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1. Introduotion.In the Rartree approximation the schrOdinger equa­

tion for the boson system with 2-body attraotive and )-body repul­

sive I -funotion interaotion reduces [1] to the t!.</,S non-linear 

Sobrodinger equation (HLSE): 

~ 1f + A r- c(. If' + rI ",/2. - rI tfI ....""" 0 . (1)t 
In this letter we study Eq.(1) under non-vanishing boundary oondi­

tions Ir6tl)/-7" I tfo I • Physically. this implies analysis of non­

linear excrtal"ions in The oonstan--t density condensate r11 • 
Apart from the mentioned problem, '1'3- tfS" NLSE arises in a 

number of independent fields including nuolear hydrodynamics [21 • 

nonlinear optics [) ] , ferromagnets and moleoular crystals [4J . 
Next, in the static case Eq. (1) is the Euler-Lagrange equation for 

the functional F=J[ 'vrl 2 +VC/'{1t) J ,LIJ-$ :I V;:olll/11...flfl1-fltl: 
which may be thought of as the Landau expansion of tree energy in 

powers of the order parameter cf and it s gradient (see e. g. f5,6] )., 
The situations when lift term should be kept in the expansion are 

discussed in literature [6]. Finally. the static solutions to (1) 

obey simultaneously the r~ r S' nonlinear Klein-Gordon equation 

also belonging to extensively applied class of mOdels [7]. 
The nonvanishing boundary conditions admit detinite physical 

interpretation j.n terms ot all these fields. However. we postpone 

the interpretation to a more detailed publication and concentrate 
3 S' " 

on solutions to (1). Our main goal is to show that 'f-'f NLSE pos­

sesses a new type ot soliton solutions. These nontopological bubble­

like solitons tUrn out to be characteristic just for the three-well 

potentials V describing oompeting interaotions (to compare, note 
3 

that the repulsive r NLSE does not have solutions ot this kind). 

Also we display several integrable limits of (1). 

rr. 7",,,, 

2. Useful form. It is convenient to make a SUbstitution ~(~ t)=
pr(.fJJlx) 3f+t) with }'''''1-(A +2Po) p. >0 JI 

A/.t: == - 2'" ~ .,(.-r [., - (1 - +d.) 1h-J (2) 

and pass from (1) to the equation 

ilfi + lllf -(2A+~)~Cf +2(At2f)/'I'/Z,,-3/W+-r:=O (J) 

with Hamiltonian 
D


E == 5f Iv~/~ + (llfl2.-~)'-(lIfI!.-A)] J :;. (4) 


Eq. (J) admits a homogeneuus solution '1=.t;~ ("condensate"). Linea­

rizing (J) about it, one obtains the dispersion relation 4JZ = 
...,1 """2 .,::1< [K-r4J;(~-A)Jand.conSequent1y, the velocity of sound: 

C:: [+fo(~-A)]"/.t. (5) 

We shall be interested in the nonlinear, localized excitations of 

the condensate, i.e., in solutions to (3) with the boundary condi­

tions 
-II> .",. -;.2. 

Itf(;, t) I~ f(.l y r ( X, t) -"" 0 as ::t' -;:/I" t:iIO. ( 6 ) 

In view of (6). the appropriate form of the second conserved quantity 

("number of particles") is 
2. 1:1>..,..h'= f (Ittl -..Po) a., X (7) 

3. Mxact solution in Dc1. In thQ one-dDnensional space the soliton 

solution to (). (6) may be found explicitly 1): --t 
<£ == (2£.) 1/2 WI>h. (;(_,·)(.)[(2~-A){A2.+V2i"11.t+ C4'J4lEj , (8) 
SOl , Z .l-tl 

where X= f ee'-Vl)1I.! C'1!-vt) ) tab 2('< == (A(+fv,)J!-f(A+Vl, 

and 0<2«< 'J7:. Eq. (8) represerlts a rarefaction domain propagating 

at velooity 11< C (note that the shape of I'Ps/ 2 
depends on V ). The 

number of particles (7) displaced from the d()main is given by 

,1\1 = A'ltCO;?f,., [(2(-A).(A2.+V2rVz] < O· (9) 

