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In many systems involving the interaction betreen light and 
medium, the quantum statistical properties of light are predic­
ted to violate the classical inequalities. A review of such non­
classical effects in optics is given in the paper by Loudon /1/ • 

The most well-known example of nonclassical-effects is photon 
antibunching which has been predicted in /5 - 91 and experimental­
ly observed in the resonance fluorescence 12-41 and recently in 

. d . '10 'the spontaneous parametr1c own-convers1on' , 
Other examples of nonclassical effects are the squeezing of 

light/11-tV and violation of the Cauchy-Schwarz (C-S) inequa­
lity/lo-lS/. The violation of C-S inequality has been observed 
by Clausser't51 in the radiation emitted in an atomic two-photon 
cascade. This effect has also been yredicted in the two-photon 
laser.l 161 and parametric amplifier 171 • In this paper we show 
that the strong violation of the C-S inequality could be obser­
ved in the collective resonance fluorescence.Like the squeezing 
of the light f191 , the violation of the C-S inequality is pre­
sented for the case of a large number of atoms and intense fluo­
rescent fields, and in this sense this effect is a macroscopic 
quantum effect. 

We consider N two-level identical atoms of the Dicke model 
which interact with a strong monochromatic deriving field and 
an emitted field in the context of collective resonance fluores­
cence 119-001 (see fig. I). 

In treating the external field classically and using the Born 
and Markov approximation with respect to the coupling of the 
system with the vacuum field and atomic reservoir, one can ob­
tain a master equation for the reduced density matrix for the 
system alone in the form 1261 

a =-H.£..(J22-Jl1)+O(J12 +J21),pl-Y21(J21Jt2P-J12PJ21 +H.c.),(I)at 2 

12> ---T-- W2 

Fig. 1. Schematic representation 
of the two-level system interac­w 
ting with the monochromatic inci­
dent field and with the emitted 

_--''--____....L..___ w, field.11> 
I, 



where 2Y21 is radiative spontaneous transition probabilities 
per unit time for a single atom to change from excited level 
I 2> to ground state t 1 > ; 0 =- d21 Eo is the matrix element of 
the driving field and atom interaction; 8 = w21 -w (w 21 =~ -w1 

h:; 1) is the frequency detuning of resonance and Jij = l Ii 1tIfjl
k",1 

(i ,j = 1,2) are the collectIve angular momenta of the atoms. 
Th~~y obey the connnutation relation 

[ J ij • J i'j,J = J ij' 8ji , - Ji ' j 8 ij' . 

. /,
After the authors of the works W.21 , we introduce the 

Schwinger representation for the angular momentum 

J ij = Ci C j (i. j = 1,2). 

wh~~re C i obey the boson connnutation relation 

[ C i' C 
+ 
J 1 = 8 ij • 

Further, we investigate only the case of an intense external 
field or much de tuning so that 

1 2 2 1h n = (78 + 0) >:> NY21' (2) 

After performing the canonical transformation 

C1 = Q1 OOS ¢ + Q2 sin ¢ • C2 = - Q1sin ¢ + Q2 oos ¢ • (3) 

where 

tg2¢ '" 20/8, 

one can find that the Liouville operator L appearing in equation 
(1) splits into two components Lo and L1 • The component Lo is 
slowly varying in time whereas L1 contains rapidly oscillating 
terms at frequencies 2{} and 4{} • For the case when relation (2) 
is 'fulfilled, one can make the secular iPlroximation, i.e., to 
retain only the slowly varying part lW - • A correction to the 
results obtained in this fashion will be of an order of(Y21NAl)~ 

Making the secular approximation, one can find the stationary 
solution of the master equation (1) in the form/WI 

N N1
P = Z-l l X tN1><N11, (4)

N1 =o 

where p=UpU-1 ; here U is the unitary operators representing 
the canonical transformation (3) 

2 

4 X N + 1_ 1 
X=ctg¢. Z 

X-I 
~ 

The state IN1 > is an eigenstate of the operator R11 and N 
= Rll + R22 here Rij =Q"t Q j (i,j = 1,2). The operators Qi sa­
tisfy the boson commutation relation 

