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1. INTRODUCTION

It is known[1,2] that the resonant Raman scattering

of an intense laser field by a three-level atomic system is quite
different from the ordinary weak-field Raman effect. For very in-
tense laser fields, when both allowed atomic trénsitions are sa-—
turated, there is no clear separation between Rayleigh-type and
Raman-type processes, This is because of the modifications of
the atomic levels due to the dynamic Sterk effect, the most spec~
tacular cexplanation of which can be given in the "dressed atom"
picture[1} « The finite bandwidth of the exciting laser field
due to phase and/oxr emplitude fluctumstions can considerably af-
fect the results, as it has recently been shown for optical
double resonance{B] . A number of other effects related to in-
teraction of a three-level atom with resonant laser fields and
extensive literature of the subject can be found in[4] .

On the other hand, a lot of work has been done to explain
colleclive properties of many two-level atoms interacting with
a resonant lager field[5—10] . It would be interesting to know
how tﬁe properties of individual three-level atom interacting
with lascr fields are modified when the number of atoms becomes
large. Some recent publications deal with such collective ef-
fecls in double optical resonance[j1] and the resonant Ramsen
sceltering U2,13] .

In this peper, we consider the effects of the driving

field fluctuations on the spectrum in the collective rcsonant

Ranon procegs. We use the quantum mechanical master equation

approach[14l , und secular approximation[§,13] to eliminate ra-
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pidly oscillating terms, The theory of multiplicutive stochastic
prccessesi}5] is used to obtain the equation for tho donsity
matrix averaged over the phase and/or amplitudo fluctuationu of
the cxciting field. We assume here that tho phano fluctuutions
are dcscribed by a Wiener-Levy process ﬁ6,17] whorongs tho amp-
litude fluctuations are described by a4 nonwhito Gaunolan process
ﬁ8,19] . It is shown that even for fluctuating lunor flolds an
exact steady-state solution of the master equation onn be oaslly
obtained if the laser field is tuned to the resonanco with tho
atomic transition. All collective steady-stato ohnrnotorintics

of the system can.thus be derived with tho uae of thin solution.
The‘equationé describing the time evolution of the ono~timo atomic
expcctation values averaged over the enscmblos of tho phano ond
amplitude fluctuations can also be obtainod fiom tho manslor oqua-
tion. To solve thege equations we have appliod a doocorrolation
scheme that allows for closing the system of oquuationn, and to
calculate two-time correlation functions tho quonium rogrusolan
theorem is invoked. We have derived explicit analyllonl formulas
for 'the field correlation functions of tho souttornd lighl that
explain the effects of the laser field fluctuationo. Thou oolloc-
tive properties of the écattered light aro dipounnod showlng a

possibility of collective narrowing of tho ono-atom npaotvnl

widths.

2. MASTER EQUATION AND STEADY~STATE AVIRAGRS

We consider a system of N throo-lovol atoms aonfined to
a region small compared to the wavelengths of nll rolovant radia-
tion modes (the Dicke model) interacting with a driving lanor

field of frequency @ _ and with the vaouum of all othof modos.

; ; w £ 12
Schematic diagram of energy levels and z T >
possible transitions for the three-level v 23
atom considered in the paper. ‘w o

L Wy 13>
8y
Wy L >

A schematic diagram of atomic energy levels is shown in the Figure,
The ground state }1>is coupled to the state 12> by the stroné,
regonant laser field, and there is a spontaneou% transition from
the level {2 >to |33 (Stokes line). The dipole transgition betwecen
the levels 13) and {1 > is forbidden due to parity considerations,
and we inlroduce a nonradiative relaxation mechanism (which we
do not specify) that makes the transition 133 — 11> possible.
The nonzero transition rate for the transition }3>-— 11} is im-
portant in order to have a nontrivial steady-state solution for
the density matrix,.

On treating the exciting laser field classically and making
standerd (Born and Markov) approximations to describe the system-
reservoir couplings, one obtains a master equation for the reduced

dengity operator § of the atomic system alone in the following

form[14] ( ® = 1 units are used)
be) - -
a{ = -t 2E' I, r B, 8]
-'3%[5:;‘%'5’]‘ ing [, 9]-
m By (T 3, § - T, 8T, 7 H.C.) (1)
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spontaneous emission rates for the transitions| 2> —»| 1) and

where N , ibj” and -2255 are tho single-atom
{2>— 13>, respectively, and 2%, 18 thc nonradiative tran~
gition rate for the transition [3> — 11>} S = lq-fdi ip the
detuning of the laser frequency (W from tho atomio trunsition
frequency (J,, . The collective atomic oporators T, uro de-

fined as

N
= L-otiygil (i,i= 148)

and satisfy the commutation relations

J.,,,] = J—g, -J./. 6\.., .