1) Details will be published elsewhere. 
_ ......l.-... .:&.l'-"~'t.'-

3f',it;;::, ;", "\lO~l,jl;tm l 
~a,,:\)':"\"" ,·t"~K~ t 
. (::A;0';.:;~,:--
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Let v..o. Then at A"'O we have I' .. 7.1t"and the solution (8) is kink­

shaped: ~(~=-Y;(--) (this soliton resembles the well-knOwn f'lNLSE 

kink [5]). Passing to the D .. 2 spaoe, the kink is transtormed into 

vortex [51 ' but it has no any statioI:jar,y oounterpart in D=J. On 

the other hand, at v=O, 0 <: A<:.f, we hElove /' -0 and 'IS looks like 

a "one-dimensional bubble": ~("""1s(-~. As we shall see, the re­

markable teature of this latter soliton ~s that it survives passing 

both to 2 and J dimensions. 

4. statio lipdt. D>1. For statio real rotationally-s~etrio solu­

""'t-')) !. -a.tions '1(~, '/::: 'f("t (where 't e ~ ) Eq. (J) reduces to 

~'L't .,. )~4 ~"I. - (2A"'.f!.)fc/f+!(A"'2e)~3-3"S"-0, (10) 

In view ot (2) solutions with the same value ot AI fo are similar 

and we may tix .f. ..1. Analydng (10) on the phase plane, one oan 

verity that tor each Ae (0,1) the solution exists with the boun­

dary conditions ~ co)::::O, rC"'C).j as 7,""<10. We have obtained this 

bubble-like soliton numerically (tig.1). The number ot displaced 

particles [Eq. ("()1 is exposed in tig.2 [tor A .... 1 we have used Eq. 

(19) below]. 

5.Transonic limit. There is one more limit when solitons ot ~!.f/S 

NIoSE are easy to describe. Let us introduce real P , {} and it • 
J "', 1. v.z ",J1 ..,. ... nI"., ""'1 ~J) r such that Cf:=f e and U- Vt.1 • Then (J) imp­

lies .... ....,..
Pt ..,. 2. V {fU)-O ( 11 ) 

W + f il~+ t (;flf-1-1f~{.4ff(f-()(3f-1!-2A)7~O(12)
t 

w11;h vis. U" ,~!!! :c.,. Passing to the variables: and 't': nfa~ "'E~x-ct)
~ ..,. a ('( ;
1..1- == 172,"" 1:DJ=ex..,.)1: -tJ.t(e • small parameter) we contine our­

selves to the transonic waves weakly depending on transversal coor­

dinates. Let us expand solution with asymptotics (6) in power se­
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The spherically-symmetrio bubble-like soliton for fo ~1 and different 

values of A [at D=2 the behaviour Of':fS('9iS qualitatively the same.] 
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FIG.2 
Tl':e number of particllls displaoed from the "bubble" (oomputed nUllle­

rically) far D=2 and 3 (90 =1) .For D-3 the maximal value of N. 

N = -ltC.51 is attained at A= 0.82max 
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ries: 	f - fo +t P(1)+E2 j>£2).,. ... , W = ~W(I)+t"I1t1(2)+ ... I 1l..J.... =t,tz il.1..°+.", 
6. Small c approximation. Allowing A ~ f" we obtain another infor­. (I) 	 (0 0

where 	 f ) !Ill -I> as 1'E.,/..IJ><p, and substitute these into (11), (12). 
mative limit. Let us assume that 'I !:I: t;,V:1._t; is of order ( fo -A) 

Then 	we find: 
in this case. Keeping only up to J-l in 0) we have 

CPC;: = 2. f;. Wf) (1) 

!:')-Cf~2)..,. l(t; WW+ l'U)W(l))r. ft.t; 3l{f'Yd~=() (14) 

w.")-CW(l)"'['~/u)l L~-Ir.'I}+,!")I.+f/r.-A)f*)l =0 (15)
1;' ~ rv -;." ~tt "i.'o J4 .) 

whence one obtains [A.,l.. =: (aj&>{_t.-Y']: 

[ ~Cf(I)- p(l) + '(2f. -A)(O(!)t) 1 _-C2~ f{{) (16)
't' >.!;~; "J ~ ~ :.L. 

