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1. INTRODUCTION

In many nonlinear systems involving the interaction between light and
medium, some nonclassical effects are observed. The reviews of such non-
classical effects in optics are given in papers by Loudon ‘1 paul / 2’ and
Walls “2’. The most well-known example of these effects is the photon anti-
bunching which was observed in the experimental works by Kimble et al /4,57

Another example of nonclassical effects is the violation of the Cauchy —
Schwarz (C-S) inequality which was observed in the work by Clauser "8/. The
violation of the C-S inequality was also predicted in the two-photon laser 77/
and parametric amplifier 8/,

In recent years a large number of theoretical and experimental works
is concentrated on the problem of squeezed states of light /9-18.31-32/
which were observed in the experimental works by Slusher et al.”29/  Shel-
by et al. 721/ and Kimble et al./22/ .

In this paper we present the violation of the C-S inequality and the
squeezing in a fluorescence from a system of three-level atoms (Fig. 1) in-
teraction with two driving monochromatic resonant fields and with an emit-
ted field in the context of double optical resonance /23-25/ |

L]

II. MASTER EQUATION

The N three-level atoms are assumed to be concentrated in a region small
compared to the wavelength of all the relevant radiation modes. In treating
the external field as C-numbers, the master equation for the atomic system
alone p with the Markovian and rotating wave approximation is 27/,
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where 2y,, and Zyg, are radiative spontaneous transition probabilities per
unit time for a single atom to change from the level |2> to {1> and from
13> to 12>, respectively; G = (G§+ 05)1,4_ and tga =G,/G,, where G, and
Goare the Rabi frequencies for the atomic transitions from level |2> to
[1> and from (3> to [2>, respectively; and

N

Ty = 2 iy gl
k=1

,§=1,2,3)

are the collective angular momenta of the atoms. They satisfy the commu-
tation relation

[Jl., ’ Ji’j’] =J1j’5i’j —Ji' 8.~

37

As in refs.’/19,25,28/,
for angular momentum

we introduce the Schwinger representation

i +
J, =C.C

i) i j (irj =1'2l 3.)t

where operators C, obey the boson commutation relation
+
[C i CJ ] = 5 ij
Further, we investigate only the case of intense external fields so that
G > Ny, ,Nyg,. (2)

After performing the canonical transformation

Q
i

. 1 . 1 .
- ——sinaQ, + cosaQ, + —~——8inaQ, ,
3 1 2 5 3

C, - —a,++aq,, (3)

Cy=- ——cosaQ; - sila@y + ———cosaly , (3)
Ve Ve
one can find that the Liouville operator L appearing in eq. (1) splits into
two components L, and L;. The component L, is slowly varying in time
whereas L, contains rapidly oscillating terms at frequencies nG(n=1,2,3,4).
For the case when relation (2) is fulfilled, we make the secular approxima-
tion, i.e., retain only a slowly varying part 25,807 " Correction of the re-
sults obtained in this fashion will be of an order of (yle/G)zor (y32N/G) 2
Making the secular approximation, one can find the stationary soluti-

in of the master equation
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where ;=UpUT here U is the unitary operator representing the canoni-
cal transformation (3)
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The state |M, R> is an eigenstate of the operator R ;;, R =R;; + Rgg and
Ry = Q}Q (.1=1203).

The operators Q, satisfy the boson commutation relation

-+
(q,.a@}1 -3, , 5)
SO
(R, ,R...)J=R _.&6. ~-R. & . . (6)
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By using solution (4) the characteristic function can be defined similarly
to Louisell 729/
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where 2y, and 2yg4o are radiative spontaneous transition probabilities per
unit time for a single atom to change from the level |2> to {1> and from
13> to 12>, respectively; G =(G%+ Gg)l' and tga =G,/G,, where G, and
Gpare the Rabi frequencies for the atomic transitions from level |2 > to
|1> and from [3> to |2>, respectively; and

N

Ty = 2l
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i,§=1,2,3)

are the collective angular momenta of the atoms. They satisfy the commu-
tation relation

