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,. INTRODUCTION 

In recent years, much interest has been paid to the exact­

ly solvable in the rotating wave approximation (RWA) the Jaynes­

Cummings model !J_C)1) of a two-level atom interacting with a 

single mode of the quantized fierd radiation2- 10). An infinite 

sequence of quantum collapses and revivals of Rabi oscillations 

in the model have been revealed by Eberly et a12 ,) and Knight 

and Radmore4). Singh5) has studied photon statistical properti ­

es of the system. Possible exactly solvable generalizations of 

this model consist for example in taking into account multipho­

ton transitions as well as in considering an intensity dependent 

atom-mode coupling5- 10). 

Another form of generalization of the (t-C model deals 

with adding other levels. The first in the hierarchy of genera­

lized models, leading to qualitative differences connected with 

the existence of two branches of the Rabi frequency comparing 

to thjll a-c model, is a three-level atom two-mode system. 

Such a system with one-photon transitions .between the atomic 

levels has been studied by li et al. 11 •12) and Bogolubov.Jr. 

et al. 1)-17). The former 11 ,12) have presented the explicit ex­

preSSion of the evolution operator in the interaction picture 

and then they have found the mean statistical values of the 

level populations. Bogolubov,Jr••et al. 1)-17) have given the 

rigorous examination of the dynamical behaviour of the level 

populations and photon numbers in the Heisenberg picture. Mul­

tiphoton transitions in such a system have been considered as 

well 1B). Moreover, in the papers 15 ,17,1B) statistical proper­

ties of the photons interacting with the three-level atom have 

been investigated.
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An excellent review of the dynamical theory of t -C 
type models has recently been given by Yoo and Eberly19). 

It has also appeared possible to obtain the rigorous ope­

rator solutions for an N -level atom the N-th level of which 

is coupled with the rest lower levels by N-1 modes of the 

radiation field20- 21 ). Recently, Kotchetov22 ) has solved the 

problem of energy spectrum of an N-level atom in the case 

when its lower l.evel is coupled with close to each other N -1 

rest levels by a single near-resonant mode. 

In the present paper we would like to obtain information 

about photon statistics in the case of the N-level atom im­

mersed in a lossless cavity and interacting with the N-1 re­

sonant modes (fig.1). Although, as previous calculations show­
20 21 	 .ed ' ), such a model leads rather to quantltative differences 

only comparing to the three-level atom in the lambda configu­

rai~on, the general solution for arbitrary N is interest­

ing in its own right. First of all, this solution embraces 

those for the two-level one-mode system and for the three­

level two-mode lambada system with two one-photon resonances. 
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Pig. 1. Level structure 
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This three-level atom being initially on its lower level per­

mits to study cross correlations between photons of the pump­

ing and signal mode. The atom under consieration enables us 

to study intermodal correlations of two signal modes and to 

estimate the effect of the level number on the magnitude of 

the photon correlations. 

The remainder of the paper is organized as f~llows. In 

chapters 2 and:3 the model Hamiltonian and the necessary pre­

vious results21 ) are given. In the next chapter we find gene­

ral expressions for the photon-number statistical moments and 

correlations using the time~independent photon-number distri ­

bution function. In chapter 5 we present another possible so­

lution to the problem of photon statistics in the system un­

der consideration by finding the characteristic and time-depen­

dent photon-number distribution functions. Pi.nally, in section 

6, the time behaviour of the normally ordered variances of the 

photon numbers and the cross correlations between signal modes 

are calculated. 

2. MODEL HAMILTONIAN AND OPERATOR SOLUTIONS 

The ~ -level atomic model cO.nsidered here is shown in 

fig.l. The upper level N is coupled with the other N­
levels by one-photon dipole transitions whereas the mutual 

traiJ:sitions between these lower levels are forbidden. 

The Hamiltonian of the system in RWA is 

A 11--1 4 "" 11-1 A A N 	 A ~ of 

"";;w R.. + ~ -Ii It", (a"",RN~+4e ~N)'H-= :E liUJ" a.: a", + £- 0[' LI. ,. d 	 r,/( 1) 
,.L -1 1:1 -~ .. 

