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Tbe tbeory of beteropbase fluctuations developed by the author 
[1-jJ is essentially based on the notion of an effective Hamiltonian. 
Tbe latter appears after a summation over beterophase fluctuations
[2-!i in the partition function l.1ke a renormalized Hamiltonian appe­
ars after summing'a part of variables in the renormalization group 
method ~,en . The system with h,terophase fluctuations is generslly 
nonequilibrium, it is quasi-equilibrium. Its most logical description 
presupposes the uae of the quasiyequilibrium Gibbs ensemble ~hose 
statistical operator contains a quasi-Hamiltonian in place ot a 
Hamiltonian. In paper [7J a heterophase ensemble consisting of a set 
of quasi-equilibrium ensembles with varioua phase configurations has 
been constructed, and it has been shown how to calculate the corres­
ponding thermodynamic potential. However. solely one question is 
yet undetermined - how to define in a correct way mathematical expec­
tations for the operstors of obeervables when averaging over this 
heterophase quasi-equilibrium ensemble. An answer to this question is 
given in the presen~ paper. The succession of actions is formulated 
in the abstract. 

Consider the system of particles on the Lebesgue measurable 
manifold W=[xlIf\llSW=J" dX = V} . A Hilbert space :te 
of microsCIlpic states is given on the manifold V • The algebra 
of local observables ~ (II) =[ A (A)] (A c:: W) is defined in 
the space IlJ( ; this algebra being oomposed by operators of the 
form 

A(I\):::~ r A (Xt;X~, .. ,:x,,)d'Xfd-r.a· .. dxL. ' 
I.. J ~ 

A .... 
where A, (••• ) is an operator distribution and 11

0 
;: cct\S.i-· f • 

Constructing an ordered manifold { Ai.l i.. : I,:l >'" } of bounded 
open regions I\~ c: 1\;+1 and an isotonio sequence of algebras 
cl$ (II,) C rfi (".I) c:= ••• • in which A I t:: A'J, c:: ... , one 

obtains a net of algebras { cfi. ("i.)J . Por a net of algebras 
an inductive limit can be defined [a] • oalled a quasi-local algebra. 

Suppose the oonsidered system consists of several thermodynamio 
phases. enumerated by the index 0(. a :I> :t ) ..• .5 • Tbe separation 
of phases in the real space is oharacterized by a family of submani­

;"~~;r~-~~~ 

"'VBi!i~!iHUi\ ;'; ':"'''7yr ! 

••oi"fou;."', (",' ','or")' , •• ,,~I' j- ,fJ'... ~"" ", '",I''' /, .. ,'1/1_ 

0_ Gl>16nJ-JOTEHA............... 
 ill • ~ 



folds {~~ 1 aforming covering of the manifold 'W 
! ~ 

U~:\V, rv: =V ( V W. )'5tn02S.t. 0<. • 
J.:f .,(::{ 

(1) 
In its turn, in the space ~ of microscopic states one is able 
[! ,9J to separate subspaces y.; c If. (co<'" f, ~ , ... -S) , such that a 
conditional probability measure corresponding to tbe thermodynamic 
phase al is concentratCld on the subspace ~ • Each of spacelf 

'J;. is s set of vectors that are typical [10] for the pbase cC 
Tbe representation i{; [ ill (1\) ] of the algebra of local obU~-
vables for the regions 11.-. C ~'" is defined on the space 't" . 
Writing down the representations of the operators from this algebra 
one can define the operator distributions Atv£. (••• ) by tbe equality 

"'[ Il (A",)] =L Jill" (x" x.,," x,) ax,d" ...J\. ) 
1 1I.rJ. 

To divide the manifold ~ into a set of submanifolds {'v.t J, 
one may uae the Gibbs method of separating surfaces [11J in his theo­
ry of heterogeneous systemc.Mathematically, it is· convenient [}.4,1] 
to prodUce such a division by fixing a set of characteristic fUnctions 
of aubmanifolds. 

