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The theory of heterophase fluctuations developed by the author
E—B:] is essentiglly based on the notion of an effective Hamiltonian,
The latter appears after a summation over hetercphase fluctuations
[-2-'5 in the partition function like & renormalized Hamiltonian appe-~
ars after susming a part of varisbles in the renormalization group
method [5,6] . The system with hgterophase fluctuations is generally
nonequilibrium, it is quasi~equilibrium. Ita most logical description
presupposes the use of the quasi~equilibrium Gibbs ensemble whose
statistical operator contains a quasi-Hamiltonian in place of a
Hamiltonian, In paper [7] a heterophase ensemble coneisting of a set
of quasi-equilibrium ensembles with various phase configurations has
been congtructed, and it has been shown how to calculate the corres-
ponding thermodynamic potential. However, sclely one question is
yot undetermined - how to define in a correct way mathematical expec-
tations for the operatoras of observables when averaging over this
heterophase quasi-equllibrium ensemble. An answer to this question is
given in the present paper. The succession of actions is formulated
in the abstract.

Consider the system of particles on the lLebesgue measurable
manifold W:{x}mV: S\de =\ } + A Hilbert space a‘f
of microsapic states is given on the manifold Y . The algebra
of local observables g2 (A) :[R (A)} (;\ <V ) is defined in
the epace % ; this algebra being composed by operstors of the
form

A A
whers AL {...) is an operator distribution and AOE const - 1.
Constructing an ordered manifold{/\‘; fi=1a,.. of bounded

open Tegions Ai < Ain and an isotonic sequence of algebras
HA(A) < A(Aa)c , in which /\’C/\acm,one
obtains a net of algebras {J?(AL)} . For & net of algebras
an inductive limit can be defined [B] , called a quasi-local algebra.
Suppose the considered system consists of several thermodynamic
Phases,enumerated by the index «=7,2,... 8 . The separation
of phases in the real space is charscterized by a family of submani-
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folds {Wﬂ(} forming a covering of the manifold A\ .

1 3
UKV, 2 V=V (V=mV,),
=1 =1
(1)
In its turn, in the epace ?:f of microscopic states one is able

[7,9] to separate subspaces Fo o X («=12,.. %) , such that a
conditional probability meaagure corresponding to the thermodynamic

phase ol is concentrated on the subspace F. . Rach of spaces

F. 18 a set of vectors that are typical [10] for the phase « .
The representation 7, [ A (AN ] of the algebra of local obser-
vables for the regions Ay, < VYu ie defined on the space z‘ .

Writing down the representations of the operators from this algebra
one can define the operator distributions AL (+vs) by the equality
. o

%[H (A,()] = Z I HL& (11’253)“‘ xk)dx,dx,..‘dxl(-
kA, 2)

To divide the manifold W into a set of submanifolds {Vd },
one may uae the Gibbs method of separating surfaces [11] in nie theo-
ry of heterogeneous systems. Mathematically, it is-convenient [3,4.7]
to produce such a division by fixing a set of characteristic functions
of submanifolds,

LxeYy, ,
g{m):
* D,X¢W°‘.

Then, invoking the identity

(3

g H“(I:,“' x&)dx, ,“o/xkEJ‘ H‘M(x, e acugo(')dz,,,, (,I;xk ,

ot
the representation of the quasi-~local algebra, Jr, [,;Q. (\Vd)] > can
be extended to the representation of a quasi-local algebra,

7’;[“9@ (WJ E,L)] = J@d(%‘) with the operator distributions

Hko((x’axu”' ¥ o goc) = H/Lv‘. (x,)xaa..,lk)” S«L (?)
J‘:f
4s is clear, the function gd (%) plays the role of an additi-
onal functional variable. In order to define 8 representation of the