A 

The operator )?ii represents the population of the level 

A. 	 with the energy Ii fA) • and the state vector Ii). The 
'" 0" 

operator Rij == //><11. ;, j: j ,describes the transition 
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of the atom from the level df to the level 1. • The opera­

tors 
A 

12·· ~ .i 1 • • • •• IV are generators of the
~I 

unitary group SU(N) and obey the rules 
" . A A A" A A 

Ri;' Riel =' Ril ~·Ic , [Rij ) Rlcl ,] ::: Rt"t, ~'k - 12k! dJt • (2) 

Moreover. the following conservation law is satisfied: 

N A 

2:.. 12n = 1 0)
. i =1 

A -I- A 
The photon creation a~ and annihilation a",- operator!!. 

oL = 1..... N -1. describe N -1 modes of the radiation fieJd 

wi th resonant frequencies £Jo£ = c,:)ON - lJat • and [J" are 

the corresponding atom-mode coupling constants. The above ope'.­

rators satisfy the commutation relation 

"'A ~ 

[
 a..t , a~] = <t/l . (4) 

The photon number operator for the mode 0(, we denote 
" A A" 

by ~ 12", = a.,: a.,l • Then. the photon-number statistical0­

moments and the correlations between the modes are defined 
.AIt AkA/,

by '1Z.", and n~ 1Zj& (Ie. l -arbitrary integers). res­

pectively. 

One can eas~ly check that the following excitation num­
'" A A 

ber operators H . It. .. '"- (,.t>- R (i). r:L- 1••••• 
. 01- J., ..t ot-<, 


N - 1. commute with the Hamiltonian (1) (also with each 


other). They are therefore constants of motion 
A 

A A. A() ,140 
~ = 'nolo (t) - R..L'(' (t) = ~ - R.,u , (5) 

where the upper symbol '0 following the operators denotes 

that they are taken at t = O. 
.If 

In the previous paper21) the operators .e"u fi)and -n~ (t) 
have .been found explicitly and ri&OroWl17. The;r read 

" 


A _ _ A ,.t" A 'A." A.1 A A 0 
R",.Jt) - ..zot.,(, Sen :f n. t -I (3-<. ,s,n flt+ ..DoL P{t) + R..d.L J (6) 

o<:",AT ",)N-1 

A A -fA A A A.l" -10 (7) 
tn.",- (I:-) = -otoLc.isin.l:z S<t -1;1<><. sinSlt -I-.J2..t P(t) + "'nol-

A eX = 1)",) N-1 
where the operator 'P(t) is 

A A'" A A 

pet) = -..2ot..sin-2..12t 1';S S/?t 2.Jzi (8) 

Moreover. with respect to the conserV!~tion law (3) 
A A~A "0 

J2/vN (t) = - Q ? (t)-t Q NN (9) 

A A A ,. 

The amp;litude operators eX- • f3 ,~ and;3...( are de­

fined by the initial conditions and have the form 

"'-1 4..t A A A 0 ~-f N-r A 0 )
LoC :: i iL-4 (~ -.01' R.!A. - -.a R.NN + ~ ~ f/j$ rtr- ~t I

"t f!'=1 {7~ !3~1 t>f?' 
1'-1 • 

A 4 A-3 " /I 0
~:=;tfl L- R 


. • (.>='1 ~r' 

.A /'1-1" A A .A N-1 AtJ =.12-I,[.z.A .t.. ~ -IL. (R. 0 - R 0) + a 12.1 ~ 11 TO,,(, ~ fS ;,U. ,-s,-s (/;.{. q;1 ol'A

f1> .. 1 f I ;S F..t. ,. ­
A /11-'1 /'I-f .If 

- .I2~ ~'1 ~ ~;3?1'~;]
fl- tt:j3 (10) 