Ly ¢y vyooby

[3,

$
In the master equation (1) the rotating wavo approximation has
been used and the equation is written in tho frome rotating with
respect to the laser frequency.

We assume that the laser field is dosoribod by

~iGCe)
© E@) = [E, + aE®)] € " ) (2)

.

where £, and § = §(°) are the nonstochastio pnrtu of the
field amplitude and phase while the timo-depondont quantities
4E(t) end & (t) are stochastic variablos donoribing tho am—
plitude and phase fluctuations of the lasor fiold.
As is usually done ﬁ7-19] » we will modol tho phaso fluc-
tuations by the Wiener—-Levy process (phooe &iffusion modol) and
the amplitude fluctuations by a neonwhite Gaussian nolgo., 8o, we

have

Gi_i_(i) = pcer , (3)

where /u,(t) is a Gaussian white noise with zero mean value

and the correlation function

M) qect’) = 2y S(ct-t7) 4)
and

AE(t) = ©O ) .

— 2 ¥ 1£-27] .

AE 8EM) = (AEY € , (5)

where (Aff)z is a measure of the amplitude fluctuations, and

3; and ql describe finite baudwidths due to phase and amp-
litude fluctuations.. The bar is used to denote the average value
over an ensemble of phase or amplitude fluctuations. The double
bar will be used to denote averaging over both phase and amplitu-
de fluctuations. We treat here the phase and amplitude fluctua-~
tions as independent stochastic processes,

To proceed further, we adopt the way used by Puri end

L&wande[a] in calculations of laser fluctuation effects in a
system of two-level atoms. We introduce the<transformation

~tm G (2) e":i:g(t)(‘):zzf J“?? £6t)(3,-9,)
. €

Wy (2) = € (6)

into the master equation (1), end obtain the following equation
for the transformed quantity
dw, (£)
d t

=Ly -i(metgcr-iecrl, [W ), (o



where

Lowm:"‘:eo [‘Iu'*‘];z_)w ] = '.’%[‘]:12'3;11‘?“)11,]"

-y %y, W 1o %, (hdy - 20 M %+ Y L% )
h 43( UJHW’" ‘7‘%2%{5 t Wm'yza‘ru>
gy (BT Y T Yy T 30,0 0 @
Ly Wy = ';Z [Jzz S A
LL W, = [ ) v“nm]
and €, = 47- , €@)= ‘—’-L-—LL—EQ-) with d’=d’t4

being the transition dipole moment between the states {1>and ]23.
. Teking into account the stochastic properties (eqs. (3) and

(4)) of the phase fluctuations and epplying the theory of multi-

plicative stochastic processes ﬁS ] one can obtain tho master

equation for the averaged over the phase fluctuations donsity

matrix Wi (2} which has the form

d W, (t)
dt

P — '
[ - % (mer ) ‘€(t>Lz] Yo & 9)

Since the operator ‘LL which is multiplied by the time-de-
pendent coefficient € ( t) does not commute with all other ope-
rators in (3), it is impossible to use the theory of multiplice-
tive stochastic processes to obtain the master equation for the
density matrix averaged over the amplitude fluctuations in the same

fashion as for the phase fluctuations. We thus restrict our con-

giderations to strong laser fields only. To meke these congide-~

[ o

rations more transparent we introduce the Schwinger represcnta-

tion for the atomic (angular momentum) opcrators[?Ol

+
Iii = GG (64 =1,2,3) , (10)

where operators C[ obey boson commutation rules [CL, C J L,

After performing the canonical (dressing) trensformation

c1 = Q1 cosy + Q, senV ) .
Cpo = - @ sin ¥ 3 Qo5 )
€11)
Cb = Qg )
where g 2%y = 26, /8 ,

one cen split the Iiouwille operator appearing in equation (9)
into the slowly varying part and the terms oscillating at frequ-
encies 2/ and 441, with (1L denoting one half of the Rabi
frequency. We assume here that the Rabi frequency is sufficicnily
large and sstisfies the relations

