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I. INTRODUCTION

Discuasing the opticael polaron some physicists obtained indice-
tions that when the electron-phonon coupling oA increases then at qV\
certain critical value oy there occurs a phase transition from a
state of freely moving wesk-coupling poluron to a localized state of
8 strong-coupling polaron. As one supposes, the ground state energy
E(A ) seems not to be analytic in coupling constant at that point,
and other physical characteristics of the polaron (e.g. average num-
ber of phonons) have discontinuities. \\'

As far as we know, the first indication on such a phase trensi-
tion has been obtained by Gross/1 . He used the sgo-called Gaussian,
or harmonic approximation which is a variant of a variational upper
estimate of the polaron grouanu state energy. In this approximation

the polaron energy takes the form

« vy V20

S 3y - oo
Bolet) = 3V IV T(4/V 1412)

’ (1.1)

where \/ is a variational parameter. On the boundary V = 0 the
Eq.(1.1) leads to & trivial solution € G = - A& .+ The variational
equation 3E€q /3V =0 leads to a relation between the coupling cons-
tant ol and the variational parsmeter V

-4
o = ARGy ir2) [\y(i/v'i{a)-—\y(i/v}-V/&] )
h C(a/v)
(1.2)

wix) = THexy/ m(x).

At the point \/ = 0 the function o (V) = 6. Then o (\/) decreasep
and reaches its minimum olw, = 5.798 at Vw = 0.613., After that

ok (V) incronses to infinity teking the value ol = 6 at V = 1.54.
Therofore whon ol € olwm there do not exist any solutions for the ener—
gy except the trivial one. In the interval olw<ol< & one has two
additicnal golutions from which there remains only ono whon o> & .
The latter has tho proper asymptotics ~d*/A® ot infinity and

lays below the trivial solution when o> ol o= 5.842. So one can con-
sider ol ¢ as the critical point of the phase transition, Evidently
this phase transition menifests itself rather indistinctly: the po-
ints Ay , ke and A = 6 are too close to each other., The same is
true while comparing the values of the first .derivative of the ener-
gy E'G‘(d.) with respect to o near the critical point:
Elc,v, de‘ojz -4 > E‘C—lL&C*'O):—'L'()g ’ (1.3)

The harmonic approximation has been used by a whole number of
authors, Other variational approximations are very gimilar to the
harmonic one and often lead almost to the same picture of a "phase
transition” (see, e.g., papers/a/). Recently a number of such papers
has been increased appreciably. For the critical value o diffe-
rent results from 3 to 10 have been obtained. Devreese and Peeters
published the critical analysis of the problem/j/ and came to the
conclugion that for the moment there were no any definite evidences
for the phase transition in this system. One of their arguments was
the exigtence of the well-known Feynman variational approximation
which leads to the smooth function. E (o). This function provides
us with the upper bound for the polaron ground state energy and lays
below other estimates indicating on the phase transition.

We also congidered scme of the papers published after the pa-
per/3/ and devoted to the "discovery" of the phase transition, and
convinced ourselves that this "phase transition" was an artefact of
the approximations being made. As is known, Fr8hlich model of the
optical polaron treats the medium in a continuous limit. We dare say
there are no physical reasons for the electron being self-trapped
in this theory which does not include the structure of the lattice,
But to criticize the arguments in favour of the phase transition
means to do only the half of the job. Then the question erises, how
to prove the smoothness of the function £ (& ) dealing only with
exact information about its properties.

The goal of the present paper is to give arguments which testify
against the existence of such & phase transition. To do that we con-
struct upper and lower bounds for the polaron characteristics using
two-point nondiagonal Padé approximants,

In Sec.II of the present paper we demonstrate the power of the
method taking as an example the Feynman polaron. In Sec.III the same
technique is epplied to evaluate the actual polaron ground state
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energy and average number of phonons, and in Sec.IV - to calculate
its effective mass.