" #-1 ,11.2- '"• 0 A ~ /0•0
f'.<. ~ n-3 L (...Qj!> Rd..l -.£2.,£ R~~)

/3'" 1 

~ 

The ~~ are operators of the one-photon Rabi frequency, and 
.A 

A 

.fl.. (~ -+- 1) 4/.2 ~ 
oC. ( 11 ) ~'" 

whereas 
#-1 A:l.AQZ 2. .fl/l, ( 12) 

(3:=1 1'­

is the operator of the effective Rabi frequency. 
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mode at t = O. i.e., at tn.t f O. In the opposite case ...Qt • 0 

and. J!i {l , {ntl J C} .... 1. for 81V t what suggest. that . 	 .
the atom would remain on the leyel .(" 

4. PHOfOB-BUKBER STATISTICAL MOMBBTS AID CORRELATIONS 

The photon-number statistical moments and the correla. 

tiona between the modes are by definition 

<":(t» ~ T".. ,;,; (t) fO =- 1'( i't!.t})< '"-: (t)~ (23) 
{"Ii 	 "J4n.tJ ' 

<tr1:C!)'4!lt» = T't-n-,k(t)n~li)rO= 2:. ~(~'"tJ)<-n:(t)~~{tt>: (~4) , 

~'I'lfj 	 LJ~n,j 
where the brackets<,) stand for the expectatioD Talue. calou­

....l"t} • 
lated as previously in the state Ii", J'17.1'J> . The time de-

A
pendence of the photon number operator 1Z~(t) is rather com­

plicated. Hence. it is cumbersome to calculate immediately the 

mean quantum value of its k -th power and so much the worse to 

calculate the mean quantum values of the products of the Ie -th 
A A 

and 1., -th powers of the operators '12.0(. ( t) and '1Z/J ( t ). One 

can overcome these difficulties using the relation (5) and the 
Alc A 

tact that R..t.l(t)-=- R...,(~(t) 


tor ~ f (3 • Then15 ) 


Ie A,t If A::. 
~ (i).., Aft + [ (It +1) ­

;;,(. . Y'~ J 

A A A k A l . A A: 
?l-,(t)tltfo{t)=~ ~ -+N.I.[IH;.+1J -~]RtJt1-(t) 

a/..~ 

(26)+.~l [ (vi+ ;fie - k.t] R-,.1. (t) 
" 

8 

"''''. 
and .£oC'o£{t),R.~(t)=O 

"I/c A

#'. ] R it) (25)
,,(. d"(' " 


A l A /, A 


On substitution of (25) and (26) into (23) and (24), res­

pectively one simply finds 

<.n;(t» 	 :L 'PC {11jJ) {('n"t {d
k 

-t[{'Yl<i-J:..i-t1)k 
{"YlrJ (27) 

('n~-J;i/) Ro<. (i,1 n rJ}t)] , 

<tiiJ.k(t)~~(t»;:2: P(hlJ){(/}'l.,( ~<)k{'n~ ~,)L 

{ 11...J 


k L ('\ L 	 (28)
+('I2.~-~i) [('h(3-0(3i f1 ) - ('h(2>-o~;)JR(3(Z,i'11I])t) + 

t(lY2f.> ~nL[('1'l[ c5;u'+1l- (rno< &z)~J R« (i) {ntJ,t)J. 

Thus the time dependence of eqs.(27) and (28) is given by the 

first powers of 1<..<. (i, i rtfL t) and the latter is l'epl'esented by 

eq.(18). Note that the relation (27) for k ~ 1 could directly 

be obtained from (19). 