2 Y2
(8+ 4 €Y N NG, 5 Y,

23 34 (12)

but 4L << W and the transition }3)—> 12> is not affected
by the laser field, In this case the scculer approximation [6,1%}
is justified and we retein only the slowiy varying part of the
Liouwille operator. We have then (we usec prime to distinguish

the transformed density matrix)

dWm (__..t): l:,,?’ - & E(L) sinV. Cos)’.f]w/a) (13)
dz o . 1



where — - . , -,
LW, ()= - m W, t)- (oarmy ) [ D)W, )]

m

iny [ Ry, W (] - B [ Dy, )] ]-

- (R, (R, W @]]- ¥ [y, [Ryy, W, 2)]] -

- %,
4, cos™V-[Ry, (R, W (8)]] )
s (R (R, WL ]]
g W, (4) = [ D%, ()]
In eqs. (14) we used thel notation
b’c, = Z’c ( cos™V - .Sén'!)?) ) o
¥, = b:u scnV.cos®V + {—c(@szv' sa’n'zlﬁ) ,
¥, = L cos*y + ¥, sin®y. cos®V R
K:. = 324 sin?y 4+ b senty . costy , (15)
Dy = Rea- Ry | : )
and the operators: Rr.'j = Q: Q; are new, dressed atomic ope-—

rators that satisfy the same commutation relations as the opera-
tors  J;; (the transformation (11) is canonicel).

It is easy to check that the operator cf, commutes with
ofo and the theory of multiplicative stochastic processes can
now be uged giving the following master equatlon for theaveraged

over the amplitude fluctuations density matrix

. r — 7 9 s .
sin®y | Res. [Raw w, (t)}]-zfaaws ¥ [Rzal[ﬂ’%,wmﬁ)ﬂ '

d = e
Lwictr= [+ L Tw (),
= Vi [Zo+ & ] W o
The Liouwille operator o{; haes the same form as given in (14)

while af;’ is given by

L@ = {13 ] [0, w @]l L

with
4€° -
-2 (-2
- — S22 \7.~Cos‘z)}- €
7(t) Xq z ’ 18)
2
2 (4

where € = -Cl—lg—) is a measure of the Rabl frequency fluc-
tuations.

The master equation (16) can be used to calculate the expec-
tation values of'the atomic observables averaged over the phase
and amplitude fluctuations. When the laser field is tuned to the
resonance with the atomic transition |1> — 12 ) ( S = 0), we have

.St"nz Ve cos?y= 1 and the master equation (16) has an

2
exceptionally simple stationary solution

-

— e - for m# o )

W& LN R A

m AL xR, e ><n, ), 09
R=o0 "‘:0

where X = b.;’ /13:23 , and

N+d4
(N+1) x V2 vz yx g
(x-~4)%

A=

The states j R) Nt > are the eigenstates of the operators R”

9



(the eigenvalues N‘ ), R= R 4 R41 (the eigenvalues R )

1
and the operator N = RM + R;%-un% with the eigenvalue N
being the number of atoms.

The solution (19) allows to calculate all stationary ex-
pectation values of the atomic observables. Some of the results
that will be needed in our further considerations are given i%
the Appendix. It is interesting to notice however, that the so-
lution (19) does not depend on the laser field fluctuation pa-

rametersg.

3. TIME-DEPENDENT AVERAGES

The master equation (16) can be used to describe the time
evolution of the expectation values of the atomic observables.
The parameter M in the transformed density matrix (t}
has to be choosen appropriately to the cheracter of the operator
the average of which is to be calculated. It is easy to show
uging the transformation (6) and the commutation rules for the

atomic operators that, for example,

Te{ (5% 8¢0]

P (03,0, ) ]

T § 3y S0

Tr { J“ (t)} 5 (20)

1

-

T f J E,A_ m}

Ty, $06)3 5

So, knowing the averages calculated with the transformed density

matrix one can get the "true" averages by putting for m. the ap-

propriate value.

