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1. INTRODUCTION
o

In recent years, much interest has been paid to the exact-
1y solvable in the rotating wave approximation (RWA) the Jaynes-
Cummings model §J~C)1) of a two-level atom interscting with a
gingle mode of the quantized field radiation2"1o). An infinite
sequence of quantum collapses and revivals of Rabi oscillationa
in the model have been revealed by Eberly et a12’3) and Knight
and Radmore4). Singhs) has studied photon statistical properti-
es of the system. Possible exactly solvable generalizations of
this model consist for example in taking into account multipho-
ton transitions as well as in considering an intensity dependent
atom~mode couplin55“10).

Another form of generalization of the G- model deals
with adding other levels. The first in the hierarchy of genera-
lized models, leading to qualitative differences connected with
the existence of two branches of the Rabi frequency comparing
to the Et-C model, is a three-~level atom two-mode system.
Such a system with one-photon tranaitions between the atomic

levels has been studied by Li et a1,'1t12

) and Bogolubov,Jr.
et al.13‘17). The former11'12) have presented the explicit ex-
pression of the evolution operatof in the interaction picture
and then they have found the measn statistical values of the
level populations., Bogolubov,Jr.sei 31.13_17) have given the
rigorous examination of the dynamical behaviour of the level
populations and photon numbers in the Helsenberg picture. Mul-
tiphoton tranaitions in such a systei have been conaidered as

well’s). Moreover, in the papers15’17'18

} statistical proper-
ties of the photons interacting with the three-level stom have

been investigated.
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An excellent review of the dynamical theory of Jr- C -
type models has recently been given by Yoo and Eber1y19).

It haes also appeared possible to obtain the rigorous ope-
rator solutions for an N -level atom the N—th level of which
is coupled with the rest lower levels by N -1 modes of the
radiation fie1d20_21). Recently, Kotchetovzz) hes solved the
problem of energy spectrum of an N -1level atom in the case
when its lower level is coupled with close to each other N ~1
rest levels by a single near-resonant mode,

In the present paper we would like to obtain informetion
about photon statistics in the case of the N -~level atom im-
mersed in a lossless caviiy and interacting with the ﬁJ-1 re~
sonant modes (fig.1). Although, asg previous calculationa show-
ed20'21), such a model leads rather to quantitative differences
only comparing to the three-level atom in the lambde configu-
raf;on,‘fhe general solution for arbitrary N is interest-
ing in its own right. First of all, this solution embraces
thoge for the two-level one-mode system and for the three-

. level two-mode lembada system with two one-photon resonances.

Pig. 1. Level structure

R N- p A N-1 A A 4
H= 2 $a ata, + Z%"‘%LRM + 2 'k}-t(azk»w*az

This three-level atom be;ng initially on its lower level per-
mits to study cross correlations between photons of the pump-
ing and signel mode. The atom under congieration enables us
to study intermodal correlations of two signal modes and to
estimate the effect of the level number on the magnitude of
the photon correlations.

The remainder of the paper is organized as follows. In

~ chapters 2 and 3 the model Hemiltonian and the necegsary pre-

vious resu1t321) are given, In the next chapter we find gene-
rel expressions for the photon-number statistical moments and
correlations using the time~independent photon-number distri-
bption function. In chapter 5 we present another possible so-
lution to the problem of photon statistics in the gystem un~
der consideration by finding the characteristic and time-depen~-
dent photon-number distribution functions. Pinally, in section
6, the time behaviour of the normally ordered variances of the
photon numbers and the cross correlations between signal modes

are calculated.

2. MODEL HAMILTONIAN AND OPERATOR SOLUTIONS

The N -level atomic model considered here is shown in
fig.1. The upper level N is coupleé with the other N - 1
levels by one-photon dipole transitions whereas the mutual
trangitions between these lower levels are forbidden.