2

quasi-local algebra o4 (V) , that could be called a global al-

gebra as distinct from the quasi-local algebras, consider %‘ .
Suppose that there exists & topological space F , on which

a mapping map, : F — ¥, is given. The three ( F, map, , F )

is called the fiber space, F ig the total space, ¥, is
the fiber base [12] . The procedure of obtaining ¥, from ¥
by means of map is called fibering, and the inverse process

of reconstructing ? out of ?.; is a fiber section. When the
total spaces of different fiberings are homeomorphic and their baases
are the same, then such fiberings are equivalent, For our purpose
any of equivalent fiberings may be used., It is convenient to choose
the so-called standard fibering with the total space as a tensor
product § ﬁ; . This total space under a fixed set of mappings
fib ace
F 3; (o= 1,2,.8) should be called the standard fiber sp

F=0 3 (mop, : F—=%). )

Fiber bases correeponding to different thermodynamic phases are not

necessarily mutually orthogonal, although in wmany casee it is so [9].
Thus, the global salgebra ¢? (W) is to be interpreted as a

direct sum of quasi-local algebras % ({; £,) » and ite represen-

tation ’7/'[ b ] (W)]‘:‘:— ,}?(g), where
= (x) |d=13,.8;x&V¥
E {Ed. l } o (5)

has to be defined on the standard fiber space (4) in the form

A= @ £ (&) =[AE].

(6)
The representations of operators have the structure
AE) =@ A (8) .
i )
= A (x,x ’...1)]—] E (;x.)ofx' .
AR >L: j b TR T

14

The many of all possible collections of g form the topolo-
gical mpace {g} , on which a functional measure of E can be
given [:'f] . The statistical operator of a quasi-equilibrium hetero-
phase ensemble 18 presentable as

bt - e_m;)/.g je“”g)o@g ) ®)
3



where r(%) is 8 quasi-Hsmiltonian of the system, Mathema-
tical expectations snswering observable quantities are defined by
the formula

<h> =T [peram x|
¥ (9)

Functional integrale in eqs. (8) and (9) describe the aversging
over phasse configurations,

Introducing the functional measure 095 one is amble to
note that the averaging over phase configurations contains two
kinds of actions, The first one desls with all possbile configura-
tions under a fixed set p ":‘{'p“ Jot= f,s,...g} of geometrical probabilities

-.v; ( 8
== 0P &1, Z}):j)‘
L vV -t
(10)
The second action is the variation of each R{ from gzero to

unity teking account of their normelization. In correspondence to
these actions

4
]

(i)gzcz) 0{ d 35(<ZP¢*1)”(1F¢'

P‘E P » P <= =1 (11)
The functional differential 9pE i defined in the following
manner. One dividee each of submanifolds Wd by meane of subcove-~
rings {Vaii so that

"

13 g
UWsv, Y VoV (3 nen mmety,)
it i=t ol=e
The characteristic function (3) is presentable as the sum
n N
Z‘f £ 1, x €V,
E,,L(x) = (57 ay) g'u(:r—adi) =

ey o, x ¢V, ,
in which a, € in o Implying the limiting trensition

D=0 n,— oo /.20 =const
& Vi ol E

(12)
one can write the asymptotic expression
3 N, 0[
.
DE=[T T = (poo). (13)
P o=t L=t v

4
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Finally, the averaging of a functional F(E) over phase configu-
rations under s fixed set of geometric probabilities (10) is defined
as the functional integral

[FBYBE =bm [F(B) f df, ,

ot Y

N O oL=1 =1
(14)
in which the limit means eq.(12).
Theorem 1, If the functional F(&) ig a polynomial in
characteristic functions {3), then
(15)
where F(P) follows from F( E) ae a result of the rep-

lacement £ (x)— Pu .
L3
Proof with all details has been given in ref, [’?] "

Corpllary. The theorem cen be spread to arbitrary functionals
presentable as series in powers of characteristic functions of sub-
manifolds if to implicate, as it is usually supposed in physical
problems, that summation and integration can be interchanged., Then
formula (9) for a mathematical expectation leads to

