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1. INTRODUCTION 

New technica1 deve l.opment s 11,21 make it experimenta11y rea­
1izab1e to investigate the interaction of one or a few atoms 
with the e1ectromagnetic fie1d in a high-Q maser c av í.ty /3,41 • 

The situation rea1ized in the one-atom maser / 11 approaches the 
idea1ized mode1 of a two-1evel atom interac~ing with a sing1e 
quantized ~ode of a radiation fie1d as proposed by Jaynes and 

/ 6/ •Cummings many years ago Various aspects of the dynamics 
and statistics of the fie1d in this mode1 have been studied 
(for reviews see 13,61 ). The production of squeezed quantum 
states of the cavity fie1d has been discussed in refs. /7-101 • 

Meystre and Zubai r y / 71 have found squeezing for an initia11y 
coherent fie1d interacting with an initia11y excited atDm. 
Recent1y, But1er and Drummond have shown the occu~rence of 
squeezing at the onset of interaction for an a1ternative ini­
tia1 state where the initiàl atomic state is taken to be de­
excited with the fie1d in a coherent state / 8 / • Squeezing in 
single-mode spontaneous emissío~ from a suitab1y prepared 
atom in an ideal cavity has been demonstrated by Knight and 
h i k 19,101 Th 1 'I f . . bta í d·1S co-wor ers • e eve s o squeez1ng o talne 1n 
the standard Jaynes-Cummings mode1 are however low. 

There are various ways of overcoming this difficu1ty. One 
way is to use mu1tiphoton resonance in the frqmework of the 
so-ca11ed mul tiphoton Jaynes-Curmnings mode1s 111,121. Anó t her 
way is to use a large number of atoms interacting cooperative­
1y with the caví.cy fie1d 18,13-161. It is hence interesting to 
know what happens tosqueezing in a cooperative system with 
the mu1tiphoton-resonant interaction. °The present paper is 
devoted to examining this problem on thebasis of the simplest 
cooperati~e mode1 consisting of two two-1eve1 atoms. 

2. HAMILTONIAN AND OBSERVABLES 

We consider two two-1evel atoms interacting with a single­
mode radiation field in an ideal resonant cavity via the m­
photon-transition mechanism. Theeffective Hami1tonian for 
this system in the rotating wave approximation is 

Otn~t~ ..". klli..iH "i.liíCTHTyr, 
\'!ZiSolJ!i~!;( sr.t:..:'~~~n;tu"HI •• 

6~'1:-;.f1k,-; i l=.KA 
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-I- + 2 ~ z 2 J. + m +m
H = ncu a a + L nco o R J + 2 n g(Rj a + Rja ) • ( I ) 

jcl J=1 

Here RZj and Rf are the pseudospin -1/2 operators of the j -th 
atom, a+ and a are the creation and annihilation operators 
of photons in the cavity field, co and lUo are the frequencies 
of the field mode and the atom, g is the atom-field coupling 
constant, and m is the photon rnultiple of transitions. The 
exact rnultiphoton resonance is assumed to occur: ~o=m~. 

We denote by 1+>, 1-> the exci t ed and ground s tates of an 
atom and by In> the Fock states of the field. The initial 
state of interest for squeezing will be taken to be either 
a coherent (nonvacuurn) state of the field together with the 
atomic de-excited state 1-,-> or the vacuum state of the 
field together with an atomic superposítion state. 

The observables of .interest are the variances of the slow­
ly varying Hermitian quadratures of the field which give in­
formation on squeezing /17-20/. 

The field quadratures are defined by 

1 ( i (c:ú t - 8) 
a1=-ae 

2 
+ - i (co t - 8)

+ae 
) 

, 

a 2 = 
1 

-
21 

(a i(lUt-8)e + -i(cut -8) )- a e , 
( 2) 

where 8 is a phase angle that may be chosen at will. The com­
mutation of a1 and a2is [al.a2] =1/2 . The variances (L\11. i ) 2= 
= <a 2>"- <a. >2' (i = 1,2) satisfy the uncertainty relation 
(~a1)i C~a 2)2 

1 
2: 1/16. For the vacu~m and coherent states of 

the field one has (L\a1);accoh=(L\a2)~ao coh = 1/4. The field 
is in a squeezed state if ~here exists' a phase angle 8 such 
that (~ai)2 < 1/4 for either 1 = I or 2. Squeezing states 
have variances smaller than the vacuum noise variance in one 
quadrature~ and increased variances in the othe~ quadrature. 
The condi tíon for squeezing in the quadrature aa can be wri t ­
ten simply as 

