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lays below the trivial solution when d..> d...c.= 5.842. So one can cori

sider c/... Co as the criticaI point of the phase transition. Evidently 

thia phase transition manifests itself rather indistinctly: the po

ints d-. ....... d... c, and d-: = 6 are too close to each ot he:r , The same is 
true while comparing the values of the first ...derivati .... e of the ener

gy Ea.(d,.) wi th respect to r:J... near the criticaI point: 

\1"' I '.i E ~ l ç( c + O) :: -.i, O gE. o. (c1.c. - 9) -= - (1.3)l. lNTRODUCTION 

The harmonic approximation has been used by a whole number ofDiBcuaaing the optical polaron some physiciats obtained indica
authors. Other variational approximations are very similar to thet í ons that when the electron-phonon coupling cÁ increasea then at ~"
 
harmonic one and often lead almost to the sarne picture of a "phase
certain cri tical value o(.t. there occura a phase t'ransi tion from a
 
transition" (see, e.g., papers/2/). Recently a number of such papers
state of freely moving weak-coupling pol~on to a localized atate of
 
has been increased appreciably. For the cri tical value cf... c, diffe
a atrong-coupling polaron. As one Bupposea, the ground atate energy
 
rent results from 3 to 10 have been obtained. Devreese and Peeters
E( cÁ.) seems not to be analytic in coupling conatant at that point, 
published the criticaI analysis of the prorrlem/ 3/ and came to theand other physical characteriatica of the polaron (e.g. average num

conclusion that for the moment there were no any definite evidences
bor of phonons) have discontinuitiea. 
for the phase transition in this system.· One of their argumenta was 
the existence of the well-known Feynman variational approximationAa far aa we know, the firat indication on such a phaae transi
which leads to the smooth function. E F (cJ...). This function providestion has been obtained by Gross/ 1/ . He uaed the so-called Gausaian, 
us with the upper bound for the polaron ground atate energy an~ laysor harmonic approximRtion which ia a variant of a variational upper 
below other estimates indicating on the phase transition. 

tho polaron energy takes the form 
eatimate of the polaron grouu~ atate energy. In this approximation 

We also considered some of the papera published after the pa
01.. r(!./V) per/3/ and devoted to the "discovery" of the phase transition, and

E~(ci) ::. ~v  v ~O ( 1.1) 
convinced ourselves that this "phase transition" was an artefact of 
the approximations being made. As is known. Frnhlich model of the 

whero V ia a variational parameter. On the boundary V O the 

J.i ~V \' (-L/V t tl2.) 

c: optical polaron treats the medium in a continuous limito We dare say 
Eq. ( 1.1) lenda to a trivial so Lut Lon t e, -::. - et • The variationa1 there are no physical reasons for the electron being self-trapped 
equat Lon 'dEc. / 'dV =O leads to a relation between the coupling cons in this theory which does not include the structure of the lattice. 
tant cJ.. and the variational perume t er V But to criticize the arguments in favour of the phaae transitíon 

- L means to do only the half of the job. Then the question arises, howc:J.. =- 1. V!iI'J.. í(i/v d(2) [ 'iJ(i/V t 1(2.)'- 'P(l/v}-V/2.] } 
to prove the smoothnees of the function t (ri..) dealing only wi thJ.i r(1./\/) 
exact information about its properties. 

'fl'X.)':: r1c:x.)/r-(x). 
The goal of the present paper is to give arguments which teatify 

At t he point V a O t he function cJ.. (V) = 6. Then cJ.. (V) decr eaae a 

(1.2) 

against the existence of such a phase transition. To do that we con

and r eachcn 1ta minimum d..rn = 5.798 at VW\ a 0.613. After that struct upper and lower bounds for the polaron characteristics using 

ek (V) inc,roQoea to infini ty taking the value d.. a 6 o.t V 1. 5~. two-point nondiagonal Padé approximants. 

