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1. INTRODUCTION

New technical developments/1,2/ make it experimentally rea-
lizable to investigate the interaction of one or a few atoms
with the electromagnetic field in a high-Q maser cavity /3.4/ .,
The situation realized in the one—atom maser /1/ approaches the
idealized model of a two-level atom interacting with a single
quantized mode of a radiation field as proposed by Jaynes and
Cummings many years ago/a/. Various aspects of the dynamics
and statistics of the field in this model have been studied
(for reviews see /3.8/). The production of squeezed quantum
states of the cavity field has been discussed in refs. /7107 |
Meystre and Zubairy/?/ have found squeezing for an initially
coherent field interacting with an initially excited atom.
Recently, Butler and Drummond have shown the occurrence of
squeezing at the onset of interaction for an alternative ini-
tial state where the initial atomic state is taken to be de-
excited with the field in a coherent state /8/, Squeezing in
single-mode spontaneous emission from a suitably prepared
atom in an ideal cavity has been demonstrated by Knight and
his co-workers’?1%” | The levels of squeezing obtained in
the standard Jaynes—-Cummings model are however low.

There are various ways of overcoming this difficulty. One
way is to use multiphoton resonance in the framework of the
so-called multiphoton Jaynes—Cummings models /11.12/  another
way is to use a large number of atoms interacting cooperative-
ly with the cavity field /8:18-18/ 1t jig hence interesting to
know what happens to squeezing in a cooperative system with
the multiphoton-resonant interaction. The present paper is
devoted to examining this problem on the basis of the simplest
cooperative model consisting of two two-level atoms.

2. HAMILTONIAN AND OBSERVABLES

We consider two two-level atoms interacting with a single-
mode radiation field in an ideal resonant cavity via the m-
photon-transition mechanism. The effective Hamiltonian for
this system in the rotating wave approximation is
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H-foata + % Hw RZ+ Ea'hg(R*'a'M R7a*™), (1)
j=1 ° 47 = ! !
Here R% and R are the pseudospin —-1/2 operators of the j-th
atom, a* anda are the creation and annihilation operators
of photons in the cavity field, ® and w, are the frequencies
of the field mode and the atom, g is the atom—field coupling
constant, and m is the photon multiple of transitions. The
exact multiphoton resonance is assumed to occur: @,=MHw.

We denote by |+>, |-> the excited and ground states of an
atom and by In> the Fock states of the field, The initial
state of interest for squeezing will be taken to be either
a coherent (nonvacuum) state of the field together with the
atomic de-excited state |[-,-> or the vacuum state of the
field together with an atomic superposition state.

The observables of interest are the variances of the slow—

ly varying Hermitian quadratures of the field which give in-
formation on squeezing /17-20/,
The field quadratures are defined by
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where ¢ is a phase angle that may be chosen at will. The com-
mutation of ay and apis [a;,ag] =1/2 . The variances (Aa;)®=
= <a®>w <a >2 (1 = 1,2) satisfy the uncertainty relation
(Aal) (Aaz)2 > 1/16. For the vacuum and coherent states of
the field one has (Aa 1)%ac,coh= (Aay) %m. cop = /4. The field
is in a squeezed state if there exists a phase angle ¢ such
that (Aa ()2 < 1/4 for either i = 1 or 2. Squeezing states
have variances smaller than the vacuum noise variance in one
quadrature, and increased variances in the other quadrature.
The condition for squeezing in the quadrature 3, can be writ-
ten simply as

. 2
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S_<0, (3)

where the relative variances
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have been introduced and are called the factors of squeezing.
In terms of the photon operators, we find readily that

8, = 2<atas + 2Re<a2e2“w‘"6)>.—4(Re<ae1@”"0) >)?

(5)

S =2<a+a>.-2R&<a2e2imn_6) it ~9) 2.
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Note that S, > -1 for an arbitrary field state. If squeezing
occurs in the quadrature a_ , i.e. 8, <O, then the degree
(per cent) of squeezing is determined by -$, = -100S, 7.