5. TIME DEPENDENT PHOTON-DISTRIBUTION l!'UNCTIONS 

In the statistical averages (27) and (28) the time de­

pendence is included in the expectation values of the level po­

pUlation operators. One can alao calculate the photon-number 

statistical moments and the correlations between the modes 

from the following definitions: 

AI.:. \ 	 k<: mol (t);> -=- ~ p ( {?1y3) t) not , (29) 

[ntl 
A it. A I.. > ~ 7{ Ie l<-n", (t) 'n~ (t) :::. L- {n,},t) rnd 12(b 

(Jo)'. /71f} 

where now the time dependence is included in the time-dep~ndent 

photon-number distribution function ?(17ltl, t) . It is our 

aim to find .in this chapter the form of ? ( {n,.Jd). Moreo­

«) 



vert we are going to show that contrary to the r.la~ioD (16) 

the time-dependent photon-number distribution function does 

not factorize. i.e. that 

"'-1
P (t?2rJ,t) =F n -e. (~i1L,t) (31 ) 

oC-1 

for t;> 0, what in another manner implies the appearance of cor­

relations between the modes because of the interaction with the 

atom. 

Let us introduce the following operators 
" N-1 A 

X (iF.,.}) = e".p [ i L )i... n-to (+)] , 
0/-1 (32) 

A A 

lot (fo) -::. e)( p [ ~.;; "h.",- {tJ] , (3) 

A ". 

wh,:re. for in!tance. 2:4 (fo)= X .( ~ • 0 ••••• 0) and 

:XN-/~)'" X (0.0••••• f. ). The characteristic functions 

corresponding to the above operators are. respectively24) 
4 A A 

'X ( {~r}) = <X ( 4'tJ) = Tr X({~,..j).5'0, (J4) 

A A A

X-' (~) -=- <X.,( (~)'> = Tr Xo(. (f-.)'pD • (5) 

In turn. these fUnctions are related with the photon-num­

ber distribution functions 1> ( t-nt,} , t ) and t ("'.,t. • t ) 
by the relations 

11-1 

X({}r});:~. exp{L~ ~",,,,,)p(t""}Jt) I 

.c:.""t} ",,-1 ()6) 

:x.", (~) = :;[. e)l.p (if""''''') ~ ('h.""t) • (37) 

With respect to the relation (5) and already mentioned equal1­'" A It A A A 

ties: ~(t)""R.uJt), ll.u .ltJR,6/J(i:)-=O for otl;3 • fro. 

the definitions (32) and (33) we find 

10 

A H-f /I /i-I .. 
X (thl)= ej(p(i2.. 'f.",N.) 14+:£ [elCp(l.}.c)-1]Il.u..(t)}

oi",4 - l"LsI?' ,
OS) 

~ , A 

1" (~)= ej(r(if~){~ + [ey.p(i.~ )-4J R..t.£(t)j. (9) 

Substituting the expressions (38) and (39) into the definitions 

(34) and (35) and using the density operator (17) together with 

(14) and (15), we arrive at 11-1 

X ({ tTn = E l' (r'ntJ) exp [.t ~ ~ot {?t.t -~.:)J {" + 
i" {"'-II 0/.::1 

tE11-" [expUf,,)-1] R",(i) l"'I'J 1 t)j, 
0/=1 (40) 

10(. (ft):: Z 
{n,J 

1'( lXT}) exp [1~ (17.~ -<&d] f -1 -+ 

(41) , 
where the quantity R-. (;., • (nt}) t ) is giTeD b1 (18). 

Comparing (40) with (36) and (41) with (37), respectively 

we finally find the time-dependent photon-number distribution 

functions 'P ({"'t} , t) and ~ (41", , t ). With respect to 

the conservation law (3) the first of them is 

11-" 
t> ({1'lt}jt) = 2: 'P ({'tll"+o;l- C~J) R.,( (i d 11r<tSji -~"ht) 

fI. "''' 

+ p( {;rtr"" Crt}) RN { /.} ('nf + J',d, t) == .. 
N 

-= L P( l'tlT ~ J;.: -~.t }) Rt;/. (i J I 'It1 ~ J'JL - err.t J, t) , 
ol=1 

(42) 

where we have used the fact that eft.L '" 0 for cl:: N since t 
does not reach N 
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shows the photon statistics of the mode is "super- or sub-Pois­

sonian and indicates whether photon bunching or antibunching 

27
 occurs - 31 ), rc,spectively. The quantity ,!(!o(t) is measured 

in a HBT-type experiment with two different lieht beams28 ,31). 