II. PADE APPROXIMANTS FOR THE FEYNMAN POLARON

The Feynman polaron energy/4/ is as follows:

. 7 . -
- (oL \ = ?__ \/‘\AJ - q_\v\_/ Sd\x € - - 3
E (o) v ( ) J% [w2x + \J”;/\N'L(L— Q_\/KJ_‘(‘W—

[o]

. (2.1)
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where V and W are variational paremeters. On the boundary W= 0
the Eq.(2.1) gives us the harmonic approximation with its "phase
transition" described above. But all this disappears like fata mor-
gana when we recall the basic variational equations -

'

dEe/oV = dEe(a3wW =0, (2.2)

which leads to the smooth function EF () . How can one prove
this smoothness? To simulate the real situation let us imagine that
we cannot minimize expression (2.1) and thus can use nothing but
conventional expansions in powers of a small parameter. It is pos-'
sible here to obtain the expansions about points ol = 0 and of= oo .
In the weak-coupling limit, the perturbation series takes the form:

Ee (o) = Zi B k" | (2.3)
K

In the strong-coupling limit it is possible to expand &g (X))
in inverse powers of o :

.

Ee() = 3 Aed (@d

K>0

We calculated from Egs. (2.1, 2.2) a rather large number of coeffici-
ents Ex and Ak (see Table 1). Now let us consider how the infor-
mation collected in Table 1 can be used to approximate the Feynman
solution which plays the role of the exact one in this case. For this
purpose we apply the two-point nondiagonal Padé approxima.u‘ts/S/:

n
E(n,n—i):—eL'i*O”“’L”P e Qn & nx2 .

4elid tes +Bn-g M2 ’ (2.5)

Table 1. Coefficients ( Ex ) of the Weak- end ( Ax ) of the
Strong-Coupling Expensions for the Feynmen Polaron

Energy
Ey, =-1 Apivy = ©
G, = -1.234568 - 1072 Ao = -0.106103
B, = -0.634366 - 107> Ay = -2.829442
£, = ~0.464315 107" s Ay = ~4.863866
Ey = -0.395686 - 1077 A = -34.195252
Fo = -0.363852 - 107° Mg = 533.14083
€7 = -0.347453 wo'é Ao = 51525.155
Eg = -0.336375 107
£y = =0.323953 - 1077
Eie = -0.304353 - 1070
€y = -0.271495 1071
€ = -0.218526 - 10712

We need (2n =-1) squations to find the parameters Oy ,...,%n
and g,L yeeey bi-s . Using the information about weak- and strong-
coupling expansions equivalently we have two alternative cases. In
the first case we reproduce the coefficients Es yeeey En and Ao,
eeey An-t and obtain the Padé epproximant denoted &Ew (1 , R = 1)..
In the second case we obtain another Padé spproximant Ee (n,n=1)
of the same form (2.5) which reproduces the coefficients Ej y-e., .

Enst end Ap ,eeey Apn-z

The data collected in Table 1 allow us to construct e (n,n
-1) for N = 2,..., 1'2 and E¢ (n,n- 1) for n=2,..., 1. In
Table 2 we give approximants Ew (12, 11) and E&e¢ (11, 10) at
some velues of the coupling constant ol in comparison with the
exact energy E ¢ of the Feynman polaron.

Here we do not show the estimates for lower values of KL . The
fact is that the value of Eu (N, n- 1) at any given ol increases
with U but remains below the exect solution E e(esl) , 8o it provides
us with lower estimates of E g (o). On the contrary, the value of

Ee (n, n- 1) at any given ol decreases with I being above
the exact solution. So approximaents Ee¢ (VW , n - 1) give us upper
estimates of € ¢ (). Therefore in Table 2 we present only the best
upper and lower bounds. (Note that indices " «L " and " ¢ " in our



notations mean upper and lower bounds for the absolute value of the
polaron energy).