Thercfore whon ol< O(W\ there do not exiat any Bolut1ona for the ener
In Sec.II of the present papel' we demonstrate the power of the 

c:I 

gy except the trivial one , In the interval ol.w.<:..ot<." one hao two 
method taking as an example the Feynman polaron. In Sec.III the Barne

nddi tiono.l ao Lutiono from whãch there remaina anl,y ono whon cJ..:. b . 
technique ia appl~ed to evaluate the actual polaron ground state 

Tho lnUor hoa tho propor ••ymPt~1.. - d..'):'" nt 1nt1n1ty on4 . " \ 
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energy and average number of phonons, rold in Sec.IV - to calculate 

its effective mass. 

11. PADÉ APPROXIMANTS FOR THE PEYNMAN POLARON 

The Feynman polaron energy/4/ is as follows: 
oó	 

-, 
E.	 .o<:. \ :: .~ (V·-w);!. - ~V [áx . e - x . ,
 

F <.. J l.(V ~Tr J [W2. x ~ \}2._ W\!.- e.-V>")j.1/2..
 
o V	 (2.1) 

'J '~\N~O, 

where V and vJ are variational parameters. On the boundary \tI= O 

the Eq.(2.1) gives us the harmonic approximation with its "phase 

transition" described above. But alI this disappears like fata mor

gana when we recall the basic variational equations 

âEF/'aV 'dEF!'JW :: O)	 (2.2) 

which leada to the smooth function EF (~) • How can one prove 

this smoothness? To simulate the real aituation let us imagine that 

we cannot minimize expression (2.1) wld thus can uae nothing but 

conventional expansions in powera of a small parameter. It is pos

aible here to obtain the expansions about pointa cÁ "" O and ~ = 00 • 

In the we~k-coupling limit, the perturbation series takes the form: 

Er(oI..) ::::. L EKol\(	 (2.3) 
K.~J. 

In the strong-coupling limit it is possible to. expand t: F (~ ) 

in inverse powers of d.. 

. (2.4)
~ F (oi.) L Av:.d.... 

2.-k 

K?O 

We calculated from Eqs.(2.1, 2.2) a rather large number of coeffici 

enta E'W'\ and A lo<. (see Table 1). Now let ua conaider how the infor

mation collected in Table 1 can be uBed to approximate the Feynman 

solution which plays the role of the exact one in this case. For this 

pJ.1rpose we apply the two-point nondiagonal Padé approximants/5/ 

E {'n I'\.-i).:: _	 cL :i -\ (),i.ol + ". + 0.1'\. ~n. \'l ~ 2. 
, • ti, ".n_i. ) (2.5) 

4 

T a b 1 e 1.	 Coefficients ( E ~ ) of the Weak- and (°"11< ) of the 

Strong-Coupling Expansions for the Feynman Polaron 

Energy 

OE1. =: -1 1\2..K+ l =
 

E2, =: -1.234568 . 10-2 1\o =: -0.106103
 

E .~ =: -0.634366 . 10-3 ;\2- =: -2.829442
 

clt = -0.464315 . 10-4 í\ ~ =: -4.863866
 

s, = -0.395686 . 1{)-5 = -34.195252
1\ (,
6 

f:l:. = -o. 363852 ~ 10- /J.., s =: 533.14083
 
-7
E7 = -0.347453 ·10 í\ 10 = 51525.155
 

Eg =: -0.336375 . 10-8
 

E'J = -0.323953 - 10-9
 

t: 1(; = -0.304353 _10- 10 

Eu = -0.271495 _10- 11
 

() -12
 
=:	 - O. 21852 . 1O(1' 

We need (2 n.. -1) equations to find the parameters o..t., ••• , o.~ 

and &.i., ••• , ~11..-1. • Using the information about weak- and strong-

coupling expansions equivalently we ha~e two ul~ernative cases. In 

the first case we reproduce the coefficients E 2.. , ••• , E 11.. and Ao) 

••• , An-i. and obtain the Padé e.pproximant d e.no t.e d Eu.. (f1.. , n - 1). 

