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1. Introduction

The phonon Boltzmann equation (PBE) has, in general, the form
of a nonlinear integro-differential equation /1/ and usually does
not allow an exact treatment. The number of solvable models is very
limited, and they are based on rather drastic assumptions about the
collision integral. We mention the instructive Claro-Wannier model
describing relaxation of acoustic phonons towards equilibrium due
to anharmonic interactions /2/. In this lecture we shall consider
another mechanism of relaxation which provides the solvable PBE,
namely, the relaxation due to the scattering of acoustic phonons
by isotopic impurities. This idea comes from recent experiments on
the ballistic phonon propagatiaon in monocrystals at low temperatu-
res, The samples used were so large and so chemically and structural-
ly perfect that phonons felt isotopic impurities as main scatterers
/3/. Then, it Beems quite resonable to consider the model in which
phonons in their relaxation process are scattered only by isotopic
impurities (strictly speaking, only by mass differences) /4,5/.

2. The model

The object under consideration is a phonon gas in an anisot- .
ropic homogeneous elastic continuum, Now phonons are equivalent to
sound wave quanta of frequenc1es oa(l<é) K(k( C(\<}) , with
sound velocities c(l<&) dependlng, in general, on a wave-vector
direction given by the unit vector k = k//{k| , and on the
phonon branch index j . We shall consider two kinds of the dis~
turbances of the phonon distribution: one which retains symmetry of
the system and the other one which lowers it. In btoth the cases the
space homogeneity is assumed. The relaxation of phonon distribution
function hl(tﬁ ;t) is governed by PBE of the form

SNkt = 30 2 (A T Stadkyy — cockp)
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Where v is the volume of a unit cell. The probability per unit
time, W~ , that phonon is scattered elastically from a k:} -state
into a k/j[ -gtate for the sample with randomly distributed isoto-
pic impurities of emall concentration was calculated by Klemens /6/

(see also /5/)
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where e is the normalized polarization vector (IE(T:J)I?':D .
Here 3: 2;?;( 1-m. /441,)2’ where -F;_
of unit cells with the mass (2% and Ma is the averaged
mass of the unit cell, A = Eil‘Pt M . Let us note that

in the case of low-energy phonons the formula (2) is valid also for
multiatomic crystals. Here we would like to stress that scattering

of high-energy phonons allows only the numerical treatment /4,5/.

In the system described by (1) the total energy as well as the
total number of phonons are conserved, Moreover, the energy of an
individual phonon scattered elastically by a mass defect is conser-
ved, i.e. w(E’J)= cocC’J’) = . Thus the number of
phonons with given energy + o is also constant. We can then
label the long -wave phonon by its frequency w , wave~vector
direction [k to which it belongs, i.e.
{I:)}} . So the integration over the wave
vector

ig a fraction

A ? and branch

{C-J l<,é,}

in collision 1ntegral is reduced merely to the in-

S?(k) .
Let us now define the averaged value of the distribution func-~
tion according to the formula

< Ncwyt)> = 125‘1@ <CV((<J)) NCcokd,t>

tegration over the solid angle

3)
where Cyp is the Debye velocity given as usual by
-3 _ 4 S dSe
¢h =ETYEC U‘A @)

g

Prom the fact just mentioned that the number of phonons with a gi-
ven energy h @ is conserved it follows that (3) is constant
in time

<: N(&'))'l?)> = <N(Coj't=0)> ENCQ) — constent . (5)

T

It means that all phonons of energy oo relax towards

their average value -NkLO) , and so we are looking for & devi-

ation from Ncw) defined as

A
LN 5 N
nwk ;) = Ncwkd;f) — Ncw) .
{6)
Since the phonon frequency is a constant of motion and appears only
a8 g fixed parameter, it will be omitted thereafter.

3, Symmetry of the collision integral

As we have already mentioned, the analytical solution of PBE
depends on the symmetry of a system because the form of the colli-
sion integral is symmetry-dependent. To see this, let us first con-
gider the collision~out term of PBE., The factor in front of
N (T?& ) on the right-hand side of Eq.(1), usually called the
collision rate or the reciprocal of the collision time, can be written
for long-wave phonons as follows

dER T/ ).
\‘)Ck&)_v’ﬁw g c C|< )(QCkJ e(k&))
(7)
Spatial anisotropy of the collision rate is due to its depen-
dence on polarization vectors. The right-hand side of Eq.(3) contains
the following tensor

48 > ck’f (t"
”F'(/B ?qu(cck&') €x )¢ d> ¢ o)

whose trace is normalized to unity. A similar tensor appears in
the collision-~out term of (1.) but now it includes the distribution
function
JSZ
~ (H)=4i3 !
E% 3d/ C(t/Q € (Ld)qb(k& '%)
(9)

The tensor (9) is traceless due to (6). The number of nonvanishing
and F' depends on the symmetry of

SQP ot

tensor components of

the phonon system.