10

ke

For an arbitrary operator QG , according to (16), we have

. |
| dcay, = ~%mi<ey, - (iarx)<0a,5]),
(%, +3000-304) <[0,, [0, al] 3,

-, i{[q,kz,]Rm‘zn +<Ry[R,,Q] >mf
‘ SRR R TR, 5 <Ry TR 8] 5

[Ry. @)% |+

+wszﬂ[<[a/RL3]Ra&> 1<R‘5[53' ]§(21)

L2 3
._h’“%.Sm V[([&,RH]RM}M+

- ¥y ‘co.s”v[da 54) Ris o * <R54[ 45, @ 1

4+ Sin )9[<[Q Rgz] +<R31[ ZS’QJ>fm i

were <@y = Ir{Q w,,,;(u}

tion (21) to find the evolution of atomic observables. Further

We shall use equa~

on, we agsume the-exact resonance case, s - 0, in which

-

cos?y= seny - % . We have then
d<R>-—-[.e;'ﬂ.+h"m"fY4x + Y
_t M8 i = | c 1 2 zs T
t (Y + 300> 300) ] <R, >

, = %y %,) Ry o

~

11 v
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. |
(= - [E e X )

=S

RN +z;+;(o)-g(t)J< Rys D

"%(D’Za'b;u)[qﬂaa’&n R n” <R¢zK432m]>(23)
2

=-[ign,-a)yramt £ (5a)

£ ¥, + a;+§(o>»3ft)J<R'25>m

1 (24)
"Z({za‘%)k{Raa“wn’x.za'}Zn- R R”Z"J ?

,, .
d rnn s - [amts 29, ) <R, 3,
dt (25)

vwhere %A,ﬁ; = AB‘—' BA .

The equations (ggf,(25) are go far exact. They contain, however,
terms with the products of operators, which make them unsolvable.
Some appfoximntions are needed. To deal with the product terms
we apply a decorrelation"scﬁeme similar to that used by Compagno
and Persico[?] . The only difference consists in the fact that
we decorrelate symmetrized products of operators (anticommuta-
tors). This allows ﬁs4to preserve one-atom terms unchanged and
clearly separate them from the collective terms. The decorrelated
operators that do not enter the equations as “proper" variables
are replaced by their steady-state averages calculated with thg

density matrix (19). For example, we assume

12

—— —-

_.-5"‘

<{Rl'i’Rk€§>m =2 R R %=2< Rei %< Rye >| g (26)
where <A>s = Tr SA Wol(s)}.
With such approximations the equations (22)-(25) have simple expo-
nential solutions with the one-atom and collective damping constant
clearly separated.On neglecting the collective part one lmmediately
obtains the one-atom results. Of course, for large numbers of atoms
the collective part can dominate over the one-aton part,and the
latter has little importance.By using the density matrix (19) one
can show that[43}in the case of large N the factorization (26)

N’V@ )in the calcula-

yields a small error(with an order of
tion of the steady-~state fluorescent spectrum, The explicit expres-
sions for the collective terms can be obtained with the use of the

gteady-state averages given in ‘the Appendix.

v

4, TWO-TIME CORRELATION FUNCTIONS

Since the operator 51 in the master equation (16) commutes
with the.operator éi thig equation describes a Markov process
despite the time-dependent ;oefficient }(t) . Thus, the two-time
averages may be derived from the one-time averages by taking the
agvantage of the quantum regression theorem[21] ‘' The spectrum of
light spontaneously emitted due to transitions |[2> — 115 and
2> = {3> is proportional to the Fourier transforms of the

following atomic correlation functions

. _ : X J-
o Ty 2 = f‘ry< T, 0T > o)



<‘):w(t)J3:L >55 = bm (%3(:&*!)3'32(0} .

+>

We have assumcd here that J2 << &%4 , 80 the Rayleigh-type and
the Raman-type processes can be clearly separated. In fact the
correlation functions (27) reflcct this separation. The first
one describes the Rayleigh-typc scattering while the second one
describes thce Rnman-type scatteving (the Stokes line). According

to the transformation (11), for the resonant cusc, we have

- 4
T =g [Raa-Ry v Ry =Ry ]

(28)
- A
‘)—25‘ ﬁ[Rza"RU,] )
which relates the "bare" atomic operators J gnd J to the

24 23
“dressed" operators Rij . Using the relations (28), the solu-

tions of equations (22)-(25) for one-time averuges, and apply-
ing the quantum regression theorem one obtains the following

expressions for the correlation functions (27):