In the second case we obtain ano ther' Padé appr oxí.mant E. e. (11.., n -1 ) 

of the same form (2.5) which reproduces the coefficients 62.' ••• '· 

E n.·d. and 1)",,0'···' (.\\,\-'2.. • 

The d a t a collecte,d' in Table 1 allow us to construct t: u.' ( rt, , 11..

-1) for n, = 2, ••• , 12 and Et (11., /1._ 1) for n, = 2, ••• ) 11. In 

Table 2 we gi ve a.pproximant sEu.. (12, 11) arid E e. (11, 1o) I.1t
 

some values of the coupling constant cl. in compurison wíth the
 

exac t energy E F of the Peynman polaron. 

Here we do not show the estimates for lower va.lues of ~ • The 

fact is thnt the value of E l.{, (n., 1'1- 1) at any given ex. increases 

wi th n, but remains below the exact solution 8' p. ("'-.) , so i t provides 

us with Lowe r estimates of E. F (oi.). On t he contrary, the value of 

E e. (n, , n.. - 1) at any given d...- decreases wi th n, being above
 

the exact solution. So approximants E e (Y\.. , h. - 1) give us upper
 

estimates of E F lol.). Therefore in Table 2 we present only the best
 

upper and lower bounda, (Note that indices " u, " and " e. " in our
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notations mean upper and lower bounds for the absolute value of the 
polaron energy). 

T a b 1 e 2.	 Upper and ~ower Bounds for the Energy and the Ave
rage Number of Phonons of the Feynman Polaron
 

o; 1 3 5 7 9 11 20 
t.1I 

- te. (11,10) 1.0130 3.1333 5.4398 8.0969 11.413 15.619 45.272 
- E F 1.01)0 3.1333 5.4401 8.1127 11.486 15.710 45.283 
- Eu.(12,11) 1.0130 3.1333 5.4419 8.1279 11.500 15.715 45.28) 

tJ~ (11,10) 0.5272 1.8104 3.7147 7.2613 13.641 22.361 81.992 
-i.: (12,11) 0.5272 1.8106 3.7567 7.6565 14.187 22.691 82.003 

In the polaron theory one can derive the relation between ave
6/).rage number of phonons and ground state energy (see our paper/

We have for the motionless polaron 

N(cJ.)-= [;(ol.j	 - ~cJ-..E'(d..) (2.6)
2.. 

from which follow weak- and strong-coupling expansions similar to 
those of Eqs. (2.3, 2.4). Padé approximants take the Barne form as in 
Eq.(2.5) where one should -r epLace factor - cf.., by cL/2. The best up

per and lower bounds for the average number of phonons are given also 

in Table 2. 

Let ua discuas now the results obtained. Both the Padé approxi
manta for the polaron energy being smooth functions reproduce the 
Feynman solution well enough. The accuracy of our approximations can 
be estimated even wi thout E ç. (cL): the discrepancy between upper and 

lower bounds do not exceed 0.4% in the intermediate coupling region. 
Nature.lly, thesa bounds aJ~ost coincide in the weak- and strong- coup
ling limits. We should mention also that ~l calculated coefficients 

o.. ~ and ~ ~ are positive ao no poles appear in Padé approximants 

(2.5) at physice.l values of the coupling constant dL ~ o. 

Besides we investigated the motion of poles of Padé approx~ants 

in the complex plane of ri.. • It occura that the formula 
~R\"\. -= R ;- (~~b)3/~	 (2.7) 

6 

gives the best fi t for the distance RY\. between the nearest pole 
and the origin of coordinates. For Padé approximants Eu.. (Vi, 11.- -1) 
and E e.. (It • ri, -J) we obtained closed values of R : Ru.. =6.92 
and R e. = 6.90 correspondingiy. It means that E F (cl.) is analytic 
in the circle of the radius R ~ 6.9. In other words we esti 
maten the range of convergence of the perturbation series. 