3.1, Cubic symmetry

For the elastic continuum having the cubic symmetry the tensor

(8) is proportional to the unit matrix and the tensor (9) simply
vanishes

.

=45 : F o) =

ol -2 ():O'

n S TR v (10)

. +By inserting the first of Eqs, (10) intp (7) we find only one colli-

sion rate common for all directions k and branches i
given by /5/ é

A

= 4
\)(ka) - _.0%_.&3.3_ =y .

LR c <
» (11)

Thus we come to the conclusion that the spatial isotropy characte-
rizes the scattering of acoustic long-wavelength phonons by mass
defects in cubic crystals.

'

3.2. Tetragonal symmetry

In this case the matrix (8) is diagonal with three nonvanishing
elements {Xx = { © and {zg , Wwhere we have taken the
fourfold axis along the z-axis, Because, in general, fxx 74'an
we should, in addition to the Debye velocity, introduce another cons-
:ant, say ‘FE% . I.*Iavn‘:ng noticed that {:xx‘_"Fm:i‘(i—'Ffz-)

e can rewrite the collision rate (7) in a more convenient form /7/

Vkp =0 mp (L cl-Defckpl,

(12)
where we have introduced the anisotropy parameter defined

[N = fza /]Cx'x ' (13)

It means that for a symmetry lower than cubic the collision rate
is spatially enisotropic. The anisotropy comes from the dependence
of the z-component of the polarization vector on the direction f:
and is different for different modes « For crystals with the
cubic symmetry as well as for isotropic media fxx = fzb

~and
M= 1_ » 80 we return to the result (11) as it should be.

A more important consequence of lowering of symmetry is that
the tensor F. has nonzero components., For the elastic
continuum of tetragonal symmetry the nonvanishing components (i.e.

Fux = Fﬁg and Fag ) are comected with each other for
the tensor is traceless. So we may choose one of the components,
say Fa, , and denote it, for brevity, by F

Ft) = F,(0) =~ F, () =- K &) # O.
’ (14)
As a result of (14) the PBE for a phonon system with tetragonal
symmetry preserves its form of integro-differential equation .

3,3, Hexagonal symmetry

All results of the previous section are also valid for the
anisotropic continuum of hexegonal symmetry. But here additional
simplifications take place. The z-component of the polarization
vector of pure transverse phonons, j="T , vanishes for
any P4 by definition (see /8/). As a result, equation (12)
for this mode is reduced to /7/

=-3-9 .
\)'r r+2 ¢

(15)

It means that 01~ ig isotropic and differs from the cubic case
(11) only by a factor which tends to unity when r approaches 1.
For quasilongitudinal and guasitransverse modes the formula (12)
is still valid but now with €a depending only on ka and
| /7/ . Simplifications just mentioned appear as a result of the
gymmetry. Namely, the anisotropic continuum of hexagonal symmetry

is trensversally isotropic /8/. Having this we are able to calcula-
te the anisotropy parameter r for all hexagonal crystals for
which elastic constants are known (Table). It is also easy to
analyse the spatial anisotropy of the gscattering rate (12). In the
Figure two cases are presented: Hep helium-4 crystal for which F<(i
and hep 2zinc with F>1 . Por further analysis it is impor-
tant to note tq?t for é.#'r the scatteriné rate changes monoto-
nically with kg and reaches extremum at k,=0 .