If the V~p (t) is negative we speak about photon anticorrelation. 

By the pumping mode we obviously understand that one which 

transits the atom from an initial level i j: N to the level N 
(fcrthis mode ,;£ =t ). The rest of modes (cf...,i) we call the 

signal modes, Here, we are interested in the photon statistics 

and the correlations of the signal modes. Hence we must put in 

eq.(46) ~i = 0 and to do the same in eqs.(18) and (20). Since, 

moreover, we assume ~ -t N , therefore g. '" 0 too. Then, from 
~N 

eqs. (18)-(21) we get 

41}}fj;(-n",+1)11i _ lti-flt (49)R.,(. (.l,i'7lli)t) ---J1.iT sm ;t , 

where 

_ N-1 2. 1.. 4/:t


12 =[2:: ~(.'> ('rt(.'> -+ ;f) - ~ i J 
 (50) 
(>"'1 

The form of R~ (i) ~nt1) t) is readily given from (49) by 

replacing 0< ~ ;1. 

The magni tude of the Rabi frequency n. increases while 

that of the quanti ty (49) deer-eases as the number of levels 

increases. 

Let us further assume for simplicity that only the ptunp­

ing mode L and the two signal modes under consideration ~ 

and t1 are ini t ial,ly exci t cd and we put 1}-1 = "" {fN-1 =:~. 
Then 

----,4 ('12", + 1)/I'z~' , 1t-il'~--2-+11.' t~ .. 12,'1
Ret (i, wi) n", ) '11pJ t) '"(N-.z un; f '"",+ m;1Yt. sl-n A, l' (51) 

Note that now AI must be:> 4. 

14 

On substitution of (51) into (46) and (~8) 

~{t}= ~0-t 32:. 1j(12i) !(12,,)~(n/!» (/)'l,t-~){1'Z-<.+4)'12L )t 

12,.",ll,l/'nfS (N-~+rni t '7lpl+/~..,)t 

yatll [I
• 5,''71 f ,N-t-tt1'l.i"lJ7.oI.-un~ -4{' L:. 1i{w.,) ,!?{'1l.,i)~{12;:J) X(52) 

IH'i I n..r, 11;3 

&101...,.1 ) '11.-,: It t /l.. 

(N- 2. -+ J'1Zi + ..not-f -nl').t $/1"/. r VN -2 ..,. m~' -f '7l,,-f ~' ] 

Replacing c;tl. -!l we obtain the variance of the photon num­

ber in the mode (3 

v~ (t) -= VJ(-' + Lj 2:::. "Pi ('nt) P.,( (tn..L ) Pr-- (ll"IfIo) )C 


/)1.. ,on", .",,(, 


[ ( 'l'I..r~.)(~..A)-+ (1YI()-m.(3)("n...t4~nJ'I1.l . ~ o.t1N 'L.. _ .' 
v - Sln JL. -..(,./)'l '-t ... t,q __ 
r .2. ~ ~ :.t ~ 

( t-i-./l. -t rn. -t rn,,,ct Mf!o ) • 

-A6[ L Pi ('h,)~.,( (fl'l.{) 'P~(M~) (Itl..t.-H ),n[, X 
1'It':,'II.",;n1" ( N - ~ -f'mc: -t 'l'I..{"'I)l~i 

X !>~'n~~f~:J."tm,th\.t.ttn~][2:. 11 (~~) 'P.,i(rnoL ) 'PI'(~))(
" 'Ill. )1I'I",'IIl~ 

€YL(bof1/ ) Il'li 
'J. 6~·rn. ~ 1! rN-2 +m.~ -t h\... i m/ ] _ (53)(N-,;t -tll1.i-tm.,/.tntI'Y 