The discrepancy between two smooth functions giving upper and
 
lower bounds for the average number of phonons do not exceed 2.6%.
.	 . 
.Here again the motion of the poles indicates that the range of ana

lyticity is n~B.Í' 7. Evidently one can suspect at the "criticaI" point 
cI- ~ 7 the existence of a jump ~ N of the average number of pho-« 

nona with a probable value Doi\l ~ ( Nu... - Ne. )/2 ~ 0.2. If the 
jump of the first derivative of Gr- (oi.) ia. the same as in the case 
of harmonic approx.imation (that is ~ 0.1, see Eq, (1.3)). then it 
would inevitably lead to the jump ~ N ~ 1. Thus we obtain strong 
argumerrt a in favour of smoothness of the function E F (01..) and i ts 
first derivatLve. 

The range of convergence is cLose to "criticaI" values o(c. of 
the harmonic and other approximations. Thus an idea strucks that 
these approximations sp011 the analytical properties of E. (ol..) to 
such an extent that the "phase transition" 8eems to appear. Earlier 
Larsen/7/ found the "phase transition" at eLe = 6.25+6.5 and assum

. ed that the range of convergenCfr of the perturbation series for 
E (oL ) should be finite.'However, it is evident, that this fact 
should not lead for sure to the jumps of E (-o() and' or i ts deri 
vatives in a phyaical region of the coupling constant o( • BeBides, 
Larsen uaed in his arguments the asymptotics E( c ) ~ O( ~2..) when 
reI ~ 00 for any complex ~ ,albeit i t Wa.B obtoined only for real 
positiva ~ :. d... • 

III. ACTUAL POLARON IDIERGY AND AVERAGE NIDmER OF PHONONS 

We have demonatrated that the two-point nondiagonal Pad~ appro
ximants provides us with a very accurate upper and lower bounds for 
the FeYhman polaron energy. Therefore we can hope to succeed in ~he 

case of an actual polaron with the sarne technique. 

Unfortunately. we do not know as many expansion coefficients 
as for ~he Feyqman polaron. In the weak-coupling expansion w~ know 
only three terms, the last of which has been calculated in our pa
pers/6• 8/: 

7 



E. = - i	 E" :: -.L 5D.i_C)b2.·iO-e.. s, =-O.sob·io-~ (3 1)
;L )	 '_" ") v • The numerical calculations with the help of Eqs.(3.3-3.5) are present

ed in Table 3.In the strong-coupling limit we have the resulta obtained by 
MiYake/ 9/: 

Ao :: - 0.1085.1.3 ) A2-~ - 2..63b ) Aj.::= A!:;:: O . 
(J.2) gWith Eqs.(3.1),(3.2) the exact results for the polaron ground 

state energy are exhausted. Now we can construct Padé approximants 
E4. (2.1), El.I- (3,2) and Ee. (2,1). Again Eu (3,2) provides us 

with the better lower bound than E~ (2,1). Such a small number of 
Padé approximants do not allow to estimate the range,of convergence 
of the perturbation series. However, the location of polesdoes not dif 
fer too rnuch from the location of poles in the analogous Pad~ appro
ximants for the Feynman polaron. So we can hope that the estimate R~ 

6.9 of the preceding section does not decline too rrruch from the true 
va.Lue , 

For the actUal polaron the lower bound has the form 

Eu. (3)2.) = _oi... i.+ O.i383gbol+O.Ol32.8.9a<..2.+ 1 •.L't3'lO-3ol~
 
i-+ O.12..2..~btc/....+O.O!05.3.1(d..2. • <3.])
 

For the upper bounda we ha.e the Feynman variational solution ~p(~) 

and the following Padé"approximant: 

E l (2.)i) .: _ d.. 1-+ 2..~(,2i.j35.10-2.d.. + .9.4YS1S9'10-~:t
 
i + ~. 7-01.( 12..(, .10- 3 d... <3.4)
 

The weak- and strong-coupling expanaions for the average number 
of phonons can be derived from Eq.(2.6). The Padé approximants giv
ing upper and lower bounds are as follows: 

i -I- o.i33.í(.I(5ol. + O.OSb32Sol..2..+ o. 0 .i84'1.3al3 
Nl4.(3..>2...) ::	 cJ.. •
 

2.. i oi- o.12..91-b1d.. -I- 0.O.l(2.l.t2.0ci...~ )
 

T a b 1 e 3.	 Upper ( E:e.. (2,1), Eç: , Nu. <3,2) and Lower (E l4. 