1) X S' 'Wo<. ~ 
; 

"­

(:x.) == 
{ 

0, X ¢ 'V'" 
() )

Then. invoking the identity 

JIl~o<. (x" ... X,Jdx'1 ... dXl 2 I fI!q£ eXt) .. • XI..; ~o()ol3:, ... Jx" , 

Wv£. W [Jtbe representation of the quasi-local algebra, 110/, cI'l (\Yo!) .:> can 
be extended to the representation of a quaSi-local algebra, 

~[c$(Wji;oL)J= fiol(~.J with the operator distributions 

k 
1\ (3C, X~) ... J:I;~ ):/1, (x"X,1 ... x,)n C ('l:.) • nkc/.) It c/. fl.r/. ) It.. So( d 

J"'{ 
As is clear, the function ~o(,~) plays the role of an addi ti ­
onsl functional variable. In order to define a representation of the 

2 

quasi-local algebra til (W)· • that could be called a global al ­
gebra aa distinct from the quasi-local algebraa, consider ~ • 

Suppose that there exists a topological space ~ • on which 
a mapping map.t: J'" -.. 1;. is givan. The three ( J:'~ tn"P", ) ~) 
is called the fiber space, ~ is the total space, ~ is 
the fiber base [12] • The procedure of obtaining ~ from "iT 
by lIIeana of rna.p.,(. is called fibering, and the inverse process 
of reconstructing '¥' out of ~ is a fiber section. Wben tbe 
total spaces of different fiberings are homeomorphic and their bases 
are the same, then sucb fiberings are equivalent. Por our purpose 
any,of equivalent fiberings may be used. It is convenient to cboose 
the so-called standard fibering witb the total space as a tensor 
product ® ~ 

.,(. 
• This total space under s fixed set of mappings 

~ _ "t.. (ot::; (, .:!, .. g) should be called the standard fiber space 

T=@ T ( map.,. : ?1-:r.;).
oL 01. (4 ) 

Piber bases corresponding to different thermodynamic pbases are not 
necessarily mutually ortbogonsl, although in many cases it is so [9]_ 

Thua, the global algebra ~ (~) is to be interpreted as a 
direct sum of quasi-local algebras A (IY; tJ ' snd its represen­
tation H[ ,it ( 0/)] == .fi ( ~ ). where 

~ -= { ~o<. ('):) ItI. ::: f, 3.)'" ~ ; :x. e W J .> 

(5 ) 

bss to be defined on the standard fiber space (4) in the form 

eft (~) = ® /to<. (~.J -= [Il(~)} . 
0( (6 ) 

Tbe representationa of operators bave the structure 

11 (~) = <±) l1ol. (.EJ • 

~ k 


A (eo():; I' JA (X t • Xi/. ,'" I,,) n ~~ (1) d~'i 
0( l.. \' I..t. i=t (7) 

The many of sll possible collections of ~ form tbe topolo­
gical space { ~! ,on wbicb a functional measure £J ~ can be 
given [1] _ Tbe statistical operator of a quasi-equilibrium betero­
phase ensemble ia presentable as 

- r(~)/'"7- J -rc~) (B).1 (~) =e :; e J) ~ :> 

3 



where r(~) is a quasi-Hamiltonian o~ the system. Mathema­

tical expectations answering observable quantities are de~ined by 

the formula 


.( A,> = Tr- S..P(~) A (~) c:f)~ • 

':f 


(9 ) 

Functionsl integrals in eqs. (8) and (9) describe the averaging 

over phase configurations. 


Introducing the functional measure c!iJ ~ one is able to 
note that the aVeraging oVer phase configurations contains two 
kinds of actions. The firat one deals with all possbile con~igura­
tions under a fixed set f:: {P..t /J.::: f2~" .. Sl of geometrical probabilities 

Sv.; 
t:: V ( 0 =Pol. £0 1 , 	 2: PI/.:= t ) 


.1..=1 

(10 ) 

The second action is the variation of each p~ from zero to 
unity taking account of their normalization. In correspondence to 
tbese actions 
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~E = ~f~ Jp ~ d p ::: J (f, p~ -1 ) nd fat • 
,J.:t (11) 

The functionsl differential JOp~ is defined in the following 
manner. One diVides eacb of submanifolds ~« by means of subcove­
rings f ~..ti.1 so that 

~ ~ 	 &

UW. =W • I. Yi'~ 	 ( L no( =n )'y~ == tlles~d 
i'Of oL~ .;. ;'=1 	 o£=1 

The characteristic function () is presentable as the sum 

no< 
1, x E ~i

~oI. (-x):: 2: ~Qil' (:J-o,.l~) ~ ,(x-a.):: 
[> oLl oh 

~=t 
0, X ¢ ".Ii. ,

in which O"(i E o/oli • Implying the limiting transition 

(1- 00 
:t 

n,j 
""" 

- 00 V.·-'t 0 ( PeL :ccnst) j'ott. 