At D.l (A.J.f 
(I)

:= 0) Eq. (16) is recognized as KdV I while at D.2 

it is the Kadomtsev-Petviashvili (KP-1) equation. Both the systems 

possess stable so'liton solutions2 ). The explicit fonn of these is 

well-known (8,9J and will not be given here. At D=) the soliton2) 

solution to (16) has been found numerically and shown to be unstable 

[10]. Summarising, for any A < ~ Eq.O) possesses localized solu­

tions in the fonn of transonic weak rarefaction domains (flattened 

in the direction of motion), stable at D=1 and 2, and unstable at 

D .. ). 

Lastly, it is appropriate to mention that both KdV and KP-1 

are completely integrable systems. Thus, in the transonic limit much 

more infonnation is available at Da1 and 2, including explicit N ­

soliton [8] and finite-gap [9] solutions, the Cauchy problem asymp­

totics [9J.etc. 

2) 
Here 	only the solitons are meant decaying to zero in all directions, 

1. e. ,lumps. 

L:lt + t:. 't + 2fo(A- fo){X+;tif) +3f,,'12(/t+;t1 1.o. (17)

I In tenns of It:f 1- +'t" and nt,;;; i(XI!..t), (17) reduces to "'"mt 
=-LlI't-C 2n. + ,~)/ln.." and n.f= -Am [recall (5)]. Elimination of m 

yields 
2

w'tt 	+ A (An. -C1n, .,. 6 ~'12 n ) = 0 • (18) 

-- -1* t) "" I....... -.z\Lastly, if n (-r:, is a s(,lution to eq\.lation n.ft +4,11~-1'Z+6n. ,=0, 
then n..{i;t.)= C"~-~4n(cl"clot) solves (18), t/lereby justifying the apove 

assumption. 

At D=1 Eq. (18) is the Boussinesq equation (BqE) integrable 

through the Inverse Scattering method (N-"loliton solution is in [11]). 

The soliton of BqE is stable or not, dependS on its velocity [12] • 

Applying results of [12] to Eq.(18) and, subsequently, to (J),we find 

that 	at A"* Va the "bubble" (8) is stable only for v >tC.Also this sug­

gests some critical velocity to exist for general A. 

At D.2 and J we can employ the scaling n""" P{ to specify the 

dependence of the number of displaced particles (7) on A for A""" f'_ • 

Indeed, for static bubble we may choose '1-=~"" and, therefore, 

1[i') = tncl) =1- C1 .t:~'Lt n (c i1). Then 

/V]) (A) = - c2-:D5;-1 S~ (iC) rL:b;J ) (19) 

,.., .::t') - '" ---2 .1with n(x verifyin& 4H.-h,.+Gn=O. Thus, as c_O we have rt'f-il' 0, 

~...,. const and All ~ - t10 • 

7. Stability. Let us examine the stability of the static real rotati ­

onally-symmetric "bubble" solution Cf ('1.) of Eq. 0) with respect tos1 small perturbations SCf(';). We shall require that these Sif 
.... (" It'" ,,"(ptt\ 11>....J disturb neither the total momentum integral, p..~)l<f vtf-)~ J let :c, 
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nor the number of particles (7). For infinitesimal S'! "'" ;. +t.'t 

( f),. E' IR.) this amounts to j 1(1) V lfs C"t) r:l.1>~-.0 and 


f t (;) tfs (#'f.) r;{ D X == 1" [j- ] = 0, (20) 


The soliton ~ {-Y is a stationary point of the functional (4) 


under the conditions SN==$ P=O. i.e•• (10) may be written as 


(~E")I'V" p = 0. with the Lagrangian multipliers being equal to zero. 


Stability of <:fs depends on the positive definiteness. of the second 


variation (S2E)H. if. \'/e have 


82J;::: S[3C«JL" 'It;) + :F(~)L2 ;(~) ] J:D;"; :> (21) 

~eN 	 ) %L" ~ -A +fo(~+2A)-.1{A+2fo ~ b) + 3tf:;"("t) 


and +
L2. .:::. L., - +(ArZf,)'f/C",,) +12'!S ('1,) == -A+r("t)· 
Let us set D-) and consider an eigenvalue problem L.21'(:;;­

:= ').'ItX) ):tlo)<tJO) }(oo) = 0 . Substituting 1(1)=z(-Y'if4,,/~;~ 
this reduces to 

-l't"t + [.e(l+I)··r,z +1("t)]:r::l~) ~(O)=t(qO)=O. 
As usual L2 possesses) translational zero modes 'I/(XJ =- d~/a~, 
with (, =1, the related radial eigenfunction r"t'1) = '1 ri.~/A having 

no internal nodes in (O,~). Consequently, at f=o the nodeless ra­

dial eigenfunction r.o[.y exists with the eigenvalue ;:io < O. 