The Hamiltonian of the system in RWA is

1 N A

+

o« Yy

mr
od=q 1=4 e ~(1)

A
The operator 1?;( represents the population of the level
£ with tl%e energy ﬁwo‘: and the state vector JE> .« The

operator 2“‘47: = /[){j/ , 4 .;é-j , describes the transition
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of the atom from the level j to the level £ . The opera-

tors
A
/2“" ’

unita.ry group SU(N) and obey the rules

A “ A A
kat Rit CYk ) E 75 Reud = Pt ‘{}k "/0,7-05[ . (2)

4,',;' = 1,..., N , &re generators of the

Moreover, the following conservation law is satisfied:

N a
2Py =1, (3)
=1

4 A
The photon creation a": and annihilation a,'(_ operators,

ol =14eeey, N -1, describe N -1 modes of the radiation field
with re_sonent frequencies CJOL = CDON— C«)m , and 9“ are
the corresponding atom-mode coupling constants. The above ope-

rators satisfy the commutation relation

E oL 5 /5] p . (4)
The photon number operator for the mode of we denote

by 72 n, = a"" a_ . Then, the photon-number statistical

o " o
moments and the correlationa between the modes are defined
- Ak Ak al L L
by ”, and 72, ’n/‘ ( , —a.rbitre?.ry integers), res-
pectively.

One can easily check that the following excitation num-
ber operators \/V‘ \/V = 42 (‘t‘)- 2 (t). of= 14000,
N - 1, commute yith the Hemiltonian () (alao with each

other). ‘I‘héy are therefore constants of motion
A

Wo=mn (4)- R, (t)=n, ~ 22, (5)

where the upper symbol ° O foliowing the operators denotes

that they are taken at t = 0, P

21 A
In the previous paper”') the operators 2‘,{‘ /{)a.nd n, (t)

have been found explicitly and rigorouslY. They read

4

@M(f)=‘2¢>€c szn‘fét "‘/266'"-{2?5 + —Q rp(f)+ ’Q,,(.z 3 (6)
_ <= Ay N1

A 4 A . A A A 4 (7)
s, (L) = -2, sin? L Q1 A, sin Qb+ 2 P(t)+ M
’ o = fJ ey N'7
where the operator (P(f) is
A . A 4 A R A
P(t)=-2Ls5in? 2L * /3 sim 2t . (8)
Moreover, with respect to the conservation law (3)
A 49 A A 0

" " 4 ]
The amplitude operators . , /5‘ ’ o{( and ﬂ.{. are de-

fined by the initial conditions and have the form

Nt ey 4 -1 N-f 2 o
A 1 ‘_I' 2 4 _ Z T
<=5 (/‘;1 7 s * NN*ﬂzfpp%%/‘f)’
A A &1 X
p=7 G = R,
N 7 ver
N-T -
p) A A2 A r 59 _ o A2 7
oL, = 2742 4/“112,; ('Q,M”IQ/, )+ g L2 5 %Z{ﬂ"
n g N1 N1
_(2 S's
asli o ]Juo)
N-7 A 0 |
= -3
ﬂ =0 ﬂzﬂ (‘Q/& ’Qaa 'Q )

The ﬂac are operators of the one-photon Rabi frequency, and

g 4
goc [‘A{‘c +4) % s (11)

A

whereas
P _’_1 A 2
0% = = ._(2/5 (12)
A=1

is the operator of the effective Rgbi frequency.