(12 ) 

one can write the asymptotic expression 


~ WI" 
cla"'iJ)~~n 	 (n- co ) (1) )
VP ol=f i=t 
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Finally. the averaging of a functional F ( l;) over phase configu­
rations under a fixed set of geometriC probabilities (10) is defined 
as the functional integral 

~ fl... 
JOIII- LJF ( ~) ~p ~ = lit! JF { ~) n . '-y , 

1'1-. 00 01--=1 ~ ::1 

(14 ) 
in which tbe limit means eq.(12). 

Tbeorem 1. If the functionsl F( ~) is a polynoll)ial in 
characteristic functions (). then 

SF( ~) t2)p ~ = F ( p) ~ 
(15) 

where F (p) follows from F ( ~) as a result Of the rep­
lacement 1;111- (:x) - Pol 

Proof with all details bas been given in re~. [7] . 
Corollary. The theorem can be spread to arbitrary functionsls 

presentable as series in powera o~ characteristic ~unctions of sub­
mani~olds i~ to implicate. as it is uaually supposed in physical 
problems. that summation and integration can be interchanged. Then 
formula (9) for a mathematical expectation leads to 

1 

<II);::; Tr JJ(P) fl(p) dp J1 


:t o 
 (16 ) 

where 	the dif~erential ,dp is defined in eq.(11). snd 
1 

r(P) _I
J(P) =e-r(P)/'h S e C4 P • (17 )

l' o 

Theorem 2. Let the function 

'H{P):. _.L D. l." - rep)
IV YI ,'1 e 

1= } 

(18) 


in wbich N:: {( (V) is a number such that 


.fI -'1 CP I V.-." 00 IV IV 	...., c.c"lot- , 
(19) 
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has an absolute minimum 

lJ (VI) -:. a~s lYI~n 8(. (WI! {\oI" 10(; f • .2, ... 5}). 
f (20) 

Then 

tim ~ ;- [ij(lll1(Pldp - !MII (Wi] ~ 0 
".~oo 

(21 ) 
where the limit is understood in the sense of sq. (19), and 

Yew) -= 	 e 
P(w)/h e - r(lN) 

(22) 

~ Introduoing the notation 

-

fUp) _ hell (p) h e 


<f 	 ~ 

- r(P) /_ r(p) 

and using sq. (18). one oan write down 

- NI/(P) 	 - / J1 - "'II(P)h .f{P) A(p) = e f} (p) E cIP 
~ 	 0 

Applying the Laplaoe method as #...,.00 	 , we find 
S-f 

S -"'KCP) - J "'!I(III) - n ( ~ji ) 1/~.e 11 (p)~p ~ e- /I(w) #£" 
o 	 of. =f 01. 

.it / 	 !Iwhere !J;' == q /I (w) ~¥I~ (",~oo) • Therefore, 
, 

~ f !(P) II (PJoIp ::::: /few)
SO 

Remembering the notation for )./(p) and deftnition (22), we 
obtain (21). 

Corollary. The mathematical expeotation (16) beoomes 

<II) ~ 	h l(w) II ( 'II) (V-'loo) . 

"'F 


(23 ) 
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The representation of operatora (7) of observables on the fiber 
space (4) takes the struoture 

II (w) =@ fI (w.. ) , 
oL " 

fl" (w~)::: 'tIr/.."'" S 11k.,. (7t.")(;t., •.• x/.)cJx ,clxJ ,,. 
Jx lt.' 