The existence of squeezed states is now well understocod
theoretically "7/ and has been experimentally observed in va-
rious systems/18-20/

3. COHERENT FIELD TOGETHER WITH THE DE-EXCITED
ATOMIC STATE

In this section we examine squeezing in the situation when
the field is initially in a coherent state !z> and the atoms
are initially in the de-excited state i~,->. The initial
state is then given by

GO)> = [—,=> @ | z>. (6)

We work here in the Schr8dinger picture and expand the
time—dependent wave function of the atom—field system as
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x{im,~; 0> A(_"_) ® + '+,+;n~ 2m> A(+n)(t).+ (7)
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Then the Schrddinger equation gives the equations of motion
for the probability amplitudes as
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together with the initial conditions
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The solutions of these equations are easily found to be
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Hence, the mean photon number <a+a>, the mean photon ampli-
tude <a>and the mean square photon amplitude <a2> are calcu-
lated to read
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Here p, is the Poissonian distribution corresponding to the
coherent initial state |2> of the field,

pn=exp(-i)r7n/n! (13)

and N =|z|% is the dimensionless initial-field intensity.
Note that o4, 0, and og defined in eq. (12) are real numbers.
Then, it is seen from eqs. (5) that the optimal choice of ¢
for squeezing should be either f=¢ or 6=¢ + n/2, where ¢
is the phase of 2z, i.e. z =n *2exp(i¢). Taking into account
the relations $,(6 + n/2) = S85(8), Se (@ + n/2) =8,(0) we
shall consider below only the choice 6 =¢. In this case,
equations (5) become

S 2o, +2502 —41'1-0% , (14a)

1
Sg =20, -2n0, . (14b)

These equations together with eqs. (12) and (10) describe the
time behaviour of the squeezing factors S§; and S, . For very
short times (gt <<1), we find from eqs. (12),and (10) the
asymptotic expressions

- 2net)? +§-(52+25)(gt)4, m=1
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Here we have used the property of the Poissonian distribution

p,nn-1) .. (a-k+1) =0k, (16)
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By substituting expressions (15) into eqs. (l4), the asympto-—
tic expressions for S8, and S, are found to be

- Eﬁ(gt)‘* in the case m=1
S (gt <«<1) = 3 (17a)
—2m(m-1)ﬁm“1(gt)2 in the case m>2,
iﬁ(gt)'; in the case mn=1
s (17b)

So (gt <<1) =

om(m ~ 1) T ™1 (gt) ® in the case m> 2,

The negative expressions (17a) indicate the immediate appea-
rance of squeezing in L3y for any photon multiple m and arbitra-
ry nonzero 1ntens1ty n at the onset of interaction. Such a be-
haviour is absent in the case when the atoms are initially in
thé excited state /7.8,18-15/  The positive expressions (17b)
indicate the corresponding increase of fluctuations in the
quadrature a,. For the particular case m =1, our results are
in agreement w1th the results obtained recently by Butler

and Drummond ‘¥ for a cooperative Dicke system. In thé cases
of multi-photon transitions (m> 2) the degree of squeezing

in a; increases from the onset of interaction as (e)? instead
of (g04 as in the one-photon case (m= 1). The dependence of
the squeezing factor S; (gt << 1) upon the initial field in-
tensity n 1s linear (~n ) in the cases M = ],2, and nonli-
near (~0™7%) in the cases m > 3. By comparlson with the
one~atom case’/12/, the cooperativity of the two atoms consi-
dered here leads to the twice larger factors 8, (gt <<1),

S, (gt <<1). It should be noted from eqs. (17) and (4) that
to order (gt)* for m= 1 and (gt) for m > 2 one has (Aa )2(A32)2
= 1/16 indicating that a minimum uncertainty state is genera-
ted to this order.

Figure 1 presents the long time behaviour of S; computed
numerically from eqs. (l4a), (12) and (13) for, e.g., m =1
and n = 0.2. As soon as t >0, we observe negative values of
Sy indicating the occurrence of squeezing. As time goes on,

S, starts oscillating. Squeezing disappears and later may

. Fig.1l. Long time behaviour of
® ot the factor 8;. The calculation

a-02 has been made for m= 1 and
Qa2 ~ .

= 0.2,
a1
/[ \ | o
S 0 o .

.01 \;7 appear again. The maximum:de-
o gree of squeezing recovered
- ’ again may be larger than the

maximum degree of the first
(short-time) squeezing. These
features have been shown to exist in the situation with a sin-
gle atom /7.12/ and therefore are not surprising for the two-
atom case.

Figures 2-6 present the behaviour of 8; for the first squee-
zing, calculated for various intensities % and various pho-
ton multiples m. It can be noted that for each photon mul-
tiple M the first squeezing has a lower bound which increases
as M increases from | to 3 and decreases as M increases
from 3. For m = 1-5, this lower bound is reached for n=0.42,
2, 4.25, 7, 10.75 and is approximately equal to 29%, 58%, 60%,
57%Z, 537, respectively. It is larger than the lower bound

obtained in the situation with a single atom’/1%/
In fig. 7, we compare the first squeezing obtained here
for the two atom system with that obtained in /12/for the
single~atom situation. In both the cases, the calculations
me=1,

have been made for the same values of M and n: n =0.2
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Fig.2. Time behaviour of 8y
for the first squeezing in’
the cases ofm= 1, n =0.3,
0.42 and 0.8. The Zower
bound is approximately equal
to —0.29 (29% squeezzng) and
occurs for n = 0,42.