== = 4 2 -t
<Iu(t”m 25 Ty §<(R21_Rﬂ) % €

~alat - L, ()

T <R Ry % € (29)

~e (00T~ f;g(t’

34 s &+

-

PN

kL'(ng-n.)t - Qﬁ(ﬂf )
)

+ <Ry, Ry, '{\;"e

(30)
where
LatL g, e (G m(Ha<Ry)
- 3 4 €%
(0= 2™ = [ z (X +%,) * %y + =
. a
g,y (e < 83)]
2 — . N
r A (4o gBRTy (31)
b:l

PA

€

{ —
5§(t>=55(t‘)‘= IZ(D’C+B;4+B‘;5) + ¥, + ” +

31
2 - T
4 € a
+ 706, ~ %, J(N-2<ry )] T 4 — (4-€¢ ).
a -

The exact expressions for the weighting factors of the particular
exponents are given in the Appendix. The terms proportional to

(%, -

end neglecting them we obtain the one-atom results that ‘include,

'§4 ) in the width functions (31) are the collective terms

however, the effects of both the phase and amplitude fluctua-
tions of the exciting laser field. Since the collective parts of
the widths do not anyhow depend on the laser field fluctuations
(at least for the resonant case and within the approximationsg
used by us), the immediate result of our calculations is that
the laser fluctuations affect only the one-~atom parts of the
widths. This is similar to the result obteined by Puri and Has-

san[ﬁO] for a system of two-level atoms. The correlation func-

15



tions (29) and (30) have the well-known structure with the Mol-
low triplet for the Rayleigh line and the Autler-Townes splitt-
ing of the Stokes line. For one-atom case, on neglectiﬂg the
laser field fluctuations, our results agree with that of Cohen-
Tannoudji and Reynaud[1} and Agarwal and Jha[2J . For many atoms,
however, the collective parts of the widths can become dominant.
In fact, there are three qualitatively different cases when the

number of atoms is large. From equation (A.1) we have for N > 1

N £ x>4 )
2 ) ) = 2
<Ry — N is X =4 ’ (32)
X V£ X <4 ,
2 LR
where X = XM / Xzs , and
—%3 tf X >4 )
BCREAT IS S T BT LS

- $ o x<4 o, (33)
USRS

R v (.:f‘ X = 4 )
i .
7 (2§5~ ”’34)(”‘“"% )— (34)

§ NI, o, S A

» -

So, for X > 1, i.e. '§4 > '@5 , practically all the population

is shaved by the atomic levels |1>and |2> and the collective
nérrowing of the one-atom Rayleigh lines takes place. In the 1li-
miting case the 5;5 contribution to the one-atom width is comple-~
tely canceled out by the collective contribution. In this case the

weighting factors of the Rayleigh-type lines are proportional to
Nz' and this part of the emitted radiation exhibits sup®rradiant
behaviour. The Stokes lines have the welghting factors proporti-
1

L]

16

onal to N and their widths have broad (~N ) collective compo-
nents. -

In the opposite case, X < 1, i.e. b;{{ 7;5':3 practically all
the population is concentrated on the level | 3 >, The weighting
faectors of the Rayleigh—type lines do not depend on N and
only very weak radiation with 2 Lroad (~ N ) width is a remnant
of the strongly driven |1 —» {2 > transition. The Stokes
lines, as before, have the amplitudes and widths proportional to N,

In the particular case X = 1, the three atomic levels are
equally populated, all the collective-widths are zero, and all
the weighting factors are proportional to N ? . Thus in this
particular case also the Raman-type radiation exhibits superradi-
ant behaviour.

One thus can say that, for N>>4,X>1, the three-level atom
system behaves like a two-level atom system when looking at. the
Rayleigh part of the emitted radiation. Th; effects of the phase
and amplitude fluctuations of the laser field are exactly the
game as for the two-level atom system[é,10] . The amplitude fluc-
tuations affect only the sidebands while all the lines are affecterd
by the phase fluctuations.

' The Stokes lines are affected by both the phase and ampli-

tude fluctuetions of the exciting laser field.