+ 
[Qi' Q j J () ij • (5) 

so that 

[ R ij' R i ' j'] = Rij' () ji' - R i ' j () ij' . (6) 

In the case of resonance, i.e., when X = 1, solution (I) redu­
ces to the solution by Agarwal /20 / • 

By using eq.(4), the characteristic function can be defined 
as has been done by Louisell 1221 

ie- R ll N+ 1 

X (0 <e > = Z-1 Y - 1 . 
Rll S Y _ 1 • 

where Y = Xeie- ,here <A> indicates the excitation value of 
an operator A in the stead; state (4). 

Once the characteristic function is known, it is easy to cal­
culate the statistical moments 

aDD 
< R 11 >s X R (e-)Iic=o (7)

a(i e- )D 11 ~ 

In particular, we find 

-1 N+2 N+1 2
<Rll>S=Z [NX -(N+1)X +X]/(X-U. (8) 

2 -1 2N+3 2 N+2 2N+12 3
<Rll>s = Z [N X -(2N +2N -UX + (N +1) X - X -X1!(X-1)(9) 

• 
2 N 2<R;1>S = Z-1[N3XN+~ (3N3+3N2_3N2+1)XN+3+ (3N3+ 6N _4)X +

( 10)
3 2 N+1 3 2 4

-(N +3N +3N +l)X +X +4X +XJ/(X-1) , 

4 -1 4 N+5 4 3 2 N+4 4 3 2
<Rll>s=Z [N X -(4N +4N -6N +4N-UX -(6N +12N -~N-

( 11) 
- 12N + ll)X N+~ (4N 4+ 12N 3 + 6N2 _ 12N _ ll)X N+~ (N4+ 4N3 + 

+ 6N2+4N+1)XN+1_X4_ UX3_ 11X 2_XJ/(X _1)5. 

3 



R21R12 >8' < R12 R lzR21 R21 >5By 	 using the canonical transformation (3).one finds the collec- < 
(16)1. 1 ----------------------------------­tive angular moments in the form 	 2J ij ( < R 12 R21 R 12 RBI >s ) 

J 21 = D3 sin 9 oos 9 R21 OOS 29 - R12 sin2 9 . ,,[here 


"" D3 sin 9 oos9 + Rt2 oos2ch - R21sin29, 4 3 2
J12	 
(12) ~ < R12 R12R i:!1 R 21" s "" < R 11 >5 - 2(N I 2) <R11 >8 • ( t\: + 5N, 5) x 

where D3 "" R 22 Rll 
It is easy to see /19 , 23~ Clthat the operat,ors D3 (t) sin d;. oos ¢, 

R21 (t)oos2ch and R 12 (t) sm"'¢ can be consl.dered as operator­
sou,rces of the spec trum components of the fluorescent field as 
frequencies w, w + 211 and w ~ 2n • and for implicity these ope­
rators will be denoted by S~ , S:1 and S_1 • respectively. 

After Zubairy/16! • we define the degree of second-order co­
herence of stationary fluorescent light to be 

+
<8, Sj SiSi >g

0°0 	 (i. j 0, ± 1). (13 )I, j + + 

<Si S}>5 . <Sj Si >8 


We speak that the violation of the Cauchy-Schwarz inequality is 
presented for the correlation between spectral components Si and 
S j if the following condition.l16-181 is satisfied 

(2) (2) (2) 2 

KjJ' = (Ol'}' .OJ' )/(0,,) <1. (l 


t • .J It J 

The relation (14) for the factor Ki,J describes the violation 
of 	the Cauchy-Schwarz inequality. 

For the one-atom case, after the works '23-241. 

