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1._Introduction.In the Hartree approximation the Schridinger equa-
tion for the boson system with 2-body attractive and 3-body repul-
sive (S. -function interaction reduces [1] to the f’iﬁl’s non-linear
Schrédinger equation (NLSE):

Y+ A —a¥ + SV -FIH =0,
In this letter we study Eq. (1) under non~vanishing boundary condi~
tions 1YC ?f,f)]—v" 1¥,] . Physically, this implies analysis of non-
linear ex¢italions in The constant density condensate [7] .

Apart from the mentioned problem, ¥ % NISE erises in a
number of independent fields including nuclear hydrodynsmics [ 2] y
nonlinear optics [3] » ferromagnets and molecular crystals [4] B
Next, in the static case Eq. (1) is the Euler-Lagrange equation for
the functional F.‘:j[ fp??lz +V([Wl)_] dz,{t” QV:JIW{;'[QP];_%/Y’/,‘
which may be thought of as the landau expansion of free energy in
powers of the order parameter 4’ and its gradient (see e.g.[S 6] ).
The situations when W’l term should be kept in the expansion are
discussged in literature [6]. Pinally, the static solutions to (1)
obey simultaneously the *%_\}15" nonlinear Klein-Gordon equation
also belonging to extensively applied class of models [ 7].

The nonvanishing boundary conditions admit definite physicsl
interpretation in texms of sll these fields. However, we postpone
the interpretation to a more detailed publication and concentrate
on solutions to (1). Qur main goal is to show that f"; S" NLSE pos—
sesges a new type of scliton solutions. These nontofpological bubble~
like solitons turm out to be characteristic just for the three-well
potentials V describing compéting interactions (to compare, note
that the repulsive W’NLSE does not have golutions of this kind).
_4lpo we display several integrable limits of (1).
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2. Ugeful form. It is convenient to make a substitution f{(’x‘,f‘)...
BHIPE, 3/5‘%‘) witn Pl=%(cA+r28), £>0,
M=z R [ (1= 4™
and pass from (1) to the equation
i@, + 20 ~(24+8)$% + (A +zg)/¢l"tf-3l‘f’! -0 ©
with Hamiltonian
E = [[1781* + (-9 (e -a)]d°F .
Eq. (3) sdmits a homogeneous solution ?— vz ("condensate®). Linea-
rizing (3) about it, one obtains the dispersion relation w?=
:zzfj(’?!"‘?g(g"fv]and,consequently, the velocity of sound:
c=[+6(5-NI" o ®
We shall be interested in the nomlinear, localized excitations of
the condensate, i.e., in solutions to (3) with the boundary condi-
tions - »2
9L, t)| =8 | Te(HT) >0 e Teo. (o
In view of (6), the appropriate form of the second conserved quantity

{("number of particles") is

V= [frre=8)d7Z . )

3. Exact solution in D=1. In the one-dimensional space the soliton

solution to (3), (6) may be found explicitly }:

@ =(28)" conh (T-ep [(25-A (A Zv) " aoolxz:r]

where F= Fcervyzca-vt) |, tos ap = (AR +$v)L(A +v2)
apd 0<2f«< JI'. Eq. (8) represents a rarefaction domasin propegating
at velocity V<€ (note that the shape of IVSI depends on V' ). The
nunber of particles (7) displaced from the domain is given by

N = Pcearh [ (28-A)-(A*+v3) 2] <0. 9)

") Details will be published elsewhere.
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Let v=0. Then at A<( we have J¢ =%feand the solution (8) is kink-
shaped: %;(#9)=-¥, (-e) (this soliton resembles the well-known $P’NLsE
kink [ 5]). Passing to the D=2 space, the kink is transformed into
vortex [5], but it has no any stationary counterpart in D=3. On
the other hapd, at val, 0<A<f; we have M =0 and ?s looks like
a "one-dimensional bubble":?&(o’)“ S”(-d. As we ghsll see, the re~
markable feature of this latter soliton ls that it survives passing

both to 2 and 3 dimensions.

4. Static limit, D>. For static real rotationally-symmetric solu-
> -~
tions ?(:t,t)—‘:‘f(“t) {where 't"ﬁ :C") Eq. (3) reduces to

D-4 3 5, 1

G+ 2 G~ (ALY +2(A+20)¢%~397=0  (1O)

In view of (2) solutions with the seme value of A/fo are similar
and we may fix 9’ =1, Analyzing (10) on the phase plane, one can
verify that for each A € (0,1) the solution exists with the boun~
dary conditions %C")’O, ‘ff‘t)»i as “P»o0 ., We have obtained this
bubble-like soliton numerically (fig.1). The number of displaced
particles [Eq. (7)] is exposed in fig.2 [;tor A-»1 we have used Eq.

(19) balow].