Fig.3. Time behaviour of 8,
for the first squeezing in
the cases of m= 2, 0 =1.25,
2 and 4. The lower bound is
approximately equal to -
0.58 (58% squeezing), and
occurs for n =2, '
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Fig.4. Time behaviour of S
for the first squeezing in
the cases of m = 3,0 = 3,
4.25 and 5. The lower bound
18 approximately equal to -
0.60 (60% squeezing),

and occurs for n = 4,25.
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Fig.7. Comparison of the
squeezing factors 8, obtained
in the single—-atom— and two-
atom—models. The full line
corresponds to the two-atom
case. The dashed line corres-
ponds to the single—atom case.
In both the cases, the cal-
culations have been made for
m= 1, 0= 0.2 and 0.4.

Fig.5. Time behaviour of 8,
for the first squeezing in
the cases of m= 4, n=4, 7
and 10. The lower bound is
approximately equdl to —
0.67 (67% squeezing), and
occurs for n = 7,

Fig.6. Time behaviour of 8,
for the first squeezing in
the cases of m= 5,0=4,75,
10.75 and 16.75. The Llower
bound is approximately equal
to —=0.53 (53% squeezing), and
occurs for

n = 10,75,
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and 0.4. It is noted from the figure that for & = 0.4, the
maximum degree of the first squeezing in the two-atom case
is larger than in the single-atom case, whereas for n = 0.2
the contrary relation occurs. For the same and very small
times, the squeezing in the two-atom case is twice as large
as that in the single-atom case.

4. VACUUM FIELD AND ATOMIC SUPERPOSITION STATE

In this section, on the basis of the model (1) we investi-
gate the possibility of generating squeezing by the coopera-
tive interaction of two suitably prepared -atoms with a cavity
mode initially in the vacuum state.Of course,no spontaneous
emission squeezing wi%l be produced if both the atoms are
initially fully excited. However, the atoms can be injected
into the cavity in coherent superpositions of excited and
ground states and subsequent squeezing is possible’/%10/ o
get physical insight we concentrate on three cases where
simple analytical solutions can be derived.

Case 1. Let one atom be prepared in a coherent superpo-
sition state; while the other atom, in the ground state. The
initial state of the total system is then

]l//(0)>=cos—;—-|+,—;0> +e—iBsin—g—|—,—;0> , 0gagm,. -~ (18)
0<BgRrm, '

The interaction Hamiltonian couples the state |+,-:;0> to the
states |-, m> and |-,+0> but the zero quantum state |-,-;0>
is decoupled and does not evolve. This means that the atoms
can emit M photons into the field initially in the wvacuum
state and then reabsorb them. At the time t, the wave func-
tion. 1is

lg@®) > = cos%(A(t)l+,-:0> +B@®)|-,+:0> + C[~,—;m>) +
(19)

+ e mot-B) sin-aé-l—,-; 0>.

The Schrddinger equation gives the equations of motion for
the probability amplitudes

1A=g\/_m"!-0, ié=g\/m!'C', ié=g\/m!(A+B), (20)

where A(0) = 1, B(0= 0, C()= 0. These equations yield the
solutions .

’

()
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A(t) = cos® [gym!/2t],
B(t) = —sin®[gy m1/2t], (21)

C®) = - L sin[g\/2(r;1!)t].
ND

It is seen from eq. (19) that if m > 3 then <a>=<a®> =0,
hence 8;=8,=2<a"a>>0,, and therefore, no squeezing occurs.

For M= {, the expectation values of the operators 2, a?
and ata are easily found from eqs. (19) and (2!) to be

WB-wt)

<a> = — sina sm(\/_z_gt) é

2vZ
<a®> =0, (22)

<ata> = ;—cos’-% sin® (V2 gt) .

According to eqs. (5), the factors 8, and 8, are then

- ga _ 1 .2, 2, 2. /9
S, {cos 3 = sin (6 - B) sin® a] sin“(/2 gt),
— (23)
S, = [ cos? —;—- ~ %cosg(e— B) sin%al sin® (2 gt) .
We take the parameters 6 =8+7/2 and a=2n/8 which are opti-
mum for, squeezing in the quadrature a,. Equations (23) then
become . ‘
— 1 —

Sla-%sing(\/fe gt), Se=2—sm2(\/2 gt). (24)
It is seen that the fluctuations in a, are reduced to be be-
low the vacuum noise level whereas the fluctuations in a, are
enhanced. The minimum value of 8, is min S, = -1/8 and is
reached periodically at the times t =(Rk + i) n/(2V2 8) , k=
= 0,1,2,... The corresponding maximum degree of squeezing 1is
12.5%. It is twice as small as the degree 25% of the maximum
squeezing obtained in the one—atom one-photon-transition (m =
=1) situation’/10/, ‘ ,

For m= 2, we find for <a>,<a®> and <a*a> the expressions
<a> =0,
<a®> = - %sina sin(2gt) e LB~ 2at) .