Sa < O ,	 (3) 

where the relative variances 

2 . 
(Ll.a a) ~ - (LI.a~ coh, vac ~ 4 (Ll.a ) 2 _ 1

S	 (4) 
a d 

(L\a a ) ~Oh. va c 

~ave been introduced and are called the factors of squeezing. 
In terms of the photon operators, we find readily that 

Sl	 = 2<a+a> -+ 2Re,<a2e 2i (ú> C- e) > .-4(Re <ae i(CtJt-8) »2 

(5) 

2 <a+a > 2Re < 2 2i (cut-8) 4(I i(ú>t -8) )2S 2	 == - I a e > - m<a e >. 

Note that Sa > -I for an arbitrary field state. Tf squeezing 
occurs in the quadrature aa' i.e. Sa <O, then the degree 
(per cent) of squeezing is determined by -Sa == -IOOS a %. 

The existence of squeezed states is now well understood 
theoretically /17/ and has been experirnentally observed in va­
rious sys terns 118·20/ • . 

3.	 COHERENT FIELD TOGETHER WITH THE DE-EXCITED 
ATOHIC STATE 

In this section we examine squeezing in the situation when 
the field is initially in a coherent state !z> and the atoms 
are initially in the de-excited state iT,->. The initial 
state is then given by 

: l,Ú (O) > = i - , - > ~ : z> .	 (6 ) 

We work here in the Schrõdinger picture and expand the 
time-dependent wave function of the atom-field system as 

2iz 1 .Z n
il,Ú(t) > = L exp[-i(n-m)úJtl exp(-_I._I_) --==- x 

n==O 2 \/n! 
x \ ~-,-;n>A(~) (t) + ~+,+;n- 2m>A~)(t).+ (7) 

+ <: + , _; n - m> + !- , +; n - m> )B(n) (t) L 

Then the Schrodinger equation gives the equations of motion 
for the probability amplitudes as 

i ~ (o)
-

:: 2 J n ' B (o)
g.

(n - m)! 

i A(n) 
+ 

= 2 J (n - m) ! B (o) 
(o - zm): g , 

(8) 

iB (n) == J o! gA(n) + J' (O~ m) ! gA(n) 

(n - m) t - (n - 2m) ! + 

3 
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together with the initial conditions 

A(n) (O) = 1, A(n) (O) = B (n) (O) = O• (9)
+ 

The solutions of these equations are easily found to be 

2q o 

A (n) 2yqn-mqn sin2 [ v(qn-m + qo)/2 gt] , ( 10) 
+ qn-m+qn 

B(O) = -iv' qn sio(v2(qo_~+qo)gt], 
2(qn_m+ qo) 

where 

o! 
q = O(o - 1) ••• (o - m + 1)	 ( I I ) 

o	 (n - m) ! 

Hence, the mean pboton number <a+a>, the mean photon ampli­
tude <a>and the mean square photon amplitude <a 2 :> are calcu­
lated to read 

+ - . (n) 2 
<a a> .;. o - 2m ( I- p IA I + ~ P o IB (o) I 2) == o o ~ 

o -t n=mn =2m 

00 

e ltllt xa» = z ( ~ P A(o) ~~o + 1) 
n= o n - ... + 

(I2) 
~ A(o) *A(n+1). / 1 _ ~ 

+ ~ Po + + v + 
o =2m	 n + 1 

+	 I 
00 

2po B(O) * B(O+l) Y1 - _m_) == zo 1 ' 
o=-m 0+1 

00 

e 21Ct> t <a2 > = z 2 ( ~ p; A(o) *A (0+2) 
o - - +0=0 

oe 

+ I­ p A(o) *N°+2) J (l _ ~~) ( 1 _ 2m ) + 
0= 2m n + + 0+1 0+2 

4 

00 (o) * (n+ 2) m m 2 
+	 ~ 2p B B V (1 - --) (1 - --) ) == z O'o ne	 m 0+1 0+2 2 

Here Po is the Poissonian distribution corresponding to the 
coherent initial state \z> of the field, 