[J ,Ji’j’] =J1j’8i’j —Ji'js--’

i ij

As in refs,/19.25,28/ ,
for angular momentum

we introduce the Schwinger representation

: +
J. =C.C
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where operators C, obey the boson commutation relation

[C,.C}) = &

Further, we investigate only the case of intense external fields so that

G > Ny21 ,Ny32. (2)

After performing the canonical transformation

03'= - _l__sinan + COSaQ2+ ——1_—_Siﬂa93 ’
Ve
1 1
02 = TQ1+ —;_Q3 ) (3)
Ve Ve

C, = - —I:_—COSaQ}_—SinaQ2+ — cosall y , (3)
Ve V2
one can find that the Liouville operator L appearing in eq. (1) splits into
two components L, and Ly. The component L, is slowly varying in time
whereas L, contains rapidly oscillating terms at frequencies nG(n=12,3,4).
For the case when relation (2) is fulfilled, we make the secular approxima-
tion, i.e., retain only a slowly varying part /25,307 Correction of the re-
sults obtained in this fashion will be of an order of (yle/G) 2or (y32N/G)2.
Making the secular approximation, one can find the stationary soluti-
in of the master equation

-~ N R
p =2 I X 20|M,R><R,M\, (4)

where ;=UpUT here U is the unitary operator representing the canoni-
cal transformation (3)
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The state {M, R> is an eigenstate of the operator R, R=R,;; +Rgs and
N =R 11+ R22+ R33 here
Ry - Q1Q; (.4 =123).

The operators Q, satisfy the boson commutation relation

+
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By using solution (4) the characteristic function can be defined similarly
to Louisell /29’
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where Y = Xel and <B> indicates the expectation value of an ope-
rator B in the steady state (3).

Once the characteristic function is known, it is easy to calculate the
statistical moments

n
(Rn> = 9

s '5'(75;;; x g (61

i£=0" ®)

H11. SQUEEZING IN THE FLUORESCENT LIGHT

In this section we discuss squeezing in the fluorescent light in the col-
lective resonant process.

The variance of the fluctuations in the fluorescent field may be deri-
ved by using the following relations between the radiation field and the ato-
mic operator in the far-field limit /187
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where t =t" -1/C,
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the values of ¢,, and Vg are assumed to be real, d and % are the dipole
v gtor o 'gthe atoms and the observation point vector, respectively; t = l:? i
E'and E, are the positive-frequency parts of the fluorescent fields correspon-
ding to the lower and upper atomic transitions | 2> to |1> and |3> to
{2 > , respectively.
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From the canonical transformation (3), one can write the collective
angular moments Jyp and Jpg in the form

1 1 | | P
J,o = = cosaDy + = cosa(R —Rls) - —:_-SIna\R23+ R21) y
12 2 2 31 \‘/2 (11)
1 . 1
Yo =L simaby ¢ sina(RyyoRyg) - cosalRyyt Ryy). (12)
N

where D3= R:33 - Rn‘

Following the works 729,18/  we can consider the operators - _é_cosa R 4D

-\-’I%sinaR%{t), Leosa,(m, - ;—/’:_é:smaRm(t) and LcosaRgy,(0 as

the amplitude-operators for the source of the spectrum components at the
frequencies  -2G, Q,-G ,Q, @,;+G and {,;+ 2G: and for simpicity we
denote these operators by S_2 S_y 8 Q" S 1 and 82 , respectively.
Analogously, the operators ~ %— sinaR4(t), 31—2_: cosaRy, (1),
1 e 1 1 .
7 31naD3(t) s T_éwcosa Rgét) and 5 sinaRg, (t) can be considered as the
amplitude operators for the sources of the spectrum components at the fre-
quencies 0;-2C, R~ G, 0y, Q3+G and Q9+2G and for simplicity we de-
nole these operators by T._g,.T—;, Ty, Ty and Tg, respectively.