) . (25)

<ata>= cos® —%sinz(2gt) .

10 }

The factors 8; and S, are therefore

S1 = zcosz—g—- sin®(2gt) - sin(26 - B) sina sin(2gt) ,
(26)
S, = 2 cos® -g- sin® (2gt) + sin(20 - B) sinasin(2gt) .

After making the optimum choice: 6 =8/2 +7/4 and a=31/4 we
get

1

s, = sin(een) [(1 - )sin(@gt) - ——1,
. Ve 27)

S, =sin(2et).[(1 - ) sin(2gt) +

1y,
2

These equations show periodical changes of squeezing in ay by
that in ap and vice versa. It is found that .- minS= mind, =

= —(\/-2—- 1) = -0.416. The corresponding maximum degree of

squeezing is about 41.6%. It is less than the degree (/6 -2)=
= 457 that may be obtained in a one-atom two—photon—-transi-
tion system’1%”, The times for reaching the maximum squeezing
are t =@k +1)r/4g, k=0,1,.. .

Thus, the presence of the unexcited atom leads to decrease
of the maximum degree of squeezing in spontaneous emission
from the superposition-state-excited atom.

Case 2. Let the atoms be prepared in a superposition
state such that

-1
[Y(0)> = cos%l+,+;0> + e ’Bsin-—g-]-,-; 0>, (28)
O<a<n, 0<B<L 2.

The interaction Hamiltonian couples the state |+,+:0> to the
states |+,—;.m>, |-,+;m>and [-,-;2m> but the zero quantum
state |-,—;0> is decoupled and does not evolve. The time-evol-
ved wave function has the form

lyt)> = e~iw°tcos-‘i-[ [+,4:0>A (1) + [-,-;2m>A (1) +
2 (29)

~iB-w o0 sin—g-[ -, =3 0>,

+(|+,=-;m> + |—,+;m>)B({)] + e
It is straighforward to solve the Schrddinger .equation for
the amplitudes A+(t) » A _(t) and B(t). As a result we get

11



2m!
A =1- g m'sinz(QRt) ,
QR
R
g2y (@m!
A_() = - —————sin?(@Qgt) , (30)
R

i'
B® = -1-EYML sinagt),
205

where Qp is the effective Rabi frequency given by

[mv+£-—-L~1 (31)

Rg\/

For m> 2, we find -from eq. (29) that <a>=<a®> =0, and there-
fore, no squeezing exists. For m= 1, <a> , <a®> and <ata> are
calculated to read

<a> = 0
cafs oo 2o 1B-200) sing(‘-‘/—zg— gt) , (32)
cata> =4 cosg—;« sing(—\é—e—gt)[l +—:1;—sin2(—\é-§—gt)].

The factors S; and Sp are then

S, = --smz(l—gt) {f{1+= sm (‘/6 gt)](1+cosa) - cos(20 - B) sina} , '’

3

»

8§, = -g-sinz(-%g-fgt) {{1 +§-sin2(-\—/~§—-gt)](1+ cosa) + cos (20 - B) sinaf.

(33) |

It can be shown that the optimum choice of 8 and a should be
6=PB/2, a=arctg(-3/4) (0<a< n). For these parameters
equations (33) take the form

12

4 Ve V8
Sl = —Esm2("§—gt) [6 - Sinz(—'é-'gt)] ’

. — — (34)
g = ism?(_“@_gt) (12 + sina(—‘és—gt)]-
45 2 2

It is seen that squeezing occurs in a (S < 0) but not in
ag(8, 20). At the times t—(2k+1)n/g\/—3- k=0,1,2,..., the
factor S1 reaches the minimum value minS ; = -4/9. It repre-
sents more than 44.47 squeezing which is marginally larger
than the 257 squeezing associated with the spontaneous emis-
sion in the standard Jaynes—-Cummings model

Case 3. Let the initial state of the total system be

1 (0)> —-——cos—-(l+,— 0>+ |~,+:0>) +e ~if sin-a—l—,-:0> .
ve o2 2 (35)
0<a<nm, 0<B <2n.