P n = exp (- 11) 11 o / O !	 ( 13 ) 

and n=lz]2 is the dirnensionless initial-fie~d intensity. 
Note tha t 0'0' U 1 and O' 2 defined in eq. (12) are real number s , 
Then, it is seen from eqs. (5) that the optimal choice of e 
for squeezing shou1d be either f)=ep or f) =·cP + "/2, where cP 
is the phase of z , ;e , z = li 1/2 exp(icP ) . Taking into accountí 

the relations Sl(f) + "/2) = 5 2 ( f) ) , Se (f) + 71/2) =Sl(f)) we 
shall cons ider below only the choice f) = cP. In this case, 
equations (5) become 

- - 2	 (14a)Sl = 20'0 + 2n0'2 - 4nO' 1 

S2 = 20'0 -200'2 •	 (14b) 

These equations together with eqs. (12) and (10) describe the 
time behaviour of the squeezing factors Sl and 52 . For very 
short times (gt«1), we find from eqs. (12).and (Ia) the 
aSYmptotic expressions 

n - 2 ii (gt ) 2 + !. (fi 2 + 2 fi) (gt ) 4 , fq=l 
(J = 3 
o { - -m 2 

O	 - 2mo (g t ), m ~ 2 , 

z: {1 - (gt) 2 + ~ (2n + 1) (gt) 4 , rn = (J	 1 

(IS)
1 - m-1 2

1	 - mn (g t) , m ~ 2 , 

1	 - 2 (gt) 2 + .1 (2n + 3) (gt) 4, m = 1 

0'2 " { 1 _ [2 m~m -1 3+ m(m _ 1) iim-2](gt) 2, m ~2. 

Here we have used the property of the Poissonian distribution 
00 

I P n n(n - 1) lO' (o - k + 1) ""
-n k • (16) 

0= o 
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0Cl -k - k-l
 
~ Pn (n + 1) n .•• (n - k + 2) = n + k n ,
 

n= O 

I Pn (n + 2) (n + 1) ••• (n - k + 3) = nk + 2 k nk -1 + k (k _ 1) ii k.- 2. 

n=O 

By substituting expressions (15) into eqs. (14), the asympto­
tic expressions for Si and S2 are found to be 

_ _2-n (gt ) 4 1•n t he case m = 1 
S 1 (gt << 1) = 3 (17a) 

{ _ 2m(m - 1) li m-l (gt) 2 in the case m~ 2 t 

~ n(gt)4 in the case m=l 
(17b) 

S 2 (gt «1) ~ { :m(m _ - in the case m~ 2.1)õm 1(gt) 2 

The negative expressions (]7a) indicate the immediate appea­
rance of squeezing in ai for any photon multiple m and arbitra­
ry nonzero intensity n at the onset of interaction. Such a be­
haviour is absent in the case when the atoms are initially in 
thé excited state 17.8,13-151. The positive expressions (1'7b) 
indicate the corresponding increase of fluctuations in the 
quadrature a2 . For the particulàr case m =1, otir results are 
in agreement with the results obtained recently by Butler 
and Drummond 181 for a cooperative Dicke system. In thé cases 
of muI ti-photon transit ions (m» 2) the degree of squeezing 
in ai increases from the onset ~f interaction as (gQ2 instead 
of (gt)4 as in the one-photon case (m = 1). The dependencê of 
the sque~ing factor S 1 ~gt «J) upon the initial field in­
tensity n is linear (~n ) in the cases m = 1,2, and nonli ­

1near (- ii m- ) in the cases m ~ 3. By comparíson with the 
one-atom case/12~ the cooperativity of the two atoms consi­
dered here leads to the twice larger factors S 1 (gt «I), 
S2(gt «1). It should be no t ed from eqs. (~7) and (4) that 
to order (gt) 4 for m= 1 and (gt) 2 for m ~ 2 one has (L\a1)2(L\ai2=: 

= 1/16 indicating that a minimum'uRcertainty state is genera­
ted to this order. 

Figure 1 presents the long time behaviour of Sl computed 
numerically from eqs. (]4a), (]2) and (]3) for, e.g., m = 1 
and n = 0.2. As soon as t > O, we observe negativ~ val~es of 
Sl 1ndicatíng the occurrence of squeezing. As time goes on, 
Sl starts oscillatin8' Squeezing disappears and later may 

Fig.1. Long time behaviou~ of 
the factor 81 , The caZcuZàtion 

S, 

Q3t ",.1

1\·0.2 has been made for mz: 1 and 
0.2 n = 0.2. ' 
0.1 

OI
 
10
 

-0.1
 appear again. The'rnaximum~de­

gree of squeezing recovered 
again may be larger than the 
maximum degree of the first 
(short-time) squeezing. These 

features have been shown to exist in the situation with a sin­
gle atom 11,121 and therefore are not surpr í's í ng for. the two­
atom case. 