1
<AYy=T [#mAmdp,
F o

(16)
where the differential OIP is defined in eq.(11), and
"
- (p)
-rip)
fp)=e P/T; je dp . an
F o
Theorem 2, Let the function
- Tip)
X(P) = -1 h e
» ¥
(18)
inwhich N =N (V) is a number such that
v +
,”,_,ooj\f—)oo , /V/ -2 ceng (19)



has an absolute minimum

(w) =afs men g(p) (w=lw Jx=12,.. 3},
§ P 4 { ‘} 2 (20)
Then

1
fm L [ {pAwm dp— pw A (W)] =
paoo ¥ °

(21)
where the limit 1o understood in the sense of eq. (19), and

“T(W (W)
s e /T e
¥

Proof. Introducing the notation

.

(22)

— -r(p — =P
Alp=Fk e /‘)(Pb/hé’
=2 F
and using eq, (18), one can write down
7
~Nyp)
TsnAm=e TP ay [ [e dp .
F 0
Applying the lLaplace method as N> oo , we find

.- _ SARr RNL
!9 ”g(mﬁ(p)dpﬁ i g ﬂ (/5(;”) ’

where gq{“ = 9?(\'/)/9\#: (¥>%) . Therefore,

:g offcp)mp)o‘p =~ Alw) .

Remembering the notation for /;{p) and definition (22), we
obtain (21).

Corollary, The mathematical expectation (16) becoumes

<A =T piwy A(w) (V- o)
F (23)

The representation of operators (7) of observables on the fiber
space {4) takes the structure

A (w) =§ /q.,_ (wWe) 3

A (w) =2 w: j‘ A, (Eoxa,en X)) dxgdxy dx

. v (24)
The set w = {w,—} defines the probabilitiea of thermodynamic
phagses and is to be found from the minimization of the thermodynamic
potential

_ - {w)
é{(w) = - ;:'; bk €
F
S (25)
under the normalization condition Z W, = following from
eq. (10}, o=t

To concretize the approach developed above, consider a system
with the Hamiltonian in the Heisenberg representation

H(A) = S H,('x)dr +J\ H;{z)x')dﬁ‘. dx»’,
A

2 .
Hy(x) = Efl+(a)[—%;‘— + U('X)] ¥,

{26)
H, ox) = $9Te0pte) Plua)yeipe |

Operator distributions H, (x) and My, (%,x') can be
defined by rule (2) when introducing the representation of operator
{26) on the space ?; . Representations of the algebras of fisld
operators could be constructed in a perfect analogy with the construc-~
tion of the representations of the algebre of local observables. For
the field operator y(f):j froydx , inwhich feo s
any square-integrable function, one sets the representation 7| Y($i]
on the space ?; « In its turn, thie representation defines

the operator distribution i‘u’[ (x) with the help of relations

E_[{y(ﬁ] :j‘ jf('x)ly&(ac)dx = f f(x) l&("x) EO‘ ™ dx. 1)
A} Vv

o



The representation of the operator H (V) on the fiber
space (4) according to (7), has the form

H(E)= @ H (8,

H, (5)= [ H,, @E, o « [ Hy g 0 chdlx.
o " o by (28)

The partition of the manifold ¥  into submanifolda VY .
occupied by different thermpdynamic phases by no means presupposes
the uniformity of these phases., These phases as a whole are already
nonuniform if only due to the existence of interphase transition
layers, The Gibbs dividing aurface[}i] presents a conditional geo-
metric boundary placed somewhere inside a transition layer. The
measured thermodynsmic quantities can be defined so that they do
not depend on a position of the dividing surface. Imposing some
additional limitations, e.g. the equimolecularity conditioni}1] 5
one may fix the dividing surface in a macroscopically unigue manner,
In our case an ambiguity of chooming separting surfaces is not at
all important as far as we average over all their possible positions.