5. GONCLUSIONS

We have considered the problem of collective resonance Ra-
man scattering of an intense laser field from the polnt of view
of the colleciive effects and the influence of the laser field
fluctuations. The phase fluctuations of the field were modeled
by the phase diffusion process while the amplitude flﬁctuations




by a nonwhite Gaussian process. The master equation for the
averaged over the phase and the amplitude fluctuations density
matvrix has been obtained in the secular approximation. It has
been shown that for the exact resonance the master equation has
a very simple solution, This solution has been used to calculate
all nceded steady-state averages, A decorrelation scheme has been
used to obtain the solutions for the time-dependent averages,
and the quantum regression theorem to deal with the two-time
correlation functions., The field correlation functions have been
calculated for the Rayleigh-type and the Raman~type processes.
It has been shown that the laser field fluctuations affect only
the one-atom parts of the spectral widths. The collective nar-
rowing of the spectral lines has also been predicted. The collec-
tive (supecrradiant)properiies of the emitted lighi has been discus-
ged for varlous ranges of values of the atomic parameters. It
was shovn thot only for X = 4 the Ramen part of the emit-
ted light exhibits superradiant behaviour

Corresponding formulas for the intensity correlation func-

tions can be obtained in a similar manner,

APPENDIX

In this Appendix we give the explicit expressions for the
steady-stateaverages of the atomic operators that have been cal-
culated with the use of the density matrix (19). The normaliza-

tion factor A appearing in the formulas is given by

2
A= [(N+4)XN*L~(N+3/)X“4+4]/(X—4)

where X = blal /b’za

, and the formulas are:

18

—_————— =

-1
Ry = A [NNe)x ™2 4 neayw x 2

+(Ns1)(N+2)x Y -zxj/(x 1) ,

(A.1)
_4_
<RY = AN T N s en-ayx V3
N+2
+(N+:7,)(3N2'+3N—.Z)X ’-(N+1)z(,v+2)X ”++4
+ 4)(-2"_.'_ _ng /(x-4)l’ s ’ (A.2)
- SN
<Ru7s‘<RM>5‘ Z<R%< ) (4.3)
{Ry,> = N- <RZ , (A.4)
— = N- 3 ¢ R (A.5)
<33‘&1>s‘<R55'R14% ¥-z<Rg
2
SRy Ry % = R Ry % = (Rpq 11)>5
4 2
= L [<r +4<Rg] L. (a8)
SRyRy 5 = < RshRip % 7
(A.T)
:%[{NM)(R%—(R >5J ;
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KonnmekTHBHOEe pe3oHaHCHoe paccesHue
PamMaHa B MHTEHCHBHOM I[IOJlIe, HMeWmeM
das3oBble H aMIIUTyOHble QUIVKTYyaAUUH

PaccMOTpeHO KOJUIEKTUBHOE pesoHaHCHoe paccesiHne Pamana
oT cucrtemn N TpeXypoBHeBHX ATOMOB B CHJIbHOM Jia3epHOM IoJjie,
uMelomieM ¢GhasoBble M aAMIUIMTyOHbie QUIYKTyalHH. B cliydae TOUYHO-
I'0 pes3oHaHCa IIoJIyyeHa TouYHad CcTalHoHapHasa MaTpHIA JIOTHOC-
TH [OJIs1 ATOMHOM CHCTeMbi, OBGCYXIOeHbl KOJNIeKTHBHbIE CHEKTDpallb—
Hble CBOMCTBa ¢IIyopecleHIUH P3JIeeBCKOH M paMaHOBCKOM JIMHHIL.
IlokazaHO KOJUIEKTHBHOe CyXeHHe CIeKTpaljibHOH JIMHHU,

Pabora BhmoNiIHeHa B JlaBopaTopuH TeopeTHUYeCKOH GH3IUKH
OUsHN.

TIpenpunTt O6beHHEeHHOTO HHCTATYTA ANePHBIX uccnenoBanuit. Jy6ua 1987
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Collective Resonance Raman Scattering
of an Intense Laser Field with Phase

and Amplitude Fluctuations

The resonance Raman scattering from a system of N three
level atoms that are driven by a strong laser field with
the phase and amplitude fluctuations is considered. The
exact on-resonance steady-state solution to the atomic
density matrix is obtained. The collective properties of
the fluorescent spectrum for both the Rayleigh-type as
well as the Raman-type processes are discussed. The collecH
tive narrowing of the one-atom spectral lines is predicted|

Tho invostigation has been performed at the Laboratory
of Theorctical Physics, JINR,
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