Figures 2-6 present the ~ehaviour of Sl for the first squee­
zing, calculated for various intensitie~ ~ and various pho­
ton mu I tí.p l e s m , It can be noted that for each photon mul­
t pl e .m the first squeezing has a lower bound which increasesí 

as m increases from 1 to 3 and decreases as m increases 
from 3. For m' = ]-5, this lower bound í s reached for 0=0.42, 
2,4.25, 7, 10.75 and is approximately equal to 29%,58%,60%, 
57%, 53%, respectively. It is larger than the lower bound 
obtained in the situation with a single atom/12~ 

In figo 7, we compàre the first squeezing obtained here 
for the two atom system wi th that obtained in 1121 for the 
single-atom situation. In both the cases, the calculations 
'have been made for the same values of m and n: m - I, ii =0.2 

s, 
5, 

oI....... ~ li "" 
91
 

I 

-0.1 

'0.2 

. 0.3 
-0.29 -0.58 

Fig. 2. Time be hairiour of S1 Fig.3. Time behaviour of S 1 
for the first squeezing in . for the first squeezing in 
the cases ofm = 1., ii =0.3., the cases of m z: 2., ii =1. 25., 
0.4.2 and 0.8. The Loiaer 2 and 4. The Zower bound is 
bound is approximateZy equaZ approximateZy equaZ to ­
to -0.29 (29% squeezing)., and 0.58 (58% squeezing)., and 
occure for ii::. 0.12. ' occure for ri =2. ' 
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51 1 ,, 
'0 1\\ --, 

- 0.1 f/ r 
O./' gt 

I . 

m=3 

-0;00 

Fig.4. Time behairiour of 81 
for the first squeezing in 
the cases of m = 3., fi = 3., 
4.25 and 5. The Zower bound 
is apP!oximateZy equaZ to ­
0.60 (60% squeezing)., 
and occurs for n~ 4.25. 

s, 

91 

·0.1 

-0.53-0.6 

Fig.? Comparison of the 
squeezing factors 81 obtained 
in the singZe-atom- and two­
atom-modeZs. The fuZZ Zine 
corresponds to the two-atom 
case. The dashed Zine corres­
ponds to the singZe-atom case. 
In both the cases.) the caZ­
cuZations have been made for 
m= 1.) n:= 0.2 and 0.4. . 

8 

S. 

• 0.05 I 0..1 gt'ot 

·0.1 

-0.6 -0,57 J 
Fig.5. Time behaviour of·8 1 
for the first squeezing in 
the cases of m= 4., 'n:= 4.) ? 
and 10. The Zower bound is 
approximateZy equaZ to ­
0.5? (,5?% sq~eezing).) and 
occurs for n ~ ? 

Fig.6. Time behaviour of S1 
for the first squeezing in 
the cases of m= 5, fi ... 4. ?5.) 
10.?5 and 16.?5. The Zower 
bound is approximateZy equaZ 
to -0.53 (53% squeezing).) and 
occurs for fi ~ 10.?5. 

__ I I 1.-' 

J.l : 

and 0.4. It is noted from the figure that for F. = 0.4, the 
maximum degree of the first squeezing in the two-atom case 
is larger than in the single-atom case, whereas for n= 0.2 
the contrary relation occurs. For the same and very small' 
times, the squeezing in the two-atom case is twice a~ large 
as that in the single-atom case. 

4. VACUUM FIELD AND ATOMIC SUPERPOSITION STATE 

In this section, on the basis of the IDodel (1) we investi­
gate the possi~ility of generating squeezing by the coopera­
tive interaction of two súitably prepared-atoms with a cavity 
mode initially in the vacuum state.Of coursé,no spontaneous 
emission squeezing wiLI be produced if both the atoms are 
initially fully excitJd. However, the atoms can be injected 
into the cavity in coherent superpositions of excited and 
ground states and subsequent squeezing is possible/9 , 10 / . To 
get physical insight we concentrate on three cases where 
simple analytical solutions can be derived. 