“The following calculations show that the squeezing is absent for all se-
parate spectrum components Sy and T; (i =0, *1, +2),  The squee-
zing is also absent for the whole fluorescent fields corresponding to the lo-
wer and upper atomic transitions. One can find that the squeezing exists
only in the mixtures of the spectrum components 8y and T.jorS_;, and
T;; moreover, the degrees of squeezing in the mixture of $, and T_, and
in the mixture of S_; and T are equal. Further, we discuss only the squee-
zing in the mixture of the two spectrum components S_, and T, . After
substituting the operator J ;g in the relation (9) by the operator S_; and
the operator I, in relation (10) by the operator T ;and using the steady-
state solution (4) one finds the normally ordered variance of fluctuations
for the hermitian amplitude operators of the mixture of two spectrum com-
ponents S_,and T, in the form

, 2. 1 (,2 .2 L2 .2 .-
<,(Aa1‘2) > o= Z—W;msin a<RgoRyq > + g COB a<Ryq Rgp >y 7

(13)
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statistical moments <RgoRyq >¢ and <RygqRg4p>, can be written in the
form

where a = E(1+)+ E

2
1 <R*>
<RogRgp>, =5 (N -2 <R>, - ——F+N, (14)
<Ry, Roo>. =-L(N+D<R> - L<RrZ> (15)
32 2878 T 3 s 2 s’

here <R>, and <R®> s can be found in relation (8). We speak of squee-
zing in the mixture of two spectrum components §_, and T, if the nor-
mally ordered variance of the operators a or a, is less than zero /18-18/

<:(Aay)%:> < 0 i=1o0r 2, (16)

It is easy to see that in the case of x = 1, we have <Rgg Rgp >y = <Rgg Rog>y
and the relation (13) reduces to

. 2, 1 . . - 2
<.(aa1‘2) D> e T<R23R32 >, x(P1g sina 3y, cosa)” > 0 amn

thus, the squeezing is adsent for this case. It is easy to see that the squee-
zing is also absent for the case of ¢tga-0 or ctga - o,

The detailed behaviour of the <:(Aa;)®:>  (in the relative unity
Ti-dlf?) as a function of the relation of the pumping field intensities ctg & in

the case of ygo=yg, and ¢yg =gy >0 is plotted in fig. 2 for various num-
bers of atoms. As is shown in fig. 2, the substantial squeezing occurs for the
mixture of two spectrum components S_; and T, (or S; and T_;). The squee-
zing is absent for all separate spectrum components or for the whole field
of fluorescence. As in the work /17’ , we can define the factor of squeezing
for the atomic operators

1 + i +
Ap- BT, A --L@a-a"),

where
A = dllzs'_l + l’b23T1'

6

in the form

St . ~ (18)

él_gdA,. Agl> |

F1,2

The behaviour of the factor of squeezing F; as a function of cte®a in the
case of ygo=¥g1, W= Upg>0 is plotted in fig. 3. As is shown in fig. 3
the factors of squeezing for atomic operators A, A, are independent of the
number of atoms and can tend {o the value F,=-0.5 (i.e., the 50%of squ-

} <:(8a, ) :> <:(AQ,) > ,
X 20 30 o
00 10 20 30 ctgxr 090 L s a9
'_"-—-.—.__-‘-‘—
01 / Na=t 1.0 N=2%5
20
0.2 N:5 NSO
30
0.3 40
TA
0 5.0
05 60
0.6 a) b)
Fig. 2 (a-b) The normally ordered variance <:k(Aa 1)2 P> as the func-
N 2 \, g o -
tion of ctgla for the case of y32 =Ygy and (!)12 (1;23 > 0.
F,
ool . 10 20 30 ctgi«
-0}
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eezing} in a region of the point ctgfq -~ 1. One can show that [Al,A2] =0
when ctg%e = 1. Thus in this case, however F, = -0.05,the conception of
squeezing for commutation operatcrs A, and A, loses sense.

We note that as a result of the influence of the free parts of the fluo-
rescent field E‘f" iree and E(zt,)rre o (see relation 9-10) the factors of squee-
zing F,, Fp for the atomic operators A;, Ay are not coincident with the fac-

tors of squeezing for the field operators a jand a,.