<3,2), t-l « (2,1) Bounds for the Ground State Energy 
and the Average Number of Phonons of the Actual Po-

Laron 

o; 0.5 1 3 5 7 9 11 
-

- cç: 0.5032 1.0130 3.1333 5.4401 8.1127 11.486 15.710 

- E~ (2,1)' 0.5041 1.0167 3.1645 5.4945 8.0406 10.834 13.905 

- E ..... <3,2) 0.5041 1.0175 3.2122 5.7767 8.8832 12.654 17.165 

Nt (2,1) 0.2583 0.5346 1.8594 3.6236 5.9345 8.8875 12.568
 

Nl.I-<3,2) 0.2587 0.5409 2.1888 5.2383 10.034 16.643 25.062
 

One can see that Ee.' (2,1) gives us better upper bound than EF 
for o; ~ 6. In t he atrong-coupling limi t the better upper bound is 
given by the Feynman aolution. This ia also true for the improved 
versiona of the Feynman method (Bee, e.g., the paper by Adamow8ki, 
Gerlach and Leschke/ 10/). This should not surprise·us because while 
constructing E e.. (2,1) we do not use even the equality Ai. = O. A 
subsequent Padé approximant would lead to better upper bound, but 
to construct E e. (J,2) one has to know the coefficient E 4 in the 
perturbation series (2.3) for the actunl polaron. Nevertheleas, ~F 

and (; e.. (2,1) give us independent upper bounds for the ground atate 
energy of the actual pol~on. They are both smooth and do not decline 
toa much from each other. 

The Padé approximant Eu. (J,2) gives us the lower bound which ia 
much more better than the only known lower bounds by Leib and Yarnaza
ki/ 11/ and by Larsen/ 12/ (besides, the latter worka only for amall 

(3.5) values of Dl ). Evidently upper and lower bounds for the polaron ener
i + t. 2~i.HS'.iO-2.1:i T b.6.i2032..10-3o(~ gy differ less than by 10% in the whole range of the coupling cons

Ne..c.2.) 1) =.	 ~. 
2... i. + i ,52.3 32.1-·lO-2..d.,.	 tanto Padé approximanta allow to estimate almoat with the sarne accu;1 

racy the first derivative of the energy which leads to essentially 

8	 9 
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1arger gap between upper and 10wer bounds for the average number of 
phonons. But even such accuracy a110ws us to obtain some conc1usions. 
Thus, at the 11 critical" point ch ~ 7 one can assume the jump 6. N ~ 

( i\l~. - f\J Q.. )/2 ~ 2. This exc1udes the phase transition wi th the 
13/.jump õ..N ~ 14, the existence of which was conjectured in the paper/

So, in the case of the actua1 po1aron the exact solution 1ies 
again between two smooth functions. However, we do not see any hints ! 

of the phase transition, at 1east in the given numerica1 bounds. Of ~" 

cours~, subsequent Padé approximants can change the whole situation, 

but now it seems a1most incredib1e. 

IV. POLARON EPPECTIVE MASS 

In this section we consider the Padé approximants for the po1a
ron effective mass. To begin with, we take the expression for the 

maas of the Peynman po1aron: 
.,., 

W\. =. i + r:J... V -~ Scl.x X 1. e.-x _,_ (4. 1)
 
ç:. 3t= ~ 2. -\IX']


\1" o [\N2.x--tV~W(i.-e. ). 

with the sarne variational parameters V and 'vJ as in Eq.(2.1). In 
the weak coup1ing 1imit the perturbation series. for ~ r takes the 

form 

\IV\(: = .i + L	 W\Kol.K (4.2) 
,,~!. 