Case ]. Let one atom be prepared in a coherent superpo­
sition state; while the other atom, in the ground state. The 
initial state of the total system is then 

lifJ(O» = cos ~ 1+ ,-; O> + e -113 sin ~ 1-, -; O> O~a~1T,. (18) 

0~f3~21T, 

The interaction Hamiltonian couples the state t+,-;O> to the 
states 1-,-; m» and \-,+;0> but the zero quantum state [-,-;0> 
is decoupled and does not evolve. This means that the atoms 
can emit m photons into the field initially in the vacuum 
state and then reabsorb them. At the time t, the wave func­
tion. is 

IifJ (t) > = coa ~ (A (t) I+ , -: O> + B(t) I- ,+; O> + C I- , -; m» + 

(19) 
+ e 1(fi OJ t - (:j) sin ; I_,_; O> • 

The Schrodinger equation gives the equations of motion for 
the probability amplitudes 

iA = gyllii!c, il3 :c gylrnTc " iá = gylm!(A + B) (20) 

where A(O) = 1, B(O)= O, 0(0)= O. These equations yield the 
solutions 

s, 

0r 

-0.1 

-02 

-0.3 

.5 gt• 

7' ;;=02 

m=1 J 
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A(t) =CoS2 [ g "' m l/ 2 t ] , The factors S1 and S2 are therefore 

B(t) =-81n2 [ g ", m l/ 2 t ] , (2i) S 1 = 2 cos 2 ~ s1n2 (2gt) - sin(28 - (j) sin a sin(2gt) , 
(26)

1 -'­
C(t) = - -=-s1n[g v'2(m!) t] . S2 = 2 cos2 F sin2 (2gt) + sin (28 - (3) sin a sin (2gt) . 

"'2 
It i s seen from eq • (J 9) that if m 2: 3 then <a> = <a 2> = O , ( After making the optimum choice: 8 = f3/2 + 77/4 and a = 3rr/4 we 
hence S. -S2 =2 <a+a> > O" and therefore, no squeezing occurs . get 

For m = 1, the expeétation values of the operators a, a2 ,. _1_J ,+ . S 1 = sin(2gt) [(I - _1_) sin(2gt) ­and a 8 are easily found from· eqs. (19) and (21) to be .j2 (27)"'2 
S 2 = sin(2g~}[ (1 - 1) sin(2gt) + 1]. 

1 - i(~ -C1)t) J2v'2<a> - - -- s1na 81n('" 2 gt) e 
2v'2 

<a 2 > '... O (22) 
, . , 

1 a - These equations show periodical changes of squeezing in a1 by
<8+8> = - C082- &102 ("'2 gt) . that in a2 and vice versa. It is found that "~ minS1= IDí;lS 22 2 
According to eqs. (5), the factors Sl and Se are then = - (v'2 - 1) -:: -0.416. The corresponding maximum degree of 

squeezing is about 41.6%. It is less than the degree (",Er-2)~ 
~ 45% that may be obtained in a one-atom two-photon-transi­Sl - [coa 2 ~ - -} 81n 2 (8 - 13) 81n 2 a'] 81n 2 (J2'gt) , 
tion system / 10/ • The times for, reaching the maximum squeezing 

(23) are t = (2k + 1)7T/4g, k = 0,1,...• 
S2 _[cos2 ~ - .; C08 

2(8 - (3) 81n 2a ] 81n 2 ("'2gt). Thus, the presence of the unexcited atom leads to decrease 
of the maximum degree of squeezing in spontaneous emission 

We take the parameters (} "" 13 + ,,/2 and a - 2,,/8 which are opti ­ from the superposition-state-excited atom. 
mum for. squeezing in the quadrature a 1'- Equation~ (23) then Case 2. Let the atoms be prepared in a superposition 
become state such that 

1 - a -1(3 a1 - 11/1 (O) > = cos -
2 

\+ , +; O> + e sin-I
2 

- , -; O> , ( 28)S 1 - -Ssln2 (v2 gt) , S 2 = "4 sm 2 (v'2 gt) • .(24 ) 