Table 2. Upper and Lower Bounds for the Energy and the Ave-
rage Humber of Phonons of the Feynman Poleron

- & 1 3 5 7 9 11 20

- €¢ (11,10) 1.0130 3.1333 5.4398 8.0969 11.413 15.619 45.272
- E¢ 1.0130 3.1333 5.4401 8.1127 11.486 15,710 45,283
- Eo(12,11) 1.0130 3.1333 5.4419 8.1279 11.500 15.715 45.283

Ne¢ (11,10) 0.5272 1.8104 3.7147 7.2613 13.641 22.361 81,992
Nu (12,11) 0.5272 1.8106 3.7567 7.6565 14.187 22,691 82.003

In the polaron theory one can derive the relation between ave-
rage number of phonons and ground state energy (see our paper e
We have for the motionless polaron

N ()= E (o) = _i_oLE'(v*J , (2.6)

from which follow weak- and strong-coupling expansions gimilar to
those of Egs. (2.3, 2.4). Padé approximants take the same form as in
Eq.(2.5) where one should weplace factor - && by ol/2. The best up~
per and lower bounds for the &verage number of phonons are given also
in Teble 2.

Let us discués now the results obtained. Both the Padé approxi-
mants for the polaron energy being emooth functions reproduce the
Feynman solution well enough; The accuracy of our approximations can
be estimeted even without Ee(<): the discrepancy between upper and
lower bounds do not exceed 0.4% in the intermediate coupling region.
Naturelly, these bounds almost coincide in the weak- and strong- coup-
ling limits. We should mention also that all calculated coefficients

A and L« are positive so no poles appear in Padé epproximaents
(2.5) at physical values of the coupling congtant o > O.

Begides we investigated the motion of poles of Padé approximants
in the complex plane of ok . It occurs that the formule

Rn = R+ o=2pm (2.7)

gives the best fit for the distance Rw between the nearest pole
and the origin of coordinates. For Padé epproximants Eu (W, 12 -1)
and Ep (n , n-1) we obtained closed values of R : Ru =6,92
and Re¢ = 6.90 correspondingly. It means that E ¢ (o ) is enrlytic
in the circle of the radius R =~ 6.9. In other words we esti-
mated the range of convergence of the perturbation series.

The discrepancy between two smooth functions giving upper and
lower bounds for the average number of phonons do not exceed 2.6%.
Here again the motion of the poleé indicates that the fange of ana-
lyticity is near T.Evidently one can suspect at the "critical" point
ol &7 the existence of a jump AN of the average number of pho-
nons with a probable value AN ~ ( Nuw - Ne )/2 =~ 0,2. If the

jump of the first derivative of Eg (ob) is the seme as in the case

of harmonic approximetion (that is =¢ 0.1, see Eq. (1.3)), then it
would inevitably lead to the jump AN ~ 1. Thus we obtain strong
arguments in favour of smoothness of the function Eg (o) and its
first derivative. .

The range of convergence is close to "critical" values oA of
the harmonic and other approximations. Thus an idea strucks that
these approximations spoil the anelytical properties of £ (o) to
such an extent that the "phase transition" seems to appear. Earlier
Larsen/7/ found the "phase transition" at ol ¢ = 6.25+#6.5 and assum-

. ed that the range of convergence of the perturbation series for

E () should be finite. However, it is evident, that this fact
should not lead for sure to the jumps of E (<) and/ or its deri-
vatives in a physical region of the coupling coamstant & . Besides,
Larsen used in his srguments the asymptotics E(2 ) =~ 0(2*) when
|Z]—=> oo for any complex Z , albeit it was obtained only for real
pogitive 2 = ol .

III. ACTUAL POLARON ENERGY AND AVERAGE NUMBER OF PHONONS

We have demonstrated that the two-~point nondiagonal Padé appro=-
ximants provides us with a very accurate upper and lower bounds for
the Feynman polaron energy. Therefore we can hope to succeed in the
case of an actual polaron with the same technique.