In the strong coupLí.ng limit 'M f' is expanded in inverse powers of
 

the coup1ing constant:
 

\IV\~::: C- M", cJ.....1t-
K	 

(4.3) 
K'~o 

Coefficients IN\K and M ~ are co11ected in Tab1e 4.	 I 
From Eqs. (4.2, 4.3) it fo11ows that similar expansions for~~~ 

are like those for the energy {; p , and we can use again the two- .I 
( 

point nondiagonal Pad~ approximants. So, we have a representation 

n,1. + a.iol.. ;. ". T <'À\I\.o( 1l{

~(t'\.>~-.i) = i
 

[ :i. -t t-i.d. -+ '" -t- t n,-:i. oln
(4.4) 

from which two Padé approximants fo110w. 

10 

T a b 1 e 4.	 Coefficients of the Weak-Coupling ( ~~) and of the 
Strong-Coup1ing ( ~~ ) Expansions for the Feynman 
Po1eron Effective Mass 

V't'\!>.. = 1/6	 M 2.K"":l = O 

W\2. = 2.469136 . 10-2 \V\C1 = 2.001406.10-2 

III.\~ = 3.566719' 10-3 M2., = -1.012775 

''''''It = 5.073952 . 10-4 MJ; = 11.85579 

W\.s = 7.117137 • 10-5 M<, = 43.09859 

\1\1\10 = 9.840535 . 10-6 

m1 = 1.340209 . 10-6
 

VV\a = 1.796109 .10-7
 

One of them Wt.u.,( V\. , \'I., -1) reproduces coefficients \N\i.' ••• ' VVlH.-.1. 

and Mo, ••• , Mn.-i and gives the upper bcund , The other, WI e ( V\... , 

Y\. - i. ), reproduces coefficients V\I\ i. , ••• , ""- n.. , Mo , ••• , M Vl,-2. 

and provides us with the 10wer bound. With data from Tab1e 4 it i8 
possib1e to construct both Padá approximant~ for ~ = 2, ••• , 8. 
In Tab1e 5 we present"'\\4(8,7) and W\e(8,7) for some va1ues of the 
cqup1ing constant ~ in comparison with the exact effective mass 
W\ r- of the Feynman po1aron. 

T a b 1 e 5.	 Upper and Lower Bounds for the Feynman Po1aron Ef
fective Mass 

cÁ. 1 3 5 7 9 11 

~'2.(8,7) 1.1955 1.8886 3.801'7 11.336 42.755 141.073 

'M..ç= 1.89 3.89 14.4 62.5 185 

mLl (8,7) 1.1955 1.9081 4.6026 18.413 67.610 186.635 

One can see that the convergence of our approximations is worse 
than that for the po1aron energy. Besides, the discrepancy groWB due 

to the fourth power in Eq.(4.4). The upper bound works better in the 
strong-coupling 1imit and the 10wer bound is more suitable in the 
weak-coup1ing regime. 

11 



Again a.l L the coefficients o..~ , e. ~ in Eq, (4.4) are posi
tive, so no poles appear at physical values of the coupling constant. 

For the actual polaron we k~ow onLY two terms of expansion (4.2): 

W\i -: s t i. \N\:>. :. 2.., 3 b 2. 1 (, 3 . i 0,- 2. • (4.5) 

9/:
In	 the strong-coupling limit it is known the result by Miyake/

, I 
\ 

\"\c.:=' 2..2..10 is 10-2.. M:!,.:~ O, (4.6) " 

30, we can construct only Wt<.t.(2.1) and WLe.(2.1) for the ac

tual polaron: 

L ~ O.-~&g·HY cf... + O.i3;"Jt~)8c{2..
 
""-u.(I-,I) ~ .[
 

i.	 ... o. 3'i 6 I-( ~} 3 ~ r 
(4.7) 

"'- <(2-,~) ~ r. i + 5~ 8'15·10- 'ol. • 3;(,9'18~~·/Ó· 'ol-'] "
L i ... ~LS3t 1-eb IO-~c:J.. 

The numerical results obtained with Eqs.(4.7) are collected in Table 

6. 

T a b 1 e 6.	 Upper and Lower Bounds for the Effective Mass of
 

the Actual Polaron
 

O.~ 3 5 7 9 11 
r::J... 