O ~ a .$ "', O < f3 s 211.It is seen that the fluctuations in a l are reduced to be be­
low the vacuum noise leveI whereas the fluctuations in a2 are The interaction Hamiltonian couples the state 1+,+;0> to the 
enhanced , The minimum value of Sl is minS = -I/.§..,and is states 1+,-;·ri1>, I-,+;m>and 1~,-;2m> but the zero quantum 
reached periodically at the times t - (2k + b,,/(2v'2 g) , k :: I state 1-,-;0> is decoupled and does not evolve." The time-evol­
= 0,1,2, .•. The corresponding maximum degree of squeezing is ved wave function has the form 
12.5%. It is twice as small as the degree 25~ of the maximum 
squeezing, obtained in the one-atom one-photon-transition (m = -icv t a 
=1) situation/l0~ 11/I(t) > = e o oos-[ [+, +;0> A+(t) + /-, -; 2m> A .ro +J
For m = 2, we find for '<a>, <a2> and <a+a> the expressions 2 (29) 

<a> = O, -i({3 - CJ) t) a
+(\+,-;m> + \-,+;m»B(t)] + e o sin2"l.-,-;O>.

I'j..2 1 . i(~-1Wt)
,<a> a:-Tslnas1n(2gt)e , 

(25) 
<8+a>= cos2 ts1n2(2gt). 

10 

It is straighforward to solve the Schrõding~r .equation for 
the ampli tudes A (t) , A (t) and B(t). As a r e suLt we get

+ ­
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g2m! ln 2(0	 t),A (t) = 1 - -- SI R+	 n2
 
R
 

g 2 v"(2m)! sin 2(0 R. t ) A (t) (30) 
0 2 

R 

B (t) -i -sin(20& t) 

where nR is	 the effective Rabi frequency given by 

n = g V .1. [ m ! + (2m l! l .	 (31 )
R 2 m: 

For m ~ 2, we find -f rom eq. (29) that <a> = <Jl,2> =0, and there­
fore, no squeezing exists. For m= 1, <a>, <a2 > and <a+a> are 
ca1cu1ated to read 

<a> "" O 

<a2 > :o:: _. !. e i( t3 - 2l.u t) Sin a s in 2 ('V6 gt), 
(32)3 2 

+ '4 2 a 2.../6 [ 1 2 V6 ]<a a> = - cos - sin (-gt) 1 + -sin (-gt) . 
3 2 2 3 2 

The factors	 8 1 and 8 2 are then 

8 "" .! sin 2 (..i!. gt) l[ 1 + .!.sin2 (V6 ~)] (1 + cosa) - cos(28 - (3) sina, I , 
1 3 2 3 2 

8 ""'.! sin2(~rgt) {{ 1 + ..!..sin2 ( \,,6 gt)]( 1+ cosa) + cos(28 -(3) sinal. 
2 3 2 3 2 

(33) 

4 '6	 .../6
8

1 
= - - sin2(~gt) [6 - sin 2(- gt)] ,
 

45· 2 2
 

(34) 
8 ., -!.stn2( ';6 gt) [12 + sin 2 ( .../6 gt)].

2 45 2 2 
j' 

It is seen that squeezing occurs in a 1 (S 1 ~ O) but not in 
a 2(8 2 ~O). At the times t =(2k+U,,/g"'/&, k = 0,1,2, ••. , theIi 
factor 81 reaches the minimum value minS 1 = -4/9. It repre­
sents more than 44.4% squeezing which is marginally larger 
than the 25% squeezing associated with t he s?o.0ntaneous emis­
sion in the standard Jaynes-Cunnnings model/9, ': 

Ca s e 3. Let the initial state of the total system be 

1 'a '	 -ifJ a
It/J(O» = - cos-( 1+,-; O> + 1-,+; O» + e sin -1- ,-; O> , 

v'~ 2 2 (35) 

O~ a 5- tr , O <5.. t3 ~ 2" • 

The interaction couples the states i+,-: 0>, 1-,+;0> to the 
state \-,-: m>. The wave function at the time t is 

It/J (t) > = cos ~ I 1 cos [ J 2 (m!) gt] ( \ + , - ; O> + 1-,+ ; O» ­
2 ";2 (36 ). 