Unfortunately, we do not know as many expansion coefflcients
as for the Feynman polaron. In the weak-coupling expansion we know

only three terms, the last of which has been calculated in our pa-
pers/ﬁ’e/:



Ey=-4, E,=-1,591962:40"%, E3=-0.806-4077 (3.9)

b

In the strong-coupling limit we have the results obtained by
Miyake/9 :

= - 2-2,336 , A = A3=0.
Ao = -0.108543 | Ay > Ma= Ra (3.2)

With Eqs.(3.1),(3.2) the exact results for the polaron ground
state energy are exhausted, Now we can construct Padé approximants
€u (2,1), Eu (3,2) and Ee¢ (2,1). Again Eu (3,2) provides us
with the better lower bound than Eu« (2,1). Such a small number of
Padé approximants do not allow to estimate the range, of convergence
of the perturbation series. However, the location of poles does not dif-
fer too much from the location of poles in the analogous Padé appro-
ximants for the Feynman polaron. So we can hope that the estimate Rx

6.9 of the preceding section does not decline too much from the true
value.

For the aé¢tual polaron the lower bound has the form

4+ 0.13838bcl +0,043289:(>+ £,143407 33

= 3.2)= -
Eu(3:2) = - oL = e 0 01053

(3.3)

For the upper bounds we ha.e the Peynman variational solution Ep (L)
and the following Padé approximant:

- _ -4
L +2,ib2435 {072 + 9445159 40 o %

Ee(2.8) = -o .
e(2,4) L+ 2.20k 726 10°% ) (3.4)

The weak- and strong-coupling expansions for the average number
of phonons can be derived from Eq.(2.6). The Padé approximants giv-
ing upper and lower bounds are as follows:

No(3,2) = &, 4 +0.43345d +0.056325>+0.048443 o3
W > - = .
{4+ 0.12376F ol +0.0H2H20 %

>

(3.5)

Moo l)= & L+ 7. 28(1F540 2oL + 6.642032.10 o2
eEmE T 4 + 4.50332%-107%ck :

The numerical calculations with the help of Egs.(3.3-3.5) are present-
ed in Table 3.

Table 3. Upper ( E¢ (2,1), E¢ , Nu (3,2) and Lower ( £,
(3,2), Ne (2,1) Bounds for the Ground State Energy
and the Average Number of Phonons of the Actual Po-
laron

A 0.5 ! 3 5 7 9 11

- E¢ 0.5032 1.0130 3.1333 5.4401 8.1127 11.486 15.710
- B, (2,1) 0-5041 1.0167 3.1645 5.4945 8.0406 10.834 13.905

- EL(3,2) 0.5041 1.0175 3.2122 5,7767 8.8832 12,654 17.165

N¢ (2,1) 0.2583 0.5346 1.8594 3.6236 5.9345 8.8875 12.568
Nu (3,2) 0.2587 0.5409 2.1888 5.2383 10.034 16.643 25,062

One can see that E¢-(2,1) gives us better upper bound than Ef
for ok < 6. In the strong—coupling limit the better upper bound is
given by the Feynman solution. This is also true for the improved
versions of the Feynman method (see, e.g., the paper by Adamowski,
Gerlach and Leschke/1o/). This should not surprise-us because while
constructing Eg¢ (2,1) we do not use even the equality A4= 0. A
subsequent Padé approximant would lead to better upper bound, but
to construct Eg¢ (3,2) one has to know the coefficient E4 in the
perturbation series (2.3) for the actusl polaron. Nevertheless, ¢
and Eg,(2,1) give us independent upper bounds for the ground state
energy of the actual polayon. They are both smooth and do not decline
too much from each other.