DAL N L () = Tr i, NOLM (i)g) Z?P(M){ (51 (H &

mode at f = 0, i.e.,8t 2, f 0. In the opposite case ,{2: - 0

and 2 (4 {?2,} ¢)=1  for eny 1 what suggests that
the aton ‘Wwould remain on the level L -

4. PHOTON-NUMBER STATISTICAL MOMENTS ARD CORRELATIONS

The photon-number statistical momenta and the cofrela»

tions between the modes are by definition

@a» T 3, (8= Z’P(inrik A, fﬂ>{ > @

Ly’

wherse the brackets< > stand ror the expectation values calou-

yin +t
lated as previously in the state IL -1’)2’}> + The time de~

pendence of the photon number operator /}'z‘ » [f) is rather com~
plicated. Hence, it is cumbersome to calculate immediately the
mean quantum value of its Jk ~th power and so much the worse to
calculate the mean quantum velues of the products of the 4 ~th
and A -th powers of the operators 0: (%) and 4;/3( £). One
can overcome these difficultiea using the relation (5) and the

| fact that ,2 (t) = ‘_‘(f) and 'Q ﬂ‘)/e/y,(z‘) o

for o # /3 '. Then??)
A

AL (o - R

'eo(
R (17 (6 = W+ W [ (M) = W T Rs
ot

(),

L - TRt -

+ (-, m‘) f('n/s‘" /55*4) (Mp- /h) J R, (¢, 4mpdt) +

On substitution of (25) and (26) into (23) and (24), res-
pectively one simply finds

ALY =5 P tnec L)+ [ (ng-Livn)f

{my} (27)

- (%x." gu:)] ‘Q‘,‘ (l’»{nf})t)}

<, (%)fn Loy - Z ?’({?r!){(ﬂx $) ()t

(28)

§i) [ (mam Gt~ (ma= ) TR (¢, 4t 1) -

Thus the time dependence of eqs.(27) and (28) is given by the
first powers of Q‘,{ ([I{ﬂ/}‘ f) and the latter is represented by
eq.(18). Note that the relation (27) for k = 1 could directly
be obtained from (19).

5. TIME DEPENDENT PROTON-DISTRIBUTION FUNCTIONS

In the statistical averages (27) and (28) the time de-~
pendence is included in the expeciation values of the level po=~
pulation operators. One can also calculate the photen-number
statistical moments and the correlations between the modes

from the following definitions:

AL = z} P {nps,t) fnj , 29)
ny
<t (t) 7, S>3 Plinggt) m ,
{7y} (30)

where now the time dependence is included in the time-depbndent
photon-number distridbution function ?({%;«j,f) . It is our
aim to find in thie chapter the form of P ( {mp},4). Moreo-



ver, we are going to show that contrary to the relation (16)
the time-dependent photon-number distribution function does

not factorize, i.e. that
N-1
P ({mr}st) #"f’ 2 (7, t) (31)

for i’) 0, what in enother manner implies the appearance of cor-
relations between the modes becsuse of the interaction with the
atom,

Let us introduce the following aperators

X (15,3) = exp[iéj Eom, ()]

(32)

(‘t): exp [4.(§/r; [{’)] s (33)

wha‘re, for inatance, Z (g)- x (; » Oy0s+,0) and
N' (§)= 'X (0,0,040, (E ). The characteristic functions

corregponding to the above operators are, respectively“)

XED= X (iE)> - T i({;,s)f", (3)
X () = < X (8> =T X (£)6°. o9

In turn, these functions are related with the photon-num-
ber distribution functions P ( Impy ot ) and ,}:L (m, ,t)
by the relations

X (15,1 = Z C*P( 54"‘)p({""’t) ' (36)

X (5) = X exp (LEme) B (ma,t) . (37)
With rispect to the relation (5) and already mentioned equeli-
k N A A A
ties: R, (f)’&.‘{t), 2‘4&)12/3/,&)'-‘0 for oL #48 , from
the definitions (32) and (33) we find

10

P . N-1 A N-1 : _ A
X (i5)= exp(iZ B W) v 2, Dexp(de) U”Ma)}zm

i,‘ (§) = exp (‘:F"&.‘(){" + [exp (i£)-1] Rus ®f.

