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In many systems involving the interaction betveen light and
medium, the quantum statistical properties of light are predic-
ted to violate the classical inequalities. A review of such non-
classical effects in optics is given in the paper by Loudon’!
The most well-known example of nonclassical-effects is photon
antibunching which has been predicted in/5-%/ and experimental-
ly observed in the resonance fluorescence =4/ and recently in
the spontaneous parametric down-conversion 10/

Other examples of nonclassical effects are the squee21ng of
light /1= and violation of the Cauchy~Schwarz (C-S) inequa-
lltyflﬁ‘m/ . The violation of C-S inequality has been observed
by Clausser ’®/ in the radiation emitted in an atomic two~photon
cascade., This effect has also been yredicted in the two-photon
laser’®/ and parametric amplifier 77 In this paper we show
that the strong violation of the C~§ inequality could be obser-
ved in the collectlve resonance fluorescence.Like the Squeez1ng
of the light 718/ s the violation of the C-$ inequality is pre-
sented for the case of a large number of atoms and intense fluo-
rescent fields, and in this sense this effect is a macroscopic
quantum effect,

We consider N two-level identical atoms of the Dicke model
which interact with a strong monochromatic deriving field and
an emitted field in the context of collective resonance fluores-
cence B3/  (gee fig. 1).

In treating the extermal field classically and using the Born
and Markov approximation with respect to the coupling of the
system with the vacuum field and atomic reservoir, one can ob-
tain a master equation for the reduced density matrix for the
system alone in the form

dp __ 8 .
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Fig. 1. Schematic representation
w LY of the two-level system interac-
ting with the monochromatic inci—
dent f?eid and with the emitted

1> Wy Pield.
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where 2yg2; 1is radiative spontaneous transition probabilities

per unit time for a single atom to change from excited level

| 2> to ground state | 1> ; G =-dy;E; is the matrix element of
the driving field and atom interaction; &= wy ~w(wy, =0y ~w; 3

h

1) is the frequency detuning of resonance and ﬁj=izlﬁ>k§jl

Gd,j = 1,2) are the collect?ve angular momenta of the atoms.
They obey the commutation relation

(350 3 = Je8ye = 3y 850

After the authors of the works’ 19+ 217 , we introduce the
Schwinger representation for the angular momentum

Iy = c;‘cj (i,j = 1,2),

where C; obey the boson commutation relation

+
[er Cj] = 8” .
Further, we investigate only the case of an intense external
field or much detuning so that

1 _

= (-0%+ G2)% > Ny,,. (2)
After performing the canonical transformation
C;=Q o05¢+Qysing, C,=-Qsing + Qo08¢, (3)

where
tg2¢ = 2G/8,

one can find that the Liouville operator L appearing in equation
(1) splits into two components L, and L, . The component L, is
slowly varying in time whereas L; contains rapidly oscillating
terms at frequencies 20 and 4Q . For the case when relation (2)
is ‘fulfilled, one can make the secular g? roximation, i.e., to
retain only the slowly varying part . A correction to the
results obtained in this fashion will be of an order of(yleA))

Making the secular approximation, one can find the stationary
solution of the master equation (1) in the form 18/

1 Y N1
= _ g- . .
P le=o X |N1 ),,(Nll, (4)

where ,5'=~UpU"l ; here U is the unitary operators representing
the canonical transformation (3)

2

XN+1_ 1

X =oagy, 2= —x3

The state |N; > is an eigenstate of the operator Ry, and N =
= Ry; +Rys  here Rij=vQ§ Q; (i,i = 1,2). The operators Q; sa-
tisfy the boson commutation relation

+
[Qi' Qj]=8ij! (5)
so that
[Rijs Rysprd = Rype 8550 ~ Ry 8y (6)

In the case of resonance, i.e., when X = 1, solution (1) redu-
ces to the solution by Agarwal/20/,
By using eq.(4), the characteristic function can be defined
as has been done by Louisell 722/
16}111 N+1

Y
- . _ =1
XRu (£) =<e > = Z

1

Y -1

where Y = Xelf , here <A> 1indicates the excitation value of
an operator A in the steady state (4).

Once the characteristic function is known, it is easy to cal-
culate the statistical moments

<RD 5 - 2 (&)
1 a(lf)n XR11 if=0 (7)
In particular, we find
- N 2
<R,,>, = 2 [NX NN exy(x-n %, (8)
2 _N+1 2 3
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By using the canonical transformation (3),ome finds the collec~
tive angular moments .Iij in the form

321 =D3 Siﬂg‘b (X)S(’f) e R21 C{)Szé - ngsinzgzﬁ.

I D. si R 2 R in © {12)
1g = Dy sing cos¢ + R, 05~ - Ry, sin®o,

Where D3 RQZ —-R11 .