It 	 ~ (24)'I 	 The set w:: { w... l defines the probabilities of thermodynamic 
phases and is to be found from the minimization of the thermodynamic 
potential 

- rlw)
if (w) :::: - ~ t(1 h e 

7T 
~ (25 ) 

under the normalization condition L. \Vot '= 1 following from 
eq.(10). rI.=f 

To·ooncretize the approaoh developed above, consider a system 
with the Hamiltonian in the Heisenberg representstion 

H ( II) -= 5H/'X) ,h: .... JH~ (~jXf) dx c1Xf ~ 
/I 11 

+ [v:.l ·U JHf (':t) =-	 'I' ('.<k) - ~m'" ('lC) 0/ (x) , 
(26 ) 

Hd. C~/X/) ::::ftpi-(X}'fIi-(:J.') 1>('X)x f )lf('X')If(Y) 

Operator distributions Hi'" ('X) and H~t:J. (:'/.)Xl) can be 
defined by rule (2) when introducing the representation of operator 
(26) on the space ~ • Representations of the algebra of field 
operatora could be oonetru~d in a perfect analogy with the construo­
tion of the representations of the algebra of local obeervables. Por 
the field operator If(n ::: j jCl:) 'f{xuh. • in which t (,1':) is 
any square-integrable functirn. one sets the representation «i[~(~U 
on the space ~ • In its turn. tbis representation defines 
the operator distribution 'fol (-r.) wit h the help of relatione 

I 
.1 ~ [0/ (;f>] =Sf ('X) If'/'X)dx = JfCJ£} ~ (X) ~ol (x)dx. (27 ) 

w 	 ol 
~ 

7 
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The representation of the operator H( W) on tbe fiber 
space (4) according to (7). bas the form 

H(~)= (f) Hot (~) , 
0/.. 

H (t)::: r H ('X)~('~)oIx + JH ('X.) 'Xi) El-x..)'f'••Jx')d'Y-d);'. 
tJ.. '" J 1rJ. <I- flot, (28) 

W ~ 
The partition of the m\!Ulifold W into submanifolds VoL 

occupied by different thermodynamic phases by no mean~ presupposes 
the uniformity of these phases. These phases as a wbole are already 
nonuniform if only due to tbe existence of interpbase transition 
layers. The Gibbs dividing surtace [}.l] presents a condit ional geo­
metric boundary placed somewhere inside a transition layer. The 
measured tbermodynamic quantities can be defined so that they do 
not depend on a position of tbe dividing surface. Imposing some 
addi tional limitations. e.g. tbe equimolecularity condition l) 1] :> 

one may fix the dividing surface in a macroscopically unique manner. 
In our case an ambiguity of choosing separting surfaces is not at 
all important as far as we average over all their possible positions. 

A nonuniform system consisting of several thermodynamic phases 
is quasi-equilibrium [7J • Consequently. in'the same fashion as for 
any locally equilibrium system [lJ1 ' the local quantities muat have 
a meaning. such as tbe looal energy density 

~ ('X; ~ot) = li .f (a) H ('X.' I- ) (29)T II- j 5.. ) 

H.,('Xj~ •.):: H'flI..(X)~rI-(').)+ JHA,,(x/)(/)~,t('XJ~rJ,(XI) d):1 
\' 

and the local number-ot-particle density 

n"" (-X.) ~,t) ::: 1i j(~) N..t ('Xj ~c/.) j 


T 

(JO)

1­tI" ex; ~.,):::: "r/.('X) ~01 (:X), N.t. (:x):." (:JC) t (?C). 


The statistical operator is given by formula (8) from which the 

normalimation is evident 


h JJ(~)~~:::l. 
~ (Jl) 


Expression (8) contains a yet unknown quasi-Hamiltonian r (~) 
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An explicit form of tbe quasi-Hamiltonian can be found by 
demanding that tbe entropy 

s-= - h Jj (~) en!(~) ~~ 
~ 

(J2 ) 

be maximal wi tb respect to variations of I( ~) under conditions 
(29)-(Jl). This yieldS 

~ 

r(~) =- G> ~ (~) J 
.i. 

r: (~) =S~ ('X, ~c/. {Ho/. (X.l~) -/'" (X,~);Vol (;Xj ~ ••}:lx ..> 

t (3J) 

wbere the inverse temperature .)30<. ("'-, ~o() anU the obemical po­
tential /J. (x-' ~.,) play the role of tbe Lagrange multipliers t 
ensuring the nonuniformity of a system corresponding to a given 
choice of separating surfaces. 