\)(kzi)/\)] Pig.1. Relative value of the phonon 1 such disturbed distribution function should reflect the tetragonal
sca‘tterlng rate of two hep crystals: symmetry (see Eq.(14)). It means, that PBE preserves now the form
2 an rie ('< 1) and Zn (['> 1) versus the . of integro-differential equation
Tt S angle between wave-vector direction and A, -
7 > — 3 2 Indi
7n sixfold axis. 1, T, and S are quasilon- (5; +V, )’}’LC kJ';{‘) = EVC (3ea(kd)_i> F'C'k)
1 gitudinal, pure transverse, and quasi- ' R (18)
] : 4 2 > )
1 transverse modes, respectively. Multiplying both sides of (18) by Ga_Cké) * and averaging them
L l-He ! according to the definition (9) we obtain the equation determining
He s . the integral term
~0 s 1 A 2]
0 N ° . ° 0 .
0 30 60 90 (.% +(1-°<)QC)F1(.E) =
: ' (19)
4, Exact solutions of the phonon Boltzmann equation Its solution decays exponentially
Y —tU-«) V.
As we have just shown, the symmetry of the system determihes F'({T) - O) e . (20)
the final form of PBE. Now we are able to show how the solution of
PBE depends both on a symmetry of a crystal itself and on a symmetry The parameter o8 will be defined later on. Substitution of
of a disturbance. (20) into (18) gives us the final result in the form
2 3 +v
. _ . — c
4.1, Relaxation in crystals of cubic symmetry ’\’Lcl‘é,{') = %(L(!)'{::O) (P
(21)
Let us first consider such a disturbance of the phonon distri- 3 F(f =0) —-‘f:U—O()\)(_ —'t\’C )
bution which does not lower its cubic symmetry. For this case the . (36 (l‘d - 1 )( € — e ¢
tensor (9) vanishes, F , (+) =0 . This essentially simplifies

the collision integral, and PBE is reduced to /9/ The first term on the right-hand side of (21) is nothing but the

result usually obtained from RTA. The second term comes out as a

A
(ﬁ + \‘)C )%(1—(’(-}3{) — O . (16) cons«naql.lenc'e of the exact trea.tment of the collision-in part of the
collision integral. Let us first note that this part of the solution
vanishes for some directions in the T:—-space. namely, for those
Thus, in this case the exact solution of PBE is which fulfil the condition g (LA)— A/ . Por any other
A A + phonons the time evolution'of the distribution function is described
M (EJ ){) - ’\’L(EA}JC=O) e/“ Ve ) by two relaxation times. In addition to T_ = 1/V_ a new re-
(17) laxation time appears
In the general case equation of the form (16) is assumed in the 1
relaxation time approximation (RTA) /6/, where the collision in- T—'* = Q* =(1- “)Qc >
tegrall is changedto V,* %(T:'J;{*) . (22)
As a next example let us comnsider a crystal of cubic symmetry with the parameter o given by
with such a disturbance of the phonon distribution function which .
lowers its symmetry to tetragonal. It can be realized by generation ) X = 3—_( 3]C - ‘§ >
22t 22 (23)

of homogeneous flows of phonons propagating in parallel with one
of a fourfold axis (say, z-axis). The tensor Fxﬁ containing



The symmetric tensor of the fourth rank,
in the same way as (8) but with four polarization-vector components
instead of two. It follows from the definition of ol that for the
< 1/3 or, equivalently,
quarantees the stabi-

1“-*’,,, sy is defined

crystals of cubic symmetry 1/9 < f32.22
0 <« = < 1. The inequality o < 1

lity of the solutions (20) and (21)., Positivity of X leads to
the following inequaity
’U*. > T, -
(24)

We can conclude from (21) and (24) that the disturbance lowering
the symmetry of the phonon distribution leads to elongation of the
asymptotic relaxation time.

It is worth to consider, as an example, such a disturbamce
which does not change the distribution of some phonons whereas the
symmetry of the distribution functions of any other phonons is
lowered from, say, cubic to tetragonal. In other words, the initial
condition for these undisturbed phonons is given by
n(EJ;fzo) = . Such phonons cannot be described in the
framework of the relaxation time approximation. However, within
our description their distribution function is given by the second
term on the right-hand side of (21). As a function of time it starts
to grow from zero, reaches its extremum at *t,, =~ (Te/oc) b (41— )
which is of the order of Te , and its asymptotical behaviour
is determined by the (longer) relaxation time Ty .