A nonuniform system consisting of several thermodynamic phases
is quasi~equilibrium {j] . Consequently, in the same fashion as for
any locally equilibrium system [15] , the local quantities must have
a meaning, such as the local energy density

eoL(x;Ed)-::I;_z, PEYH, (%5 E), (29)

H& (%58 = Hp () g‘(«.} + _{ Hyy (x,x'y g_‘ (x) gﬂ(x‘) ax'
v

and the 1oca1 number-of-particle dennity
n (x; &) -'E HEIYN (58,

(30)
(GE Y= NM(x)E (), N = 'f’+c9=) {(x).
F ga. o « 3 ”

The statistical operator is given by formula (8) from which the
normalization is evident

T (1 e=1.
¥ (1)

Expreseion (8) contains & yet unknown quasi-Hamiltonian [ (E) .

An explicit form of the quasi-Hamiltonian can be found by
demanding that the entropy

-- ¥ [2&) b pier 9

: (32)
be maximal with respect to variations of f(£) under conditions
(29)-(31). This yields

F(g)?—@ r (&), '
[ (&) -fﬁc« £ )[H CHREYALH: AR L

(33)
where the ;nverse temperature //3“ (=, iut) and the chemical po~
tentiall/qx(av gd) play the role of the Lagrange multipliers,
ensuring the nonuniformity of a system corresponding to a given
choice of separating surfaces,

After averaging over phase configurations the renoruwalized
quasi~Hamiltonian [M(w) entering into the statistical operator
(22) apsumes the form

P(W)"@ P (wg)
P (W) ""»Ljﬁ ("’[Hu“) /1‘;(1)/\{((1)] dx +

j (x) H x') dxde? »
/5 (34)

in which the ren&rmalized quantities

/3" (x) = 4/«}‘ *®, 0> )/4&(1) =</la(x,§‘)>
(35)

figure as functions defining the taken heterophase ensemble,

Each of renormalized quasi~Hamiltonians [; (W) corresponds not

to a sole part of a real system, occupied by the phase , , but

to an abstract system representing an averaged infinite meny of
spatially nonuniform subsystems taking arbitrary shapes and sizes,

and having the properties of the thermodynamic phase o + Such an
averaged abstract many can be called the phase replica [?] . Emphasize
that the renormalized quesi-Hapiltonian (34) retsins en information
about the presence of transition layers and a corresponding surface
energy (7] .



Let there be no external fields acting on the considered sys-
tem so that a stationary separation of phases could occur. That is
the appearance of nuclei of different competing phases is a purely
fluctuational process. The quasi-equilibrium system with such hete-
rophase fluctuations serves as an example of self-optimizing systems
[}4] . When all phases and all parts of the system are in equal exter-
nal conditions, then the average quantities (35) characterizing these
conditions have to be constant:

ST pu T (36)

Equalities (36) showing that in the system there is a heterophase
equilibrium on the average can be called the equilibrium condition
for phase replicas [7] . Eqa. (36) being true, the renormalized
Hamiltonian (34) becomes

rw=pH, H=@H, ,
2
Hd. = w;j. ?:(*(1)[.;%; + U0 _/u] KL'JL) Ax +
v

2
") ot + 17> ", ' d C[II
W Ty () Tx) ¢ (xhy (x) dx .
"a iﬁ(ﬂ; TP (37)
Now the mathematical expectation (23) is
<A?>=Th §A (Vo)
F (38)

which formally corresponds to an equilibrium case with the statis-
tical operator

:Plz e‘ﬂH /7; e-ﬂH
F

~ (39)
and the operator representation A=A (w) on the fiber space
(4). The renormaliged chemical potential U can be expressed

in a usual way through the renormalized inverse temperature ‘/5
and the average number of particles

s .
N=2 N, N‘:w(,(f(‘{ff(l)‘fi(atb dx .
o=t

Here and in what follows Jvdx- mearis the integration over the
whole manifold v .