After averaging over phase configurations the renormalized 
quasi-Hamiltonian few) entering into the statistical operator 
(22) assumes tbe form 

r(w)=e r ('II.:)
J. -' 

0{ 

r.,( (W.cJ -::: lAIr/.. S f>tJ. ('Xl [ H1.t ex) - f.t (:x) Not. (').)] d-x 1­

w'' 
+ w::t J E>, (-x:) H (~J Xl) oIxdr.' " 

i/o- f'" flrC 

\' (J4 ) 

in which the renormalized quantities 

f'" (1) -= ..:: f.t. ex", ~)'> .> J'l"t.. ('X) =- <)(i'I. ('X-'~) > 
(J5 ) 

figure as functions defining the taken heteropbaee ensemule. 
Eacb of renormalized quasi-Hamiltonians 1'; (W~) oorresponds not 
to a sole part of a real system. occupied by the phase oL t but 
to an abstract system representing an averaged infinite many of 
spatially nonuniform subsystems taking arbitrary sbapes and simes, 
and baving tbe properties of tbe tbermodynamic phase oC • Sucb an 
averaged abstract many can be called the phase replioa [7] . ~~pbasize 
tbat t~e renormalized quasi-Ha~iltonian (J4) retains an information 
about the' presence of transition layers and a corresponding surface 
energy [7J • 

9 



Let there be no external fields acting on the considered sys­

tem so that a stationary separation of phases could occur. That is 

~e appearance of nuclei of different competine phases is a purely 
fluctuational process. The quasi-equilibrium system with such hete­
rophase fluctUations serves as an example of self-optimizing systems 
~4] • When all phases and all parts of the system are in equal exter­
nal conditions. then the av~rage quantities (35) characterizing these 
conditions have to be constant: 

.frio. ().)=I /01 ('~) =/ 
(6) 


Equalities (36) showing that in the system there is a heterophase 

equilibrium on the average qan be cBlled the equilibrium condition 

for phase replicBs [7J . Eqa. (36) being true. the renormBlized 

Hamiltonian (34) becomes 


rc w) =r: H> H :: ~ It. , 

Hrio. ='Wrl-J t.T(X{- ;~ +V('X) -;' ] ~(';X)JJ(. + 


~ 

+ ~ r r. T
(7-) If of(-x') t(r~ -X') r(';Xl) 't'. (x) d.~d x' 

~ J... I< 07 )rI- OL 
'+I 

Now the mathematical expectation (23) is 

<A"?::::'hiA (v....." 00) 
'f" (J8) 


which formally corresponds to an equilibrium CBse with the stBtis­
tical operator 
 oJ ___ 

~ _fH -~H/-r
J=e l't e 

T -v (9) 

Bnd the operator representation A =A (w) on the fiber spBce 
(4). The renormBliced chemical potential,li CBn be expressed 
in a usuBl way through the renormBlized inverse temperature ~ 
and the average number of pBrticles 

! 

IV = L No!. ) N~ = \Vii]< 'f.,.+(-X) 'I'.t (7-J'? dx 
J.=f 

Here and in whBt follows JoIx meaIi8 the integrBtion over the 

whole manifold ~ 
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Minimizing thetthermodynamic potenUal (25) under the normali­
zation condition ""'" = 1 t or finding an absolute minimum of 
the potential Jf = ""'I ~ (IN) + ('>). _ 'II01.. • we get the equa tiona for 
phase probabili.ties o{-1 

'110( = (/ Rt/. - KcJ - 'Ii) / '{). ~ (0{= I)~J' •• ~)' 
(40 )


with the Lagrange multiplier 


A =(±. ~ KvL _~) / L 
j 

RvL ­

vL:I <f'oi. ol=( ~ 
and the notation 

I<. =.i J< lY+ ('XF- 'V:l + u(-x)7 r (X) >dx 
'01. N rJ.. L;2111 J d.. ' 

cp, =_1_ f< r+ (x) ~ +(?C ') <p (x/x ') W ('X') W (x» dxd'X I 
0( ,-", 0;/. <I- To;/.'oL J 

n :::.!.... J< (J) \::x:) r(x» dx .
1"\0( N 10£. 0;/. 