Let us finally notice that the results just obtained remain
also valid for ah isotropic elastic medium (instead of the cubic
one) with the initial distribution function of the axial symmetry.
In this simplest case using only symmetry arguments we get

F = 1/5 so that ‘o =2/5 and T, _=-27T,
zeaz * 3 “c
4.2. Relaxation in crystals of tetragonal symmetry
Ag we have shown in Section 3.2, in a crystal of a symmetry

lower than cubic the collision rate is anisotropic. If we disturb
the phonon distribution in such a crystal we shall obtain that

FdL) gé O . S0, in the case of elastic continuum of tetragonal
symmetry the relaxation of the disturbance which does not lower the
initial symmetry is governed by PBE having the form

(2 +ckp)mdepst) = 10 (3elckp-1) F+). -

o — —

2

R, —

The integro-differential equation (25) can also be treated exactly.
The discussion can be made more simple by transforming (25) into a
double~integral equation of the form

’n(kd,":) '\’L(k(} t=0)e tOCQé)

39, (3eh ) - D) b gy @O

Now we should find an equatlon determining the unknown integral
fr(t) . As in the previous section, we can get it easily by substi~
tution of (26) into the definition (9). We have

t
Ft) gCt) + S Ka-thHFe)dt
O

(27)
where, for brevity, we have denoted the new integral kernel by
Q *E\Jcta)
=% d ( -
Kby = T2\l Ve (Ld)(3e%(l<d) e )
(28)
and the inhomogeneous term by
— V(i)

Qo V2 B
g({):%%sﬁ(ﬁ»&)ezckdm(k&;fw)6 . (29)

In thie way we have reduced the PBE to a set of two inhomogeneous
Volterra integral equations of the second kind with kernels depending
only on the difference of arguments. Thus, .equation (27) is simply

an 1ntegra} equation of the convolution type. The solution of (27)
can be put in the standard form /10/

F(+) = 3<{>+5t12c{~£’)§<+’>u’ ,

(30)
with the resolvent 12(‘{:) given as the inverse Laplace
transform

g+ loo
Reb) S dz Ky ¢
J 2% 4 - K
§~too (31)
9



~ .
Here Kcz) is the Laplace transform of the kernel Kt .
Moreover, lef us note that Z//(1 - #) as a function of the
complex variable is analytic in the neighbourhood of zero including
the point B=0 at which it vanishes.The last two statements in accordance
with the theorem presented in /11/ guarantee the existence of the
inverse Laplace transform (31). Equations {26)-(31) give the general
solution of PBE (25). We note that the resolvent (31) depends only
on analytical properties of the Laplace transform of the kernel
) E(z) and not on initial conditions. The slow relaxation time
is given by this value of = at which Kcz)= 4 . The
last condition is fully determined by internal phonon characteristics
of a given crystal sample: sound velocities, polarization vectors, '
and collision rates,
Let us note that the general solution (26)-(31) has exactly the
same form also for a hexagonal symmetry and therefore we shall pre-
sent a detailed discussion of (26)-(31) in the next section.

4.3. Relaxation in crystals of hexagonal symmetry

The elastic continuum of hexagonal symmetry is the only anisot-
ropic medium for which the Christoffel eqiation can be solved analy-
tically, and formulae for sound velocities and polarization vectors

can be written down in an explicit form/8,7/.Hence,we can determine the
value of the anisotropy parameter [' (13) and the behaviour of
relaxation ratea (12) and (15) as functions of the wave vector and
branch index. Having these we can study analytical properties of
the Laplace transform of the resolvent (31). The singularities of it
in the complex z—plane are the following:

(a) A cut along the spectrum of collision rate, z = —-Q(iz) é> ,
i.e., from Z=-Vp to &=-0V, , due to the integral of the
Cauchy-type in Kcz) H
(b) An isolated pole located at a pointz - —y, at which

Kezy =1 . It is important to underline that O< V,< Vmp
for [> 4 or O,\< Ve < P\)T’ for ['< 1 . o see this,

is a monotonic function of k z

let us recall that vk, ,j h)
is also monotonic

for A?‘-T (see the Figure) and ao Kce)
for z=x >wmeax{-V;r,-TVr] . Next, we should check that for
r>1 the following inequalities take place: K (o)< 4

and  K(-v.) >4 _ (for [« 4 instead of the latter inequ
ality we have K(--r'vr) = 4 oo ) .