o

Minimizing the ,thermodynamic potential (25) under the normali-
zation condition &, we= 1 or finding an absolute minimum of
the potential g = 4 (w)+(;7ti_ W, » we get the equations for
o«£=

phase probabilities

wi=(/aR¢—Kd—h)/3<F; («=12,...8),

with the Lagrange multiplier

3 - el
/"‘Rd‘K,( {
- T % 3 —_
A <2; P, /g +

and the notation

9 .
+ v :
Kd:ﬁj< W,L (x) —E-h-(-U(x) V¢(1)>0/x

- 1 + + ., / ' .
P, —2—”f< ¥, @Y ) Plooxy p @ g m>dda’

R, = % J< ?/:m y (0> dx .

The developed theory is applicable to heterophase systems of
arbitrary nature and any number of thermodynamic phases. It can be
even generalized to the case of a continuous phase mixture, when
the phase index Tuns over a continuous many {o(} . For
example, this can have to do with magnetic phases with different lo-
cal values or directions of magnetizations, Such a situation can ari-
se in disprdered matters with random interactions [}5] or in random
external fields [16] in the presence of a frustration 7] . 1t
might be relevant to spin glasses [}8] having a cluster structure
[@9,2@].The generalization to a continuous phase mixture can be done
quite simply. There the fiber space (4) becomes a continuous product
whose definition has been given in ref. [9] . A measure dm ()
on the many {J:} lets us to represent the global algebra on the
fiber space (4) as a direct integral on the field of representations
{AEDY , A(5)=® £ (E)dmw - AL
subsequent expressions retain their sense when changing the sums over
oL by the corresponding integrals over o m (x) .

I should like to thank D, ter Haar, the numerous discussions
with whom on the properties of heterophase systems have given me an
essential help in writing this final and, as I think, in principle
total foundation for the theory of heterophase fluctuations.
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Wxanos B.H.
PeHOPMHDOBKA KBaSHIaMUJILTOHHAHOB
npu rerepodasHoM yCpegHeHuu
CTpouTCs NpencTaBlieHHe alrefpn JIOKalbHHX HAGmoaaeMbx
Ina rerepodasHoll CHCTeMbl. YcpenHenue no thasopsM koHIurypa-
HMAM onpenenseTCA KaK KOHTHHYANbHOE HHTErpHpOBAaHHE o Xa-
DAKTEPHCTHYECKHM GYHKIHAM HoaMHOXecTB. CpepgHme oT oneparo—
POB HafmoZaeMpiX BeNnyuYHH 3aJaTCa C NOMOombl aHCcaMOIi KBasu—
pAaBHOBECHHX aHcamble#t 'm66ca. HaxomaTcs BHpaxeHWUA OAA 3THX
cpeiHux, npeobpasoBaHHele B pe3yibpTaTte rerepodasHoro ycpen—
HEeHHs., JTO NOSBOJAET NONYYHUTH ABHHIL BHI DEHOPMHDOBAHHOIC
KBasuraMuiibToHHana, [Haercsa ofofmeHHe monxola HaA Ciayuay
HenpepnBHOIO MHOXecTBa ¢as.
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Pabora sBumnonHexa B JlaGopaTopuu Teoperudeckod dusHKH
OUstyL,

Ipenpmr OObenuHeHHOro HHCTATYTA ANEPHBIX HeanenopaHuit, [y6ua 1987

Yukalov V.I.
] Renormalization of Quasi-Hamiltonians
under Heterophase Averaging

A representation of the algebra of local observables
for a heterophase system is constructed. Averaging over
phase configurations is defined as a functional integra-—
tion over characteristic functions of submanifolds. Avera-
ges for the operators of observables are given with the
use of an ensemble of the quasi-equilibrium Gibbs ensemb-—
les. Expressions for these averages, transformed as a re-
sult of the heterophase averaging, are found. This allows
us to obtain an explicit form for a renormalized quasi-
Hamiltonian. A generalization of the approach to the case
of a continuous many of phases is made.
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