IV. VIOLATION OF THE CAUCHY —- SCHWARZ (C-S) INEQUALITY

As Zubairy ‘', we define a degree of second-order coherence between
the spectrum components 8. and Sé in the form

<57878,8,>
G_,(2.)= EREREAE, (i,§j =0, 1. £2). (19)

i) + s

+ N .
<Sisizs . <Sjsj/s

The photon antibunching is exhibited for the spectrum component
$; i =0,+1,22) which satisfies the inequality

G(2)

i,1
i.e., the degree of second-order coherence is less than unity. Such proper-
ties occurring for the four sidebands 8, (i =%1,%2) in the case of one or
several atoms are investigated in the work 19/,

Further, we shall discuss another nonclassical effect — the violation
of the C-8 inequality in the stationary fluorescent field.

We speak about the violation of the C-§ inequality for the correlation
between two spectrum components Sy and §; 1,j =0, x1, £2) if the
following condition is satisfied /33"

) (2)
< Gii -Gy .
7' Y
i, ] : (20)
@® 57

<1,

The factor K ; descrides the degree of violation of the C-S inequality for
the correlation between two spectrum components 8; and Sj.

8

e

By using commutations (5-6) and stationary solution (4), one can find:

2
(<Rg1Rgy RigRyg>,)
Ke,—z =K = 5 (21)
(<Rg;R 3 RgR 13>)

4
<RgiRg;RygRyg >, - <Dy

Ko,z =Kgpo =Kg.p =K_p o= 5 (22)
(<DgRy R gR gDg>)
4
<RgeRgoRpg Rog >5 + D>,
KO.I =K0;‘1'= 2 4 (23)
(<D gRgoRyy Dy >, ) '

K <R3 R3 R 3R 13>¢ - <R Rjg RyyRg >
2,-1=K o, = , (24)

(<Rg1Rip RpjRyg>()®

<RgiRgiR 3R (3> - <R{,Ryo RoyRo>
31™31™13% 13~ 12712 Be1t ey
K—1,2 =K = y — s (25)

2
(KRR R gRy >4)

s

4 1 4 3 2
<Dy > = 1—5—.(3<R >y + 1R<R">_ +8<R">_ -8<R>_), (26)

S

1 5
<R12R12R21R21>s==§4<a4>s ~2N+2)<R3>_ +
. 0 (27)
+ (N + 5N + 5) <R >s —(N+1)(N+2)<R>S),

B 1 4 3 2
<R31R31R13 R13>s 5-(-)-.(<R >, +4<R">_ +<R >s-6<R>s), (28)

]

_ 1 3
<R31R13R31R13>s = P (-<K >s+ N<R >

(29)
+(N+3)<R2>s - 2N+ 1) <R> ),
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as the func-

<DgRy R 3 Dg >

E%(<R4>s +4<R¥> +6<R®>_ +4<R>)),  (30)

_ 1 4 - 3. 2
<Dy R, Ro D>y = -6—(-<R >, +(N=-D<R®> + 2N + D<R®>_ ), (31)

-1 4 3
<R31R12R21 R13>S = -l‘éﬁ('—‘(R >$ +{(N+8 <R >S +

(32)
+ (3N + 1} <R2>s +2(N+1}<R7>s ),

(33)

1
_ A 4 3 : RZ2> ).
<R12R31R 13Ro”s = ‘12( <R%>_ +N<R3> . + (N +3) < s )

The following calculations show that another factors are more than unity
for any number of atoms

K, ,=K_,>1,
Koy =Kig=K_j o=Kp. 41,
Ky o =K > 1,

It means that the classical C-8 inequality occurs in these cases,

The behaviour of the functions Ky 5 ,Kg5,Kg; » Koy andK_;,
against the parameter x is shown in figs, 4 (a-e) for various numbers of atoms.
It is easy to see from these figures that the strong violation of the C-S ine-
quality exists for a large number of atoms. It means that in contrast with
the effect of photon antibunching, the viclation of the C-§ inequality is the
macroscopic quantum effect,

To conclude, we note that the investigation of the violation of the C-S
inequality for the correlations between spectrum components correspon-
ding to the upper atomic transition |[3> » |[2> and between spectra of
the upper and lower atomic fransitions can be carried out by using an ana-
logous approach,
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