As a consequence of the above set of singularities, R(E)

10

consists of two contributions: first contribution comes from the
integral along the cut and the second one originates from the
pole at =z = —-Q*

—t Vv, 48/ Cp

3 9 oA 28
+ 225y otk plaedep-);

R =a,e

-2 _ twﬁa})
P

€. (32)

( l?(—v&z(j)ﬂo)

where . =
a, = Bwm (2+9) /c1~-Kczy) -
L M
We get the solution of PBE (25) by substituting the resolvent
(32) into (30) and then F(H) into (26). The final solution for

the phonon distribution function consists, in general, of three terms:
(i) a RTA-like term proportional to exp {—'tv(ﬁaj)l
(1i) the integral along the' cut leading to exponential decay with
the effective decay time being between YV and 1/ v, .
i.e. within the spectrum of 't(te}) = Yok, j) ; and (iii)
a qualitatively new term decaying exponentially with a new relaxa-
tion time T,= ¥V, > YVvefor P>1 or T, > /0V for
N< 1. Numerical values presented in the Table show that
Te is a few times as large as TTT .

and the ratio of the relaxation
time T, to Tq for crystals of hexagonal symmetry

Table. Anisotropy parameter |

4
Be /C Cd Hf He H2 Mg
I |0.847 51.46 2,117 0.920 0.647 0.821 0.945
G [Ty | 2.8 11.1 2.6 3.3 5.3 6.7 3.57
Re Ti 1 Y Zn Zr
T |0.924  0.849 0.385  0.965 2.215 0.997
/T | 4.2 3.7 6.2 3.6 2.1 3.8

For t => qu' relaxation is dominated by the term (iii) which
has the form

A 20 _ a7\ il Mk t=0)
?_v“‘.l‘*csez(k"a) 1)% 31?(&%)) Ve X2 \)(T‘éd'j}

11



ro, vl tacky_ k)

€ __‘I{i,_—— _ e ~ N ) (33)
'( 9*__9($#& VCk;X)"QCkeJ>

Let us note that the new relaxation time Tx is thg game for all
1? and . The only excepE}ons are those wave vectors which
fulfil the condition 3 ek (kaj)=4 . With the last condition
the terms (ii) and (iii) vanish (see (26)). The corresponding modes
dééay exponentially with a decaying time exactly equal to TQ;
(Eq.(11) but with ¢,  taken for crystals of hexagonal symmetry ).
For the case of hexagonal symmetry the wave vectors of these modes
form two cones, one for a longitudinal mode, the other for a slow
transverse mode, Let us add that for. some crystals the cone for ?he
latter mode intersects the surface of constant energy almost at the
same points as the cone of collinear points does. For example for hcp
4He the corresponding angles are equal 44° and 48°, respectively,and
for hep Zn 37° and 360, respectively.
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AHH30TpONHUA pellakcaluuH aKyCTHUYeCKHX GOHOHOB,
pacCceAHHHX H30TONMHUECKHUMHU INpHMeC sIMH
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Onsa caydas IIpOCTPAaHCTBEHHO-OOHOPDOOHHX CHCTEM IOJIyUeHH
TOYHble pemeHHss GOHOHHOrO ypaBHeHus BosibIIMaHHA, OMHCHIBAIIME—

KHMH nIpHMecsAMH. PemeHUsT OKAaspBalOTCs 3aBHUCANHMH OT CHMMET-—
pHH cHcTembl. ECnM CHMMeTpHUsa KPHCTAJJIA WJIH CHMMETpHs HepaB—
HOBECHOro pacnpepeneHusa GOHOHOB HHxe Kybuueckod, Torga
sbdexTHBHOE BpeMsA pejlaKCauuH YyOJIHHSAEeTCS 10 CPaBHEHHI0 C Be—

JIUYMHOM, IIONIYYEHHOW B,TaKk Has3blBaeMOM, IIpHOJIMXEHHWH BpeMeHH
penaxkcauuM.

PaBora BbinonHeHa B JlaBopaTopuH TeoperHUYecKOH GH3UKH
01551

penpunt O6BOIMICHHOrO MHCTHTYTA ANEPHBIX UcCefoBaHMi. Jly6ua 1987

ro penaxkcauuw aKyCTHUYeCKHX (OHOHOB, pACCEsHHHX H30TORHUYEC—

Petru Z.Kl

Anisotropy of Relaxation of Acoustic
Phonons Scattered by Isotopic Impurities

E17-87-236

Exact solutions of the phonon Boltzmann equation descrit

bing relaxation of acoustic phonons scattered by isotopic
impurities are found for the case of spatially homogeneous
systems. The solutions depend on the symmetry of the sys-
tem. If the symmetry of a crystal or the symmetry of the
disturbed phonon distribution function is lower than cubic]
the effective relaxation time is elongated as compared to
the value obtained within the relaxation-time approxima-

tion. This new relaxation time is strongly direction-de-
pendent.

The investigation has been performed at the Laboratory
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