

объединенный ииститут
 ядерных исследований
 дубна

E17-87-165

A.S.Shumovsky, Fam Le Kien,
E.I.Aliskenderov

SQUEEZING IN THE MULTIPHOTON
JAYNES-CUMMINGS MODEL

Submitted to "Physics Letters A"

A substantial interest has centered upon the recent experimental observations ${ }^{1-3 /}$ of squeezed field states ${ }^{/ 4 /}$ which present a new nonclassical effect in radiation theory and may have potential application in optical communication and gravitational wave detection. Several schemes for producing squeezed states have been analysed. Among them are parametric amplifiers ${ }^{/ 5,3 /}$, four wave mixing $/ 6.1,2 /$, two-photon interaction with an absorber $17-9 /$, two-photon lasers ${ }^{10-12 /}$, resonance fluorescence ${ }^{13,14 /}$, cooperative Dicke systems and others. On the other hand, the progress in the realization of a single Rydberg atom in a resonant cavity ${ }^{\prime 15 /}$ and the first observation of quantum collapse and revival in a one-atom maser /16/ make now possible testing of the simplest quantum electrodynamic models of one-atom one-mode systems $/ 17 /$. It has been shown that light squeezing is possible in the Jaynes-Cummings model with a coherent cavity field ${ }^{18 /}$ and in the Jaynes-Cummingstype models with special bare-type initial states ${ }^{\prime 19,21 /}$. The magnitudes of squeezing in these systems are however rather small ($\leq 20 \%$ in $^{\prime 18 /}$, $\leq 25 \%$ in $^{\prime 21 /}$ and $\leq 42 \%$ in $^{\prime 19 /}$). Moreover, the squeezing obtained numerically in/18/ appears not at once for $t>0$ but only after some finite interval of interaction time, and the initial conditions for squeezing in ${ }^{\prime 19.121 /}$ are too specific and obviously only of academic interest. The aim of the present paper is to report the results showing that states containing a large amount of squeezing can be obtained from the exactly soluble multiphoton Jaynes-Cummings model with a coherent cavity field.

We consider a two-level atom interacting with a single-mode radiation field in a lossless resonant cavity via the m-photontransition mechanism. The effective Hamiltonian for this system in the rotating wave approximation is
$H=\hbar \omega a^{+} a+\hbar \omega_{0} R^{z}+\hbar g\left(R^{+} a^{m}+R^{-} a^{+m}\right)$,
where ω and $\omega_{0}=m \omega$ are the frequencies of the field and the atom, respectively, g is the multiphoton atom-radiation coupling constant, m is the photon multiple, R^{z}, R^{+}and R^{-}are the atomic pseudospin operators, and a^{+}and a are the creation and annihilation operators of the field.

We denote by $|+>|-,>$ the excited and ground states of the atom and by $\mid n>$ the Fock states of the field. For the atom initially in the ground state $\mid->$ and the field initially in a coherent $|z\rangle$
$\left|z>=\exp \left(-\frac{|z|^{2}}{2}\right) \sum_{n=0}^{\infty} \frac{z^{n}}{\sqrt{n!}}\right| n>$,
the wave function of the total system in the interaction picture: is found from the Hamiltonian (1) to be

$$
\begin{equation*}
\left|\Psi(t)>=\sum_{n=0}^{\infty}\right|-; n>A_{-}^{(n)}(t)+\sum_{n=m}^{\infty} \mid+; n-m>A_{+}^{(n)}(t) \tag{3}
\end{equation*}
$$

where
$A_{-}^{(n)}\left(t^{\prime}\right)=\cos \left(g t \sqrt{\frac{n!}{(n-m)!}}\right)$,
$A_{+}^{(n)}(t)=-i \sin \left(g t \sqrt{\frac{n!}{(n-m)!}}\right)$.