Substituting the expressions (38) and (39) into the definitions
(34) ahd (35) and using the density operator (17) together with
(14) and (15), we arrive at

X ({&)) = 2’: 'P(i«:})exp[ S‘m ] {1+

‘fd% EQXP (4§,‘)' 41 Ro(,(tl {ﬂf};t)} 3

(40)

)= 2 P expL il (na-d)] {4+
n, :
+ [exp(£8) -1 R, (i, 4mp},¢) §

where the quantity ﬂ“_ (<, {ﬂr},t ) i8 given by (18).

(41)

Comparing (40) with (36) and (41) with (37), respectively
we finally find the time-~dependent photon-number distribution
functions P ( {nyy ,t) and a. (m, ,t). with respect to
the conservation law (3) the first of them is

N-1
’P({’hx},t) = g; P ({ﬂr-t%;*&ﬁ}) R, (t, {"f“‘?)"‘ bidst)
.+ P({«npé‘,;}) RN (<, l“)"’é}f},f)f

N
“:T'O(Z_1 P({"‘r’&‘é}x})&[": {m/"c?)‘—é}“})f) 3

(42)

where we have used the fact that J'ﬂ = 0 for o('-=N since 3"

does not reach N .
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shows the photon siatistics of the mode isV¥Ysuper- or sub-Pois-—
sonian and indicates whether photon bunching or antibunching
m,curs27 31), respectively. The gquantity \/ («f:) is measured
in a HBT-type experiment with two different llght beam:328 31)

I1f the Vo(/ﬁ (t) is negative we speak about photon anticorrelation.

By the pumping mode we obviously understand that one which
transits the atom from an initial level l:;‘—'N to the level N
(for this mode of =L ). The rest of modes (d,#c' ) we call the
gignal modes, Here, we ure interested in the photon statistics
and the correlations of the signal modes. Hence we must put in
eq.(46) (S;L. = 0 and to do the same in eqs.{18) and (20). Since,
moreover, we assume I:A#‘N ¢ therefore SL-N = 0 'toé. Then, from

eqs. (18)-(21) we get

/Q (<, 173, {)~ 4943;2('” ""’)’”é Q/ﬂt (49)

where
' N-1 4/
- 2 2 2
- Z,, ACSORE T R (50)
The form of R (Z,4ns}, f) is readily given from (49) by
replacing o{aﬂ . ;

The magnitude of the Rabi fregquency {} Increases while
that of the quantity (49) decreases as the number of levels
increases.

Let us further assume for simplicity that only the pump-
ing mode £ and the two gignal modes under consideration o
and /3 are im‘.tial_ly excited and we put 9,4 R ?N"! :3'

Then

L Lty 1
ﬁoé (L N, My N f) (n J 2 5@1’%?//}%24?:;,4:‘1;91

3
(N-Z+m; +7, +vm
$1T ) (51)
Note that now N must be > 4.
14

On substitution of (51) into (46) and (48)

V.@t)=V, Vor § 2. Plm) n. ) Blny) (mu—m Y+ )m;

LRI (N-2+m; + m +my)*
. smqiy‘v'z”"“@*mﬂ 46[:3:;' f(ﬂ,)P[ﬂl)?(ﬂ/’)x(52)
LR )
(/‘n‘d"'{)ﬂt ?

]

(N 24+mgemysm )1. Sin LVN 2+ m; + Tt Ty ]
Replacing A2 We obtain the variance of the photon num-
ber in the mode ﬂ

V‘,{,{) ('&) = * L‘Z P (’“x) (’"J) ['"fs) x

"Hr'h»mw
g L (M= RI(Mpa A+ (M=) (v + AV sin Em -
(N-2+mi+ m_ o ”'“/a)z o

“46[2 Pe(m )P (m) 'P( (m.l’*")'nlf-. X

MMM (N-—z +tmp+metm, P

X 5&‘4&}‘ %—Vﬁ:.zmwmyn‘,:]f:z ?&, (’*"x) P () ‘F;s(mﬁ) x

me ,m“mp

@'L-M')m- )\
ey =g

CN-2+tmism4m,)?

