g|)_{\tau}=\frac{1}{x_{1}-x_{2}}\left\{\left[\left(x_{1}-i(\omega+\Delta)+(m-1) k\right)|m-1, g\rangle\langle m, g|+\right.\right. \\
& +i g \sqrt{m!}|m-1, g\rangle\langle 0, e|] e^{x_{1} \tau}-\left[\left(x_{2}-i(\omega+\Delta)+(m-1) / r\right)|m-1, g\rangle\langle m, g|+\right. \tag{32}\\
& \left.+i g \sqrt{m!}|m-1, g\rangle\langle 0, e|] e^{x_{2} \tau}\right\} ; \\
& x_{1,2}=i\left(\omega+\frac{\Delta}{2}\right)+K\left(1-\frac{3 m}{2}\right) \pm \frac{1}{2}\left[(k m+i \Delta)^{2}-4 g^{2} m!\right] \frac{6}{2} \tag{33}
\end{align*}
$$

Let us denote the 2×2 square matrix in (30) by N. Then, using the solution of (30) in (29), one can show that

$$
\begin{equation*}
\left\langle a^{+}(t+\tau) \alpha(t)\right\rangle=m\left(e^{-M t}\right)_{12}\left(e^{-N \tau}\right)_{12}+m\left(e^{-M t}\right)_{14}\left(e^{-N \tau}\right)_{22} \tag{34}
\end{equation*}
$$

The relevant elements of $e^{-N \tau}$ are given by (31) and (32)

$$
\begin{align*}
& \left(e^{-N \tau}\right)_{12}=\frac{i g \sqrt{m!}}{x_{1}-x_{2}}\left(e^{x_{1} \tau}-e^{x_{2} \tau}\right) \tag{35}\\
& \left(e^{-N \tau}\right)_{22}=\frac{L}{x_{1}-x_{2}}\left[\left(x_{1}-i(\omega+\Delta)+(m-1) k\right) e^{x_{1} \tau}-\left(x_{2}-i(\omega+\Delta)+(m-i) k\right) e^{x_{2} \tau}\right]
\end{align*}
$$

Complete spectrum of spontaneous emission can now be obtained using (34) and (23) in (22). In the long-time limit $\Gamma 7>1$ the spontaneous emission spectra consist of several lines whose positions and widths are determined by $I_{m}\left(\lambda_{i}-\eta_{i}\right), \Gamma+\operatorname{Re}\left(\eta_{j}-\lambda_{i}\right)$.

For the case of a good cavity on resonance, Eq. (33) shows that the emission spectrum has a form of doublet the lines of which are positioned at $\gamma=\omega^{\prime} \pm \sqrt{m!} \quad$ and have the width $\Gamma+k\left(\frac{3 m}{2}-1\right)$. O_{n} the other hand, for large Δ spontaneousemission lines oocur at the positions $\omega+\Delta, \omega$ and their widths are $\Gamma+K(m-1)$ and $\Gamma+k(2 m-1)$, respectively.

It should be noted in the case $m=1$ our results reduce to those obtained by Agarwal and Puri /8/.

The authors are grateful to M. Kozierowsiki for useful discussions

References

1. Jaynes E.T. and Cummings F.W. 1963 Proc. IREE, 51, 89.
2. Yao H. I. and Eberly J.H. 1985, Phys.Rept. 118, 1-239.
3. Singh S. 1982, Phys. Rev. A25, 3206.
4. Eberly J. H. , Narazhay N. B. and Sanchez-Mondragon J.J. 1981, Phys.Rev. A23, 236.
5. Bogoluboy N. N., Jr., Fam Le Kien and Shumovsky A.S., 1986, J. Physique, 47, 427.
6. Bogolubov N. N. jr., Fam Le Kien and Shumovsky A.S., 1986, J. Phys. A: Math. Gen. 19, 191.
7. Meschede D., Waltler H. and Muller G., 1985, Fhys.Rev. Lett., 54, 551.
8. Agarwal G.S. and Puri R.R., 1986, Phys. Kev. A33, 1757.
9. Agarval G.S. and Puri R.R., 1986, Phys.Rev. A33, 3610.
10. Barnett S.M. and Knight P. I., 1986, Phys.Rev. A33, 2444.
11. Filipowioz P., Javanainen J. and Meystre P., 1986, Phys.Rev. A34, 3077.
12. Zubairy M.S. and Leh J.J., 1980, Phys. Rev. A21, 1624.
13. Marrajannis C., 1985, J. Chem. Phys., 82, 3563.
14. Allen L. and Stroud C. F.Jr., 1982, Phys. Rept. 91, 1-29.
15. Bberly J. H. and Krasinski J. 1984, in MAv. in Multiphoton Procesees and Spectroscopy", ed. by Lin S.H. (World Scientific Publ. Co.).
16. Shumorsky A.S., Aliskenderov B.I. and Pam Le Kien, 1985, J. Phys. A: Math. Gen. 18, L 1031.
17. Shumorsky A. S., Aliskenderov E. I. and Fam Le Kien, 1986, Preprint JINR, Dubna, B17-86-455.

Алискендеров Э.И. и др.
E17-87-46
Модель Джейнса - Каммингса с многофотонными
переходами в резонаторе
Исследована модель Джейнса - Каммингса с многофотонными переходами в резонаторе. Найдено точное репение уравнения типа Master Equation. Изучены спектры поглощения и излучения.

Рабо'а выполнена в Лаборатории теоретической физики ОНяи.

Препринт Объединенного института ядерных исследований. Дубна 1987

Aliskenderov E.I. et al.
On the Jaynes - Cummings Model with
Multi-Photon Transitions in a Cavity
Jaynes - Cummings model with multi-photon transitions in a cavity is examined. Exact solution of master equation for the density-matrix is found. Absorption and emission spectra are investigated.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