Actually, L~ operator has a negative eigenvalue Ito at any D1). 

The cOrNsponding eigenf~~ction ~,(2r) being nowhere vanishing, it 

does not obey (20), i.e., <]:'"f:;"l:FO. Thus, fo=l:/o(c«f, /1~"d=:J.) 
may not be used as a trial function in (21). However, since the fun­

ctional T is not bounded in L2, (f{:D) 1), its kernel is everywheN 

~ in this space according to the well-known theorem (1)1. 
(I 	 ..... 

This means that for any 0> 0 the function f(x) exists such that: 

i) it verifies (20); ii) S[ rC~) - to (;t) J 2.J.1I» '" ~ . Using 

f 	as a trial function in (21), and setting g(t). 0, we obtain that 

(S2E)N.if may be made arbitrarily close to l,f2< o. Therefore, the 

static "bubble" is unstable in allY dimension. 

8 

8. Discussion. As ',ve have already mentioned, the principal feature 

that distinguishes the bubble-like solitons from the topological 

ones is that the latter do not survive passing to ) dimensions. In 

this respect the following question remains open. The static "bub­

bles" exist at 0< A<JI" while the static lcinks and vortices live 

at A< O.Strange as it may seem, there does exist )-dimensional 

(transonic) soliton at A<O! It is unclear, what does it transform 

to under the velocity decrease. 

Finally, let us comment on the distin~tions between two types 

of nontopological solutions, i.e•• between the "bubbles" and the 

lump solitons. The latter can generally be made stable ("Q-stablea ) 

[14J) by some integral fixation (at least, in certain parameter doma­

in).The "bubbles" t conversely, have turned out to be essentially un­

stable solutions. Next, it is well known that lumps may possess 

nodes, the stationary nodal lumps being normally interpreted as 

nonlinear excitations of the nodeless ones. Surprisingly, there 

exist no nodal "bubbles,,1). The two mentioned facts are closely 

connected and imply these novel solitons should not be considered 

merely as "reversed lumps". 

We thank A.S. Kovalev and A.B. Yanovski for helpful comments 

and suggestions. One of us (I.B.) is grateful to V.L. Axenov, 

S.A.Sergeenkov. A.S.Shumovski and V.I.Yukalov for explaining him the 

importance of this problem for solid state physics. 
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EaparneHKoB l1.B., MaxaHbKoB, B.r. EI7-87-29 

COJIHTOHOnO.no6HbIe ' 'nY3blpbKH" 
B CHCTeMe B3aHMO.neHCTByromHX 6030HOB 

PaCCMaTpHBaeTCH ",3 _ '" 5 HeJIHHe~HOe ypaBHeHHe llipe.nHHrepa, 
OQHCbIBaJOmee B npH6JIHJKeHHH Cpe.nHero nOJIH CHCTeMY 6030HOB 
C .nByX- H TpeXqaCTHlUIblM o-o6pa3HblM B;3aHMO.neHCTBHeM. B OAHO-, 
.nBYX- H TpeXMepHOM KOOp.nHHaTHOM npOCTpaHCTBe nOJIyqeHbI COmITO­
Hono.no6HbIe pernemm: THna nY3bIpbKOB H Hccne.nOBaHa H3 yCTOH~-
Bocn. 

Pa60Ta BbIflOJIHeHa B na60paTOpl1H BbIqHCJIHTeJIbHOH TeXHHKH 
H aBTOMaTH3aIIHH OMHM. 

ITpenpHHT 06'1teJ].HHeHHOrO HHCTHTyra HJ].epHblx HccneJ].OBaHHH . .ny6Ha 1987 

Barashenkov LV., Makhankov V.G. 	 EI7-87-29 

Soliton-Like "Bubbles" 
in the System of Interacting Bosons 

We study the '" '" 5 NLS equation which arises as the mean-
field approximation for the boson system with 2 and 3 body contact 
interactions. The bubble-like soliton solutions are found in 1, 2 and 
3 dimensions and their stability is examined. 

The investigation has been performed at the Laboratory of Com­
puting Techniques and Automation, JINR.... 
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