W\e. (2,1) 1.09 1.19 1. TI 2.74 4.34 6.91 11. O 

vv\ ...... (2,1) 1.20 1.64 7.50 28.3 82.0 195 402 

The well-knovm trouble with the mass is that one cannot state
 
that the variational resul t VV\ F is an upper (or lower) bound for the
 

actual polaron maSS. The results of Table 6 are the only known upper
 
rold lower bounds for the polaron mass but the gap between them is too
 
large due to the lack of information about strong- and weak-coupling
 

expans.í oris , 

12 

One can hope to improve alightly the Lowe r bound constructing 
Padé approximant	 ""'-e, 0,2). To do this one needs the co ef'f'Lc í.errt 

~3 of the weak-coupling expansion (4.2). It can be obtained wi
thin the diagrammatic technique of our paper/6/ , and the calcula

tions are on march now. 

To conclude, we should mention the paper by Sheng and Dowf 14/ 

devoted to Padé approximants for the polaron. In this paper the au
thors obtained a wrong result for the coefficient E3 in the third. 
order of perturbation serias (2.3) for the pólaron energy: ~5 ~ 
= - 0.8765 . 10-2• This essentially exceeds our value of Eq, (J.1). 
The mistake ,is due to distinctiona in diagrammatic techniques: the 
contribution corresponding to one of disconnected diagrams of our 
paperl.6( is absent in their calcula~ions. As a result, they obtained 
the pole in.Padé approximant at ol ~ 400. Besides, they considered 
only one of the two versions of Padé approximants. 

While constructing estimates for the polaron masa they subtract
ed leading terms O (cL4) and O (d.. 2 ) of the strong-coupling expan
sion,and used diagonal Padé approximants for the reaidue. Such a 
procedure Canllot be applied to the actual polaron because one does 
not know coefficient M 2. in Eq. (4.3). In the case of the Peynman 

polaron this leads to a negative mass at some values of the coupling 
constant d...• So, we consider it ia more adequate to construct two
point nondiagonal Padé approximants ~or ~i/~ as in our Eq.(4.4). 

We are gratetul to Prof. N.M.Plakida who brought paper/ 14/ to
 
our attention while discussing the present results.
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CenIDrHH O.B., CMOH~WpeB M.A. E17-87-335 
<l>a30BbJH nepexon H IIa~e-npHónH:lKeHHe 

~nH nOn5lpOHa 

B paMKaX ~BYXTOqeqHOrO HegHaroHanbHoro ITage-rrpHónH:lKe
HH.H nonvxexu HH)lCH.H.H H BepXH.HH oU;eHKH na 3~eprHID H 3<p<pe K-. 
THBHYJO Maccy nOn5ipOHa. Oõe ou;eHKH gnH 3HeprHH gocTaTOqHO' 
ónH3KH npyr K rrpyr-y , qTO YKa3bIBaeT ua r'n amco c-rs 3HeprHH . 
KaK <PYHKIJ;HH KOHCTaHThJ CB.H3H. IT03TOMy He gon:IKHo CymecTBo
BaTb <pa30Boro rrepexoga nOnHpOHa B CaMOrrOKanH30BaHHOe 
COCTO.HHHe. 

PaóOTa BbJIlOnHeHa B llaóopaTopHH TeOpeTHqeCI<OH <PH3HKH 
OI15II1. 

Ilpenpanr Ü6be,ll,HHeHHOrO HHCTHTYTa anepasrx accnenoaaaaã. ,lJ,y6Ha 1987 

Seljugin O.V., Srnondyrev M.A. E17-87-335 
Phase Transition and Pade'Approxirnants 
for Polaron 

Upper and lower bounds for the polaron energy and ef
fective rnass are obtained in the framework of the· two
point nondiagonal Pade'rnethod. Both Pade'approxirnants 
for thc polaron energy are close enough to each other 
indicnting that the energy is a smooth function of the 
coupling constant. Therefore no phase transition to a 
self-trapped state should occur. 

The investigation has been performed at ,the Laborator 
of Theoretical Physics, JINR. 
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