N—J+m;~nmem7] . (53)

The above formulas can be studied numerically., But we can still
simplify them, essumming both signal model initially in the

vacuum. Then . Cy (54)
m,0 *

Pn) Rlmp) = deo
In this case from (52) and (27) we arrive at the parti-

cularly simple result:

V, ()= - <m, (t)ﬁz
-46[2 (1Y A

£(55)

t
(N Tomiy o b N““'"«} <0.
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The non-delayed coincidence counting rate

(ll({) - i " Y:( (t)
— {56)
4 <o ~° ’

becaugse of one-photon transition at every atomic jump.

From eqe (53) we find

= +Y €£0. (57)
The equality of these guantities takes place since we
assunmed %d'—' @{3.
The result (55) or (56) implies that the signal modes

generated from the initial vacuum by erbitrary light pumping
has sub-Poissonlian photon statistics and, hence, exhibit photon

entibunching for all times t)Q. The photons of the signal modes
manifest moreover mnticorretation for all times (57). The
quantities (55) and (57) will obviously show a sequence of
collapse and revivals at coherent pumping. Exactly speaking,

é

V()

-001{

0 10 20 30 40 gt %0

Y ¥

o

Fige 2. Temporal behaviour of the YL(” in the gignal mode
produced from the vacuum at coherent pumping: N=4,

= —_— — M
825, R(m) =exp(-m; Im,; */m, b,

16
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Fig. 3. Time dependence of the \{j‘{t) in the signal mode

produced from the vacuum at coherent pumping: N=10,
- — — Ty
niz‘j, (Pi(m‘;):: e?"P(”'h‘)’"c t/m;! o

we deal with two kinds of collapses and revivals with different
pe&)ds and maxima what is related to the existence of two
brenches of the Rabi frequency: () and 2Q ). 1n fact,
4 ein‘(ﬂt /2) = 4 sinz(ﬂt /2) - ain?(t , and the maxima of
the revivals connected with the low-frequency branch will be
noticeably peatef than those of the high~frequency branch.
The greater the number of levels N, the smaller the mean
number of photons <ﬂ¢t‘&)> and theif dispersion <EA4‘;’¢(¢H:>=
- {fﬁ&({)>[4w<@m)] (the greater the \/ (+)), will be
(figs. 2 and 3). .
The authors would like to thenk Tran Quang for helpful

discuasions.

* REPERENCES

1. E.T.Jaynes and P.¥.Cummings, Proc. JEEE 51(1963) 89,
2, J.H.Eberly, N.B.Narozhny and J.J.3anchez-Mondragon, Phys.
‘Rev.Lett. 44 (1980) 1323.

17


http:sin2{.Qt

12.
13.

14.

15.

16.

17.

18.

19.

20,

21.

22.

23.

24,

25.

N.B.Narozhny, J.J.Sanchez-Mondragon and J.H.Eberly, Phys.
Rev. A23 (1981) 236.

P.L.Knight and P.M.Radmore, Phys.Lett. 90A (1982) 342.
8.8ingh, Phys.Rev. A25 (1982) 3206.

B.Buck and C.V.Sukumar, Phys.Lett. 81A (1981} 132.
B.Buck snd C.V.Sukumar, Phys.Lett. 834 (1981) 211,
B.Buck and C.V.Sukumar, J.Phys.A17 (1984) 877.

B.Buck and C.V.Sukumar, J.Phys. A17 (1984) 885.
E.A.Kotchetov, Comm. JINR E17-86-455, Dubna, 1986
X.1i and N.Bei, Phys.lLett 1014 (1984) 169.

X.1i and Y.Peng, Phys.Rev. A32 (1985) 1501.

N.N.Bogolubov,Jr., Fam Le Kien and A.S.Shumovsky, Phys.Lett.

101A (1984) 201,

N.N.Bogolubov 4Jr., Fam Le Kien and A.S.Shumovsky, Phys.Lett.

107A (1985) 173.