The developed theory is BpplicBble to heterophBse systems of 
arbitrary nature Bnd Bny number of thermodynBmic phBses. It CBn be 
even generalized to the CBse of B continuous phBse mixture. When 
the phBse index fA. runs over B continuous mBny {at} • For 
example. this CBn hBve to do with magnetic phases with different lo­
cal values or directions of mBgnetizBtions. Such B situation CBn Bri­
se in disordered mattera with rBndom interBctions [L5] or in rBndom 
externBl fields [16] in the presence of B frustration [17J. It 

might be relevBnt to spin glBsseS [18] hBving B cluster structure 
[19.20]' ~e generalization to a cont1.nuous phase mixture can be done 
quite simply. There the fiber spBce (4) becomes B continuous product 
whose definition hBs be.en given in ref. [9J. A meBsure elm (0<:) 

on the mBny {<I.] lets ua to represent the globBl algebrB on the 
fiber SpBce (4) as B direct integrBl on the field of representBtions 
ffl.J.(~J} , rII.(~)::::;SEB .tt,t.(t)c1m(ci) • All 

subsequent expressions retain their senae when chBnging the sums over 
0<:. by the corresponding integrBls over 01 m (g() 

I should like to thBnk D. ter Haar. the numerous discussions 
with whom on the properties of heterophBse systems hBve given me Bn 
essential help in writing this final Bnd. as I think. in principle 
totBl foundation for the theory of heterophBse fluctuBtions. 
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IDKanOB B.li. E17-87-44 
PeHopMHpoBKa KBaSHraMHnbTOHHaHoB 
npH reTepo~aSHoM ycpeAHeHHH 

CTPOHTCH npeAcTaBneHHe anre6p~ nOKanbHhlX Ha6nIDAaeMhlX 
AnH reTepo~SHoA cHcTeM~. YcpeAHeHHe no ~asoB~ KOH~Hrypa­
UHHM onpeAenHeTcH KaK KOHTHHyanbHoe HHTerpHpoBaHHe no xa­
paKTepHCTHqeCKHM ~YHKUHHM nOAMHo~eCTB. CpeAHHe OT onepaTo­
POB Ha6nIDAaeMb~ BenHqHH s8AaroTcH c nOMompro aHCaM6nH KBaSH­
paBHoBecHb~ aHcaM6neft rH66ca. HaxOAHTcH B~pa~eHHH AnH 9THX 
cpeAHHX, npeo6pa90BaH~e B peSynbTaTe reTepo~asHoro ycpeA­
HeHHH. 3TO nOSBOJIHeT nonyqHTb HBH~H BHA peHopMHpoBaHHoro 
KBaSHraMHnbTOHHaHa. ,n:aeTcH o606m;eHHe nOAxoAa Ha cnyqaft 
Henpepl>IBHOrO MHo}jCecTBa ~as. 

Pa60Ta BbmonHE~Ha B Jla6opaToPHH TeopeTHqeCKOH ~HSHKH 
OHSlli. 

npenpHHT 06'be.IlHHeHHOrO HHCTHTYTa RAepHblX HCClIe.a;OBaHHii. .lly6Ha 1987 

j	
Yukalov V. I. E17-87-44 
Renormalization of Quasi-Hamiltonians 
under Heterophase Averaging 

A representation of the algebra of local observables 
for a heterophase system is constructed. Averaging over 
phase configurations is defined as a functional integra­
tion over characteristic functions of submanifolds. Avera­
ges for the operators of observables are given with the 
use of an ensemble of the quasi-equilibrium Gibbs ensemb­
les. Expressions for these averages, transformed as a re­
sult of the heterophase averaging, are found. This allows 
us 	to obtain an explicit form for a renormalized quasi­
Hamiltonian. A generalization of the approach to the case 
of 	a continuous many of phases is made. 

The investigation has been performed at the Laboratory 
of 	Theoretical Physics, JINR. 
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