5.Trensonic limit, There is one more limit when solitons of P35
‘ -
NISE are easy to describe. Let us imtroduce real £, Sand U =
. >
{a4 2 2 'u_p} such that ?*fnf“p and U= Vt9 » Then (3) imp-
lies - :
bl
§ + 2Y(Su)=0 (1)

w, + [LH+ 5 (V) €2- 2748 +(E-9)(38-£-24)] ~0c2)

with W2 Uy , T2 X,. Passing to the va.ria.bles]z’ and T pz'gg "E"&(x-c‘t))

- -
?.J..E {l?,,... ’ ?p}‘-?ér&;fa'f*t(g = gmall parsmeter) we confine our-
selveg to the transonic waves weakly depending on transversal coor-

dinates, Iet us expand solution with asymptotics (6) in power se-
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FIG A
The spherically-symmetric bubble-like soliton for ,gzi and different
values of A [at D=2 the behaviour of ‘fs('g)is qualitatively the same.]
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PIG.2
Tre number of particles displaced from the "bubble" (computed nume-
rically} for D=2 and 3 ($,=1).For D=3 the maximal value of N,
N ..= ~40.51 is attained &t A= 0,82 .,



ries: § = £, +EPWrg2e @y s w=ew O retwPe., W =R U -

; )
where fu,) W' 0 as {E,)»w, and substitute these into (11), (12}

"}
Then we find:

CPP =28 wf (13)
@ €2) 2 g "
S. —CE Ve 2(GW Ppphy W) 128 9“—*-(0/‘9?4:0 (12)

o) 1) D)
We tWe v [wR 2876s 38V 2508V -0, ()
whence one obteins [ A = Ca/aé:_)i_]

[2c9- g;:g; + 6(28,~AN(9YY) ]z =04, 8% (&)

At Del (A*?"’a—-()) Egs (16) is recognized as K4V, while at D=2
it is the Kadomtsev-Petviashvili (KP-1) equation. Both the systems
possess stable soiiton solutionsz). The explicit form of these is
well-known [8,9] and will not be given here. At D=3 the soliton2)
golution to (16) has been found numerically and shown to be unstable
[10]. Summarising, for any A< % Eqs (3) possesses localized solu-
tions in the form of transonic weak rarefaction domaing (flattened
in the direction of motion), stable at D=1 and 2, and unstable at
D=3,
Lasgtly, it is appropriate to mention that both KAV and KP-1
are completely integrable systems. Thus, in the trensonic limit much
more information is available at D=1 and 2, including explicit N -
goliton [8] and finite-gap [9] solutions, the Cauchy problem asymp-
totics [9J.etc.
5 I
Here only the solitons are meant decaying to zero in all directions, I
i.e.,lumps.

6. Small c approximation. Allowing A—>§, we obtain another infor-
2
mative limit. let us assune that 7£’25:V -9 15 of order ( §,~A)
L 4
in this case. Keeping only up to X in (3) we have

iUy + A+ 28, (AS) (A7) 3G (4 X% 0. ()

In tems of B ¥ 'X*%” and M= "(75{25), {17) reduces to mt s
=4n-tin + éfi,”‘n" and R, = ~AM [recall (5)] . Elimination of /2
yields

T
Lastly, if ﬁ(%v +) is a solution to equation /'{“+A(ﬁﬁ—ﬁ'+6ﬁz)=0,
then n(o’c,t)=c‘5§“’3%(ci,c‘t) solves (18), thereby justifying the above

asgumption.

+4(an-cth +68%n%)=0. (18)

At D=1 Eq. (18) is the Boussinesq equetion (BqE) integrable
through the Inverse Scattering method (M-soliton solution is in [11]).
The soliton of BqE is atable or not, depends on its velocity [12}.
Applying results of [12] to Eq.(18) and, subsequently, to (3),we find
that at A9 90 the "bubble" (8) is stable only for v>%c.Also this sug-

gests some critical velocity to exist for general A.

At Da2 snd 3 we can employ the scaling > to specify the
dependence of the number of displaced particles (7) on A for AP | N
Indeed, for static bubble we may choose ¢=~" ‘x*and, therefore,
AR)=sn(E)=Fe284 7 (ed). Then

/VD(A)-:-C"‘"g“fK(é’)c{’i’, (19)
with g(f) verifying A;{"E"'Gﬁz‘a. Thus, a8 c—»0 we have /%—D 0,
A&*const and /V3""'°° .