0(2) "" 0<2) = O· 0<2) "" 1 0(2) "" 0<2) 0(2) = 
1,1 -1,-1 '00 ' 0,1 1,0 -1,0 


0<2) > l' 0(2) > 1 

I, -1 ' -1, 1 • 

we have 

0(2) 1,0, -I 

and it follows that ·Ki,j "" 0 for i =I j (i.j = 0, .!. 1). It means 
that the inequality is violated for any two spectrum components 
from Hollow's triplet /25! of the one-atom resonance fluorescen­
ce. Further, we shall discuss the violation of the C-S inequali ­
ty in the collective resonant fluorescence field. The following 
calculations show that in the collective case (N 2 2), the vio­
lation of the Cauchy-Schwarz inequality is presented only for 
two sidebands of the fluorescent spectrum. By using solution (4) 
and commutation relations (5-6), one can write 

<R21R21R12R12 

<R21R12R21R12 >8 

<R12R21RI2R21>s =<R ll >s-2(N+1)<R 11 >s+(N+1) < R ll >s ,(20) 

here the statistical moments <R~l >5 (n = 1,2,3,4) can be found 
in eqs.(8-11). The behaviour of the factors K-l,l and K+ 1,-1 as 
functions against the parameter X ctg4 9 is shown in Figs.2 
and 3~ respectively. In contrast with the case of two-photon la­
ser /IS ! where the effect of violation of C-S inequality is very 
small (of an order of «nl > + <n2 »-1 where <nl> and <n2 > are 
mean photon numbers), the violation of the C-S inequality for 

3.01K1,-1 

1.0___ ~__ _ 

~ o.OI~ 0.0 I.e:<: IPI

N-' 
0.0 1.0 2.0 3.0 X 0.0 to 2.0 3.0 X 

2.0 

(17)2 2
x<Rl1>S - (N + 3N c 2) < Rll >8' 


4 3 2 

<R ll >s-(2N-4) Rll>s.;-(N -7N 1-5) 

x < K,t 
2 

>8 + 7 N + 2) < R 11 >5 + 2N 
2 

- 2N • 
(18) 

432 
= <Rll>~ -(2N -2)<R 11 >8 + (N - 4N+ 1) x 

( 19)2 f 2 	 2x < R11 >8 -+ ~2N - 2N) < R 11 >8 + N , 

4 3 2 2 

< R21 R21 R 12R 12 >8' < R 12R12 R21 R21 >8 
K 1.-1 2 ( 15) F'1:g. 2. Faator K_ 1.+ 1 as a Fig. J. Factor K 1,- 1 as a 

( < R21 R12R21 R12 >8 ) function the parameter funation of the parameter 
X=ctg49 • 

4
X=ctg9' 
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two sidebands of the collective resonance fluorescence, as is 
shown in figs. 2-3, is strong and is present for the case of ma­
ny atoms. In this sense the violation of the C-S inequality is 
a macroscopic quantum effect. The examining of the violation of 
the C-S inequality in the collective resonance fluorescence ex­
pands the applicability of the test of quantum electrodynamics. 

The authors thank Dr. M.Kozierowski for his help and valuable 
discussion. 
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Boronroooa H.H./Mn./, illYMOBCKHH A.C., qaH KyaHr El7-87~25 
HapyrueHHe HepaBeHCTBa KomR-illBap~a 
B KonneKTHBHOH pe30HaHCHOH .pnyopec~eH~HH 

06c~geHo HapyrueHHe HepaaeHcTBa KomR-lliBap~a B Kon­
neKTHBHOH pe30HaHCHOH .Pnyopec~eH~HH. lloKa3aHo CHnbHOe Ha­
pyrueHHe 3TOrO HepaaeHCTBa gnH gByX KpaHHHX CTieKTpOB KOn­

neKTHBHOrO cl>nyopec~eHTHoro nonn. 

Pa6oTa BhlTIOnHeHa B naoopaTOpHH TeopeTHqeCKOH cPH3HKH 
OIDIH. 

fipenpHHT 06oe,llHHeHHOrO HHCTHTyra H,D;epHbiX HCCJie,D;OBaHHH. ,lJ;y6Ha 1987 

El7-87-25 
''Violation of the Cauchy-Schwarz Inequality 

in Collective Resonance Fluorescence 

The violation of the Cauchy-Schwarz inequality in the 
collective resonance fluorescence is discussed. The 
strong violation of this inequality for the two sidebands 
of the collective fluorescent spectrum is shown. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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