The Padé approximant € w (3,2) gives us the lower bound which is
much more better than the only known lower bounds by Leib and Yamaza-
ki/11/ and by Larsen/12/ (besides, the latter works only for small
values of A ). Evidently upper and lower bounds for the polaron ener-
gy differ less than by 10% in the whole range of the coupling cons-

tant. Padé approximants allow to estimate almost with the same accu-
racy the first derivative of the energy which leads to essentially


http:Eqs.(3.3-3.5
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larger gap between upper and lower bounds for the average number of
phonons. But even such accuracy allows us to obtain some conclusions.
Thus, at the "eritical" point o &~ 7 one can assume the jump A N ~
(Nw -Ng )/2 ~ 2, This excludes the phase transition with the

jump AN 2 14, the existence of which was conjectured in the paper/13/

So, in the case of the actual polaron the exact solution lies
again between two smooth functions. However, we do not see any hints
of the phase transition, at least in the given numerical bounds. Of
course, subsequent Padé approximants can change the whole situation,
but now it seems almost incredible.

IV, POLARON EFFECTIVE MASS

In this section we consider the Padé approximents for the pola-
ron effective mass. To begin with, we take the expression for the
mess of the Feynman polaron:

Ve - xte " (4.1)
g = {4 + - j‘dx 2 1 RVMIEETE ¢
5\177 [WZX+V\‘/W(L~Q )_J

with the seme variational parameters V and W as in Eq.(2.1). In
the weak coupling limit the perturbation series. for Vg takes the
form

VV\F: i +ZW\K01K'

byl (4.2)

In the strong coupling limit WAgE is expanded in inverse powers of
the coupling constant:

. 4-K
MF= Z MKO(. B (4-3)

K=2c
Coefficients Wik and MK- are collected in Table 4.

From Eqs. (4.2, 4.3) it follows that similar expansions for W\‘#

are like those for the energy Eg , and we can use again the two-

point nondiagonal Padé approximents. So, we have a representation

44+ 0gol + o +QnoLn }1'
Aabyd 4o+ bpoa o™t

wm(n,n-4) = [
(4.4)

from which two Padé approximants follow.

10

Table 4, Coefficients of the Weak-Coupling ( wa ) and of the
Strong-Coupling ( M« ) Expansions for the Feynman
Polaron Effective Mass

Wy = 1/6 Moksa =0
wa = 2.469136 - 1072 M, = 2.001406 - 1072
Wiz = 3.566719+ 1072 M, = -1.012775
Wy, = 5.073952 . 1074 My = 11.85579
wWs = 7117137 « 1072 Mo = 43.09859
W, = 9.840535 . 107°
1.340209 - 10~

g
nn

wig = 1.796109 - 1077

One of them Wty(w , n -1) reproduces coefficients Wi ,,..,Wi -4
and Mo ,ee., My, -4 8nd gives the upper bound. The other, Wieg ( v,
W - A ), reproduces coefficients W4 ,ece , W , Mo ,eue, Mu-2
and provides us with the lower bound. With data from Table 4 it is
possible to construct both Padé approximants for n = 2,..., 8.
In Table 5 we presentwm(8,7) and Wg(8,7) for some values of the
coupling constant o in comparison with the exact effective mass
we of the Feynman poleron.

Table 5. Upper and Lower Bounds for the Feynman Polaron Ef-
fective Mass

ol 1 3 5 7 9 11

M,(8,7) 1.1955 1.8886  3.8077 11.336 42.755 141.073
e 1.89 3.89 14.4 62.5 185
vy (8,7)  1.1955 1.9081  4.6026 18.413  67.610 186.635

One can see that the convergence of our approximations is worse
than that for the polaron energy. Besides, the discrepancy grows due
to the fourth power in Eq.(4.4). The upper bound works better in the

strong~coupling limit and the lower bound is more suitable in the
weak-coupling regime.

11



Again all the coefficients Ow , &w  in Eq. (4.4) are posi-
tive, so no poles appear at physical values of the coupling constant.