The above formulas can be studied numerically_ But we can still 

simplify them, assumming both signal model initially in the 

vacuum. Then 
(54)7:(')1.oL) ~ ( 1)1.",.) -- c5'.-n..,iO Jm" 0 • 

In this case from (5~) and (27) we" arrive at the parti ­

cularly simple_result: 
A .t
'!t. (i):. - <tl1..,L (t):? :; 


, "Yti. • ~ t I .t(55) 

:: - ~6 [2. 1H'nc:) (N J. )t. ¥tN-.zttn.:] ~ 0SI'I1tnt - +'Yti ov "' • 

IS 



The non-delayed coincidence counting rate 

~(tl(t)::; 1 -+ Y.t (-I;) 	
(56)= azm",JO>R. 

because of one-photon transition at every atomic jump_ 


From eq. (53) we find 


v~ (t) = Vol (t) ~ 0 . (57) 

The equality of these quantities takes place since we 

assummed ~.,( -= 9-(3. 
The result (55) or (56) implies that the signal modes 

generated from the initial vacuum by arbitrary light pumping 
has sub-p'oissonian photon statistics and, hence, exhibit photon 

antibunching for all times t)O. The photons of the signal modes 

manifest moreover anticorrelation for all times (57). The 

quantities (55) and (57) will obviously show a sequence of 

collapse and revivals at coherent pumping. Exactly speaking, 

gto 10 20 30 40 50 

-0.05 
.......... 

+" 
'-' 

;J 
-0.10 

Fig. 2. 	Temporal behaviour of the ~(t) in the signal mode 

produced from the vacuum at coherent pumping: N=4, 

ni =5, 11 ('Yl() ::;: e)<.1' (-'"r1.t ) "r/.;rt.L / IYL;, ! 
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0 10 

I~~A~ 

-Q(X)5 

..-.- ~ I \1 N=10 
'-" 

:;J 

-0.01 

fig. J. 	Time dependence of tl1e ~ (t) in the signal mode 

produced from the vacuum at coherent pumping: N=10, 

iii=5, 'li("'.:):;:. €,l(. p(- in i ) trli'11i / rod 

we deal with two kinds of collapses and revivals with different 

peDPds and maxima what is related to the existence of two 

branches of the Rabi frequency: n and 2n 16). In fact, 

4 sin4{Dt /2) .. 4 sin2{.Qt /2) - sin2J}t , and the maxima of 

the revivals connected with the low-frequency branch will be 

noticeably greater than those of the high-frequenoy branch. 

The greater the number of levels N, the smaller the mean 

number of photons <~."Jl:» and their dispersion <CA-ft.,tCt)i> = 
I: <m.,L{t)[..f -<~(tJ>J {the greater the ~(t», will be 

(figs. 2 and J). 

The authors would like to thank Tran Quang for helpful 

discussions. 
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Ko3epoBCKH M., lliyMoBCKHH A.C. 
CTaTHCTHKa ~OTOHOB B N-ypoaHeBOH 
(N-1)-MO~OBOH CHCTeMe 

El7-87-23 

M3yqeHhl xapaKTepHCT~eCKHe ~yHK~HH, ~YHK~HH pacnpe~e­
neHHH H CTaTHCTHqeCKHe MOMeHThl qHcna ~OTOHOB, a TaK~e 
Me~~YMO~OBhle KoppenH~HH. BbNHCneHa HopManbHO ynopH~OqeH­
HaH BapHa~HH qHcna ~OTOHOB, 

Pa6oTa BbmonHeHa B ITa6opaTopHH TeopeTHqecKOH ~3HKH 
mum. 

llpenpHHT 06'he,llHIU!HHOI'O HHCTHTyTa R,llepHbiX HCcne,llOBBHHH. }zy6Ha 1987 

Kozierowski M., Shumovsky A.S. EI7-87-23 
Photon Statistics in anN-Level (N-1)-Mode System 

The characteristic and photon number distribution 
functions, the statistical moments of photon numbers and 
the correlations of modes are studied. The normally order­
ed variances of the photon numbers and the cross-correla­
tion functions are calculated. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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