_ t s in[ V 2 (m !) gt} I - ,- ; m> } + e i( IM) t - J3 ) s in 1!.\ -, -; O> .. 
2 

For m ~ 3, we find from eq .. (36) that .<a> =< a2> 
""0, and hence 

nD squeezing occurs. 
For m = 1, we get for <a>, .<a2> and <a +a> the expressions 

I . <a> =_!....e f<{3-<llt) sinasin("'/2gt),
i	 2 

<a2 > = O ,	 (37) 

J <a "a > = cos 2~ sín 2(v'2 gt) • 
2


~) The factors Si and '8 2 are then
 

S 1 = sin 2("'/2gt} [ 1 + COSa - sin 2 (8 - 13) sin 2a l , It can be shown that the optimum choice of (J and a should be 
8 = (J/2, a = arctg(-3./4) (O ~ a <S. ,,) • For these parameters =sin 2(y'2gt) [1 + cosa8	 - cos 2(8 -(3) sin 2a]. (38) 

equations {33) take the form 2 
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5.	 SUMMARY 

The optimum choice of parameters for squeezing in, e.g., a 1 
should b.e () = {3 + TT/2 , a = 2TT/3 • For these paramete.rs, equa­
tions (38) take the form 

1 2 ­
S	 = - ..!. sín 2 (v'2"gt ) , S 2 = 2" sin (V 2 gt ) • (39)1 4 

At the times t = (2k + 1) TT/2y'2g the factor S 1 takes the tui.ni.r­
mum value minSl = -1/4 which represents 25% squeez i.ng and is 
equal to the maximurn degree obtained in the Jáynes-Cummings 
model 19,10/. 

For m = 2, we find frorn eq. (36) that 

<a> =	 O , 

<a 2 > :c _ í e 1(t3-2wt) sina sin(2gt) , (40) 
y'2 

<a + a >	 = 2 cos 2 ~ sln 2 (2gt) • 

Hence, the factors SI a?d S2 are found to be 

S1 = 4 cos 2 i sln2 (2gt) - V2 sln (2() - 13) sin a sin (2gt) , 

4 cos2~ sin 2(2gt)S2 -= + i2sin (28 - $) sinasln(2gt) , (41) 
2 

The optimurn choice of th~ parameters f) and a should be (j = 

= (3/2+TT/4, a = arctg(-l/v'2). For the se parameters, equations 
(41) take the forrn 

S 1 = V~ sín (2gt) [2 (v ~ - 1) sin (2gt) - 1 ] , 
3 2 

(42) 

S 2	 = V· ~ sin (2gt) [2 ( v'.! - 1) sín (2gt) + 1 l . 
3	 2 

We find that minS li = mlnS 2 = -(v 8 -2) representing 'the maximum 
squeez ing about 45% in a 1 and a 2 at the times t = (4k + 1) 11/4g 
and t = (4k + 3) 11/4g (k = O, 1,2, ... ), respectively. This maxi­
mum degree of squeezing is equa1 to the maximum'degree obtain­
ed in the situation with a single atom (the two-photon 
Jaynes-Cummings model). 

Ii 

We have investigated the generation of squeezing states 
of the cavity radiation field in the two-atom one-mode model 
with- multíphoton transitions. The cases when the field is 
initially in a coherent state together with the de-excited 

/ t	 atoms, and when the field is initially in the vacuum state 
together with an atomic superposition state have been examin­
ed. The time-dependent squeezing factors have been calcula­

:I	 ted. The conditions for the optimum squeezing have been shown. 
The comparision with the single-atom situation has been made. 
These results are potentially of interest to experímentalists 
studying Rydberg atoms in high-Q single-mod~ cavities in' which 
the squeezed states çan be generated. 
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~aM	 fle KHeH, KaAaH~eBa E.TI., illYMOBCKHH A.C. EI7-87-41Q 
C~aTHe CBeTa B AByxaToMHoH OAHOMOAOBOH MOAerrH 
c MynbTH$OTOHHbWH nepeXOAaMH 

Hccrre non ana r-euepauaa C)KaTbIX COCTOJlHHH B AByxaToMHoH 
OAHOMOAOBOH MOAenH c MynbTH$OTOHHbWH nepeXOAaMH. BWqHCne­
HbI BpeMJl3aBHCHMbIe $aKTOpbI C)KaTHJI. TIpHBeAeHbI ycnoaaa )J;J1Jl 
onTHManbHoro c~aTHfl. 

PaÕOT.a BbIllOnH€Ha B naõopaTopHH TeopeTH~ecKoH $H3HKH 
-OlUlI1. 
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Fam Le Kien~ Kadantseva E.P., Shumovsky A.S. EI7-87-410 
Light Squeezing in the Two-Atom One-l1ode Model 
with Multiphoton Transitions 

The generation of squeezing states of the cavity radia­
ti-on field in the two-atom ane-mode rnouel with multi ­
photon transitions is investigated. The time-dependent 
squeezing factors are calculated. The conditions for the 
optimum squeezing are shown. 
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