N.N.Bogolubov,Jr., Pam Le Kien and A.S.Shumovsky, Phys.Lett.

107A (1985) 456.

N.N.Bogolubov ,Jr., Pam Le Kien and A.S.Shumovsky, J.Phys.
A19 (1986) 191.

N.N.Bogolubov,Jr., Fam Le Kien and A.S.Shumovsky, J.Physi~
que 47 (1986) 427.

A.S.8humovsky, E.I.Aliskenderov and Fam Le Kien, J.Phys.
A8 (1985) 11031,

H.I.Yoo and J.H.Eberly, Phys.Rep. 118 (1985) 239.

X.1i and S.Zhu, Physica 131A  {1985) 579.

M.Kozierowski, J.Phys. B19 (1986) 1535.

E.A.Kotchetov, J.Phys.A {submitted to).

J.R.Ackerhalt and K.Rzazewski, Phys.Rev. A12(1975) 2549,
W.H.Louisell, Radiation and Noise in Quantum Electronics
(Mc Graw-Hill, New York, 1964).

R.Hanburry Brown and R.Q.Twiss, Nature 177 (1956) 27.

is

26.

27.

28,

29.
30,

31.

R.J.Glauber, Optical Coherence and Photon Statistics, in:
(eds) C. de Witt, A.Blendin and C.Cohen-Tannoudji, Quantum
Optica and Electronics (Gordon and Breach, New York) 1965.
D.F.walls, Nature, 280 (1979) 451.

J.Pe¥ina, in: Progress in Optics XVIII, (ed.) E.Wolf,
North Holland, 1980, p. 127.

R.Loudon, Rep.Progr. Phys., 43 (1980) 913.

M.Kogierowski, Kvantovaja Elektronika, 8 (1981) 1157

{English trenslation Soviet J.Quant.Electron., 11(13981) 6951

H.Paul, Rev.Mod.Phys., 54 (1982) 1061.

Received by Publishing Department
on January 21, 1987.

19


http:Ja:n1J.8.l7

SUBJECT CATEGORIES
OF THE JINR PUBLICATIONS

Index Subject

Pt fd fd b P pd
N W N =0
.

16.
17.

18.
19.

W 00 ~N OV 0 &WwW N -
e & e s e s s s

. High energy experimental physics

High energy theoretical physics

Low energy experimental physics

Low energy theoretical physics
Mathematics

Nuclear spectroscopy and radiochemistry
Heavy ion physics ‘
Cryogenics

Accelerators

Automatization of data processing

. Computing mathematics and technique

. Chemistry

. Experimental techniques and methods

. Solid state physics. Liquids

. Experimental physics of nuclear reactions

at low energies

Health physics. Shieldings
Theory of condenced matter
Applied researches
Biophysics

KosepoBcku M., lWlymoBckuit A.C. E17-87-23
CraTucruka $oTOHOB B N—YpOBHEBOMH
(N-1)-MoOoBOi1 cHCTEMe

HayueHn xXapaKTepucTUueckne o¢yHKnMH, GYHKIWM pacipene-
JIeHUs M CTaTHUCTHYECKHe MOMeHThl uHciia dOToOHOB, a TaKxe
MeXOyMOoOoBble KOppensuuu. BeruciieHa HOpMallbHO YNODPAOOYEH-—
Hasg Bapuapusa uHcrna GoTOHOB,

Pa6oTra BmmoliHeHa B JlaGopaTopuH TeopeTHdeckKoit $u3uku
OUsdH.

INpenpuxt O6benHHEHHOro HHCTHTYTA ANEPHBIX HecreaoBaHuKR. [y6Ha 1987

Fozierowski M., Shumovsky A.S. E17-87-23
Photon Statistics in an N-Level (N-1)-Mode System

The characteristic and photon number distribution
functions, the statistical moments of photon numbers and
the correlations of modes are studied. The normally order-
ed variances of the photon numbers and the cross-correla-
tion functions are calculated.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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