The interaction couples the states [+,-;0>, |-,+:0> to the
state |~-,=; m>, The wave function at the time t {is

-30> 4 |=,+;0>) -

Iy () > = cos il—l:cos[\/2(m!) gel([+
2 (36).

V2

i(meyt - B)

~tsin[y2m)gtl|-,~;m>} + e sinig-l—,—:0>~

For m > 3, we find from eq.(36) that .<a>=.<a2>=0,and hence
no squee21ng occurs.

For m= 1, we get for <a>, <a? > and <ata> the expressions

<a> = - -12—e (B-wn) sina sin(yv/'2 gt) ,

<a®> =0, (37)
<ata> = cosg—g-sinz(\/.?st) .

The factors 8,; and s g are then

8, =sin®@/2 gt) [ 1+cosa - sin? (8 - B) sin 2a],

— (38
S2 =sin2(\/2gt)[1+003a—0052(6—/3) sin®al. )

13



The optimum choice of parameters for squeezing in, e.g., a,
should be 8 =8+ 7/2 , a=2r/3 . For these parameters, equa-
tions (38) take the form

1.2 /5 1 .2, 5
Sl=—rsm W2gt), 82=~2-sm (V2sgt). (39)
At the times t =(2k+1)#/2\/2g the factor S; takes the mini-
mum value minSy = -1/4 which represents 257 squeezing and is

equal to the maximum degree obtained in the Jaynes—Cummings
model 78.10/,
For m = 2, we find from eq.(36) that

<a> =0,

<a®> = - —-I:e (B -2wy sina sin(2gt) , (40)
. V2 '

<ata> =2 cosg-—g- sin®(2gt) .

Hence, the factors S4 and Sy are found to be

S,=4 cosz—g— sin® (2gt) -\/Esm(ze - B) sina sin(2gt) ,

S =4cm?%sm%%0+V§§n@6-ﬂsmamM%0, (41)

2

The optimum choice of the parameters 6 and a should be 8=
= B/2+n/4, a = arctg(-1/y/2). For these parameters, equations
(41) take the form

S, -V —2§-sin(2gt) [2(\/-2. ~1) sin(2gt) =11,

o e (42)
S g = V= sin(2gh) [2(V — - 1) sin(eg) + 1], :

We find that minSy;= minS,=-(vV8-2) representing the maximum
squeezing about 457 in ay and a, at the times t = 4k + 1) n/4g
and t = (4k +3) n/4g (k= 0,1,2,...), respectively. This maxi-
mum degree of squeezing is equal tb the maximum degree obtain-—
ed in the situation with a single atom (the two-photon
Jaynes—Cummings model).

TA . .

5. SUMMARY

We have investigated the generation of squeezing states
of the cavity radiation field in the two-atom one-mode model
with- multiphoton transitions. The cases when the field is
initially in a coherent state together with the de-excited
atoms, and when the field is initially in the vacuum state
together with an atomic superposition state have been examin-—
ed. The time-dependent squeezing factors have been calcula-
ted. The conditions for the optimum squeezing have been shown.
The comparision with the single—atom situation has been made.
These results are potentially of interest to experimentalists
studying Rydberg atoms in high-Q single-mode cavities in which
the squeezed states can be generated.
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®am Jle Kuen, Kapmaunema E.II., ltymosckuit A.C.
CxaTue cBeTa B OBYXATOMHOH OOHOMONOBOH MomeiH
¢ MYIbTHHOTOHHBIMH IepeXomaMH

E17-87-410

HcecnepmoBaHa reHepanusa CxaTbhlX COCTOSHHH B IBYXaTOMHOMH
ONHOMOOOBOKH MOOEeNIH C MYJIbTHGOTOHHBIMH NepexomaMH. Belumciie—
Hbl BpeMsizaBHcHMble GaKTODBl CKaTHA. lIpuBeneHbl yCIIOBUA Oms
ONTHUMAJIBHOI'O CXAaTHH.

PaGora BmmonneHa B JlaBopaTopuu TeopeTuqecxoﬁ dbusuku

|-ousiH.

ITpenpuHT O6bEAMHEHHOrO0 HHCTHTYTA ANEPHbIX UccilenoBanuit. Jy6ua 1987

Fam Le Kien, Kadantseva E.P., Shumovsky A.S.
Light Squeezing in the Two—Atom One—Mode Model
with Multiphoton Transitions

E17-87-410

The generation of squeezing states of the cavity radia-
tion field in the two-atom one-mode model with multi-
photon transitions is investigated. The time-dependent
squeezing factors are calculated. The conditions for the
optimum squeezing are shown.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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