For the actual polaron we know only two terms of expansion (4.2):

Wty = A6

)

M, = 2,362 763407 (4.5)

In the strong-coupling limit it is known the result by Miyake/g/:

M= 2.27018-107% | M =0, (4.6)

b

So, we can construct only WM (2.1) and Wp(2.1) for the ac-
tual polaron:

VVL\,_Q&)I) = [

i
L+ 0328404 o + 0434 498> ]
)

L+ 0.34b493 X

- .43 l‘ .
L+ 5, (1384510 o +3:699 89910 o (4.7)

4 «9.55L786 1073

o, (2,1) = [

Phe numerical results obtained with Eqs.(4.7) are collected in Table
6. ' :
Table 6. Upper and Lower Bounds for the Effective Mass of
the Actual Polaron

o 0.5 9

W (2,1) 1,09 1,19 1.77 2.74 4.34 6.91 1.0

wmw (2,1) 1.20  1.64 7,50 28.3 82.0 195 402

The well-known trouble with the mass is that one cannot state
that the variational result YWg is an upper (or lower) bound for the
actual polaron mass. The results of Table 6 are the only known upper
and lower vounds for the polaron mess but the gap between them is too
large due to the lack of information about strong- and weak-coupling
expansions.

12

L

One can hope to improve slightly the lower bound constructing
Padé approximant myp (3,2). To do this one needs the coefficieut
WLz of the weak-coupling expension (4.2). It can be obtained wi-
thin the diasgrammatic technique of our paper
tions ere on march now.

, and the calcula-

To conclude, we should mention the paper by Sheng and Dow/14/
devoted to Padé approximants for the polaron. In this paper the au-
thors obtained a wrong result for the coefficient Ez in the third
order of perturbation series (2.3) for the pdélaron energy: &5 =
= - 0.,8765 -10"2. This essentially exceeds our value of Eg.(3.1).
The mistake is due to distinctions in diagrammetic techniques: the
contribution corresponding to one of disconnected diagrams of our
paper”~/ is gbsent in their calculations. As a result, they obtained
the pole in. Padé approximant at oL ~ 400. Besides, they considered
only one of the two Yersions of Pedé approximants.

While constructing estimates for the polaron mass they subtract-
ed leading terms O (ol*) anda O (cL2) of the strong=-coupling expan-
sion and used diagonal Padé'approximants for the residue. Such a
procedure cannot be applied to the actual polaron because one does
not know coefficient Mgy in Eq. (4.3). In the case of the Feynmdn
polaron this leads to a negative mass at some values of the coupling
constant ol . So, we consider it is more mdequate to construct two-
point nondiagonal Padé approximants Tor m** as in our Eq.(4.4).

We are grateful to Prof. N.M.Plakida who brought paper’ '#/ to
our attention while discussing the present results.
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Cemorun 0.B., CmoHOpipeB M.A. . E17-87-335
dasoseii nepexon H [lage—npubixeHue
O IToJisipoHa

B paMkax ABYXToueYHOro HepHaroHanbHOIo llage—mpHbiimke-—
HH5T TIOJIYYEeHbhl HHXHsIA M BePXHAS OUEHKH Ha sHepruio U sdbek—
THBHYI0 MaccCy nojispoHa. O6e oOLleHKH O SHEPTHH HOCTAaTOYHO
G6IM3KH OPYr K OPYry, 4YTO YKaseBaeT Ha IJIafKOCTh 3HEepTHH |
Kak GYHKUMHM KOHCTAaHTHl CBs3H. [l09TOMy He HOOIIXKHO CYmeCTBO-

BaThk $a30BOI'0 [epexoa TOJsipoHa B caMoJioKalu30BaHHOe
cocTOfHHE.

PaboTa BeimonHeHa B JlaBopaTOpHH TEODETHUYECKOH (HIUKU
Oousn.

INpenpunt O6beAUHEHHOIO HHCTHTYTA ANEPHBIX MccnefoBaHui. Jybua 1987

Seljugin 0.V., Smondyrev M.A. E17-87-335
Phase Transition and Pade”Approximants
for Polaron

Upper and lower bounds for the polaron energy and ef-
fective mass are obtained in the framework of the. two-
point nondiagonal Pade method. Both Pade” approximants
for the polaron energy are close enough to each other
indicating that the energy is a smooth function of the
coupling constant. Therefore no phase transition to a
gelf-trapped state should occur.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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