It is easy to see’ 19?3/ fthat the operators Dj(t)sing cosd,
R(,l(t)oos2¢y and - R o (t) sin "¢ can be conmdered as operator-
sources of the spectrum components of the fluorescent field as
frequencies «,w +20 and ©-20 , and for 31mp11c1tv these ope-
rators will be denoted by S, S:l and S-1 , respectively.

After Zubdlry/ 16/ , we define the degree of second-order co-
herence of stationary fluorescent light to be

@) _ <SSSS>S
L~

3 (1, j =0 2D. (13)
<Si Sy> - <8;8; >
We speak that the violation of the Cauchy-Schwarz inequality is
presented for the correlation between spectral components S; and

§; if the following condition is satisfied
(2) (2) 2y 2
Kij = (Gip -Gy /(G5 ) <L (14)

The relation (14) for the factor K j
of the Cauchy-Schwarz inequality.
For the one-atom case, after the works /%324 we have

describes the violation

(2) (2) (2) (2) (2) (2) (2)

Gy =G =0 G =1, Gy =0G7, =G, =G =1,
(2 . 2)

Gy > G, > 1.

and it follows that “K;, =0 for i4j (i,} =0, + 1), It nmeans

that the inequality is "violated for any two spectrum components
from Mollow's triplet’/®/ of the one-atom resonance fluorescen-
ce. Further, we shall discuss the violation of the C-§ inequali-
ty in the collective resonant fluorescence field. The following
calculations show that in the collective case (N 2 2), the vio~
lation of the Cauchy-Schwarz inequality is presented only for
two sidebands of the fluorescent spectrum. By using solution (4)
and commutation relations (5-6), one can write

<Rg1Rg R R 575 < RpR1pRp Ry >

1,-1 2 ’ (15)
(<Rgy RigRoi Ryp>g )

<Ry RoRigRig 5+ <RpR Ry Ry

K= 5 ; (16)
(<RypRpRgRz > )

where

4 3 L2
<R, R Ry Ry me= <RP>C - 20N 2) <Ry % + (K74 BN+ 5) x

2 (7
X<R11>S'.‘(N + 3N$2)<R11 gy
4 . 3 2
<R4yRy,RpRp> = <Ryy>g— (2N - 4) <Ryy + (N -TN + 5 )«
(18)
< <RY 5 +(3N®- 7N + 2) <Ry s+ 2N° - 2N,
<R R12R21R12 S =<R -(2N~2)<R >S+(N ~ 4N+ 1) x
2 2 (1M
><<R11 s +(2NT - 28N) <Ry >+ N7,
3 2 2
<RygRo Ryg Ry > =<R11 g B(N +1) <Ry > + (N +1)7 < R% > (20)
here the statistical moments <Rj; > (n = 1,2,3,4) can be found

in eqs.(8~11). The behaviour of the factors K and K,y,.1 as

functions against the parameter X= cgts is shown in Figs.2

and 3, respectively. In contrast with the case of two-photon la-
/18 7 . ; A . POe

ser where the effect of violation of C-S inequality is very

small (of an order of (<ny > +<ng >)~! yhere <n;> and <ng > are

mean photon numbers), the violation of the C-S inequality for

30K1
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N
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Pig. 2. Factor K_;,; as a Fig. 3. Facior K| _| as a
function of the parameter function of the parameter
X = ctigte. X = ctg4q5.



two sidebands of the collective resonance fluorescence, as is
shown in figs. 2-3, is strong and is present for the case of ma-
ny atoms., In this sense the violation of the C~S inequality is
a macroscopic quantum effect. The examining of the violation of
the C~S inequality in the collective resonance fluorescence ex-
pands the applicability of the test of quantum electrodynamics.

The authors thank Dr. M.Kozierowski for his help and valuable

discussion.
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Borome6os H.H./mn./, llymoBckuit A.C., Yan Kyaur E17-87-25
HapymweHune HepasBeHcTBa Komu-llsapua
B KOJIJIGKTHBHOH pe30HAHCHOH duiyopecueHIHH

O6cyxmeHo HapymeHne HepaBeHcTBaA Komu-WiBapua B kon-
JIeKTUBHOH pe3’oHaHCHOH duyopecueHunu. llokasaHo cunbHoe Ha-
pymeHHe 5TOro HepaBeHCTBAa AJs OBYX KpPpaMHHX CHeKTPOB KOJI-
JIEKTHBHOT'O GIyopeclueHTHOTrO NOoJA.

Pabora BmmojiHeHa B JlabopaTOpHH TeOpeTHUYEeCKOH GH3HKH
OMAN.
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Bogolubov N.N.Jr., Shumovsky A.S., Tran Quang E17-87-25
Violation of the Cauchy-Schwarz Inequality
in Collective Resonance Fluorescence

The violation of the Cauchy-Schwarz inequality in the
collective resonance fluorescence is discussed. The
strong violation of this inequality for the two sidebands
of the collective fluorescent spectrum is shown.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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