7. Stability. Let us examine the stability of the static real rotati-
onally~symmetric "bubble" solution (fs('!) of Eq. (3) with respect to
§9(, S®
small perturbations ‘f(’x') . We shall require that these
-»> ¥ 0 *) d‘p.)
disturb neither the total momentum integral, P= LJ(‘! ve-gry ®,



nor the number of particles (7)., For infinitesimal 8?""" f“ﬂ.’}
(f;g € IR) this amounts to f}(:f) ?9; (.‘) d»&;’;—a and
[$Z)%0d>F = Frs1=0. (20)

The soliton (fs(d) ig a stationary point of the functional (4)
-
under the conditions &‘V=S P=0, t.e., (10) may be written as
(554/’ ?20, with the Lagrangian multipliers being equal to zero.
Stability of ‘fs depends on the positive definiteness. of the second
variation ( 825),,’ ,3’ . We have
- g - e d
§2E = [[3(9L, 9(3) + $E, f(DILE , @
where
L, = -A+5(5+24) ~2(Ar28)57 (%) + 365
4+ o
Ly = Ly—4(A+28)€7(n) +125, (7) = —4+9(%).
Let us set D=3 and consider an eigenvalue problem /_2 }(é’ym
- -
"'2#(2) )}["}“”1 }(oa)-.:: 0 . Substituting }(:Z?-’-‘i‘(‘t)qfnm(@ﬁ))
this reduces to
- Byt [L(E+0)4* + ?(1)]2 =%, 2(0)=2(00}=0o
Ag usual L2 possesses 3 translational zero modes ;{/’[2'-7: 93;/3.2;
with € =1, the related radial eigenfumection 241'1)=’ld?5/l£b having

and

no internal nodes in (0,9?). Consequently, at [:0 the nodeless ra-
dial eigenfunction 20['1) exigts with the eigenvalue 20 < 0.
Actually, 1.2 operator has a negative eigenvalue 20 at any DU.
The corresponding eigenfunction ya(:ir) being nowhere vanishing, it
does not obey (20), i.e., ?[y,]¢0 . Thus, £=,fg.o(£<<{, /;yay=1)
may not be used as & trial function in (21). However, since the fun-
ctional 9‘ is not bounded in Lz (RD)”, its kernel is evexywhere
dense in this space according to the well-known theorem [ 13].
This means that for any g) 0 the function ?('x’) exists such that:
1) 1t vertries (20%; 11) § [ £¢%)-£(Z)]*d%E <& . veing
f as & trial function in (21), and setting g(¥= 0,we obtain that
(SZE)M§ maey be made arbitrarily close to 2.0224 0. Therefore, the
static "bubble" is unstable in any dimension.

8

8. Discugsion.As we have already mentioned, the principal feature

that distinguishes the bubble-like solitons from the topological
ones is that the latter do not survive passing to 3 dimensions. In
this regpect the following question remains open. The static "bub-
blea" exist at 0< A<H, while the static kinks and vortices live
at A< 0.Strange as it may seem, there does exist 3-~dimensional
{(transonic) soliton at ACQ! It is unclear, what does it transform
to under the velocity decrease.

Pinally, let us comment omn the distinctiong between two types
of nontopological solutions, i.e., between the "bubblea" and the
lump solitonse. The latter can generally be made stable ("Q-stable™)
[14]) by some integral fixation (at least, in certain paremeter doma-
in).The "bubbles", conversely, have turned out to be essentially un-
stable solutions. Wext, it is well known that lumps may possess
nodes, the stationary nodel lumps being normelly interpreted as
nonlinear excitations of the nodeless ones., Surprisingly, there
exiat no nodal “bubbles“1). The two mentioned facts are closely
connected and imply these novel solitons should not be considered

merely as "reversed lumps".

We thank A.S. Kovalev and A.B. Yanovskil for helpful comments
end suggestions. One of us (I.B.) is grateful to V.L. Axenov,
S.k.Sergeenkov, A.S.Shumovski and V.I,Yukalov for explaining him the
importance of this problem for solid state physicas.
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Bapawenkos W.B., Maxanskos B.T'. E17-87-29

ConuroHornono6Hble My3bIpbKH”’
B CHUCTeMe B3aUMOMIeHCTBYIOLHX DO30HOB

PaccmarpuBaeTcs ¥3 _ ¥ ® genuneitnoe ypasHenue lllpemurepa,
onHUCHIBaOIiee B NprOMIKEHHN CpeOHero Mong cucremy OO30HOB
C ABYX- ¥ TpexyacTWYHbIM J-00pa3HeIM B3auMopeiicteueM. B oxHo-,
IBYX- H TPeXMepPHOM KOODAHHATHOM IPOCTPAHCTHE [10J1y4eHbl CONTHTO-
HOMOHOGHBIe pelleHHsA THIlAa Ny3bIPbKOB WM HCC/efOBaHA M3 yCTOMYH-
BOCTE.

PaGora BbirosnHeHa B JlaGopaTOpHH BBIYMCINTENIBHOU TEXHUKH
u aBTomatuzauuy OUAN.

MpenpunTt O6benHHEHHOrO HHCTHTYTa ALEPHBIX Heenenosannit. Jy6ua 1987

Barashenkov 1.V., Makhankov V.G. E17-87-29

Soliton-Like ""Bubbles”’
in the System of Interacting Bosons

We study the Y- W®NLS equation which arises as the mean-
field approximation for the boson system with 2 and 3 body contact
interactions. The bubble-like soliton solutions are found in 1, 2 and
3 dimensions and their stability is examined.

The investigation has been performed at the Laboratory of Com-
puting Techniques and Automation, JINR.
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