Hence, the mean photion number $<\mathrm{a}^{+} \mathrm{a}>$, the mean photon amplitude $<\mathrm{a}\rangle$ and the mean square photon amplitude $\left\langle\mathrm{a}^{2}\right\rangle$ are easily read

$$
\left\langle\mathrm{a}^{+} \mathrm{a}\right\rangle \equiv \sigma_{\dot{o}}=\overline{\mathrm{n}},-m \sum_{\mathrm{n}=\mathrm{m}}^{\infty} \mathrm{P}_{\mathrm{n}}\left|\mathrm{~A}_{+}^{(\mathrm{n})}\right|^{2},
$$

$$
\begin{aligned}
& e^{i \omega t}<a>\equiv z \sigma_{1}=z\left(\sum_{n=0}^{\infty} P_{n} A_{-}^{(n)} * A_{-}^{(n+1)}+\sum_{n=m}^{\infty} P_{n} A_{+}^{(n)} * A_{+}^{(n+1)} \overline{\sqrt{1-\frac{m}{n+1}}}\right), \\
& \left.e^{2 i \omega t}<a^{2}\right\rangle=
\end{aligned}
$$

$$
\mathrm{e}^{2 i \omega \mathrm{t}}<\mathrm{a}^{2}>\equiv \mathrm{z}^{2} \sigma_{2}=z^{2}\left(\sum_{n=0}^{\infty} P_{n} A_{-}^{(n)} * A_{-}^{(n+2)}+\right.
$$

$$
\begin{equation*}
\left.+\sum_{n=m}^{\infty} P_{n} A_{+}^{(n)} * A_{+}^{(n+2)} \sqrt{\left(1-\frac{m}{n+2}\right)\left(1-\frac{m}{n+1}\right)}\right) \tag{5}
\end{equation*}
$$

Here P_{n} is the Poissonian distribution corresponding to the coherent initial state (2) of the field
$P_{n}=\cdot \exp (-\bar{n}) \bar{n}^{n} / n!$
and $\bar{n}=|\dot{z}|^{2}$ is the dimensionless intensity of the field.

We introduce the two slowly varying Hermitian quadrature components a_{1}, a_{2} of the field, defined by
$a_{1}=\frac{1}{2}\left(a e^{i(\omega t-\theta)}+a^{+} e^{-i(\omega t-\theta)}\right)$,
$\mathrm{a}_{2}=\frac{1}{2 \mathrm{i}}\left(\mathrm{a} \mathrm{e}^{\mathrm{i}(\omega \mathrm{t}-\theta)}-\mathrm{a}^{+-\mathrm{i}(\omega \mathrm{t}-\theta)} \mathrm{e}\right)$,
where θ is a phase angle that may be chosen at will. The condition for squeezing in the quadrature component a_{a} can be written simply as ${ }^{\prime \prime}$
$\mathrm{S}_{a}<0$,
where
$\mathrm{S}_{a}=\frac{\left(\Delta \mathrm{a}_{a}\right)^{2}-\left(\Delta \mathrm{a}_{a}\right)_{c o h}^{2}}{\left(\Delta \mathrm{a}_{a}\right)_{\text {coh }}^{2}}=4\left\langle\left(\mathrm{a}_{a}-\left\langle\mathrm{a}_{a}\right\rangle\right)^{2}\right\rangle-1$.

In terms of the photon operators, we find readily that
$S_{1}=2<\mathrm{a}^{+} \mathrm{a}>+2 \operatorname{Re}<\mathrm{a}^{2} \mathrm{e}^{2 \mathrm{i}(\omega \mathrm{t}-\theta)}>-4\left(\operatorname{Re}<\mathrm{a} \mathrm{e}^{\mathrm{i}(\omega \mathrm{t}-\theta)}>\right)^{2}$,
$\dot{S}_{2}=2<\mathrm{a}^{+} \mathrm{a}>-2 \operatorname{Re}<\mathrm{a}^{2} \mathrm{e}^{2 \mathrm{i}(\omega \mathrm{t}-\theta)}>-4\left(\operatorname{Im}<\mathrm{a} \mathrm{e}^{\mathrm{i}(\omega \mathrm{t}-\theta)}>\right)^{2}$.

It is seen from Eqs. (5) and (10) that the quantities σ_{0}, σ_{1} and σ_{2} are real numbers, and therefore, the optimum choice of θ for squeezing should be $\theta=\phi$, where ϕ is the phase of z, i.e. $z=\bar{n}^{1 / 2} \exp (i \phi)$. Then, Eqs. (10) become
$\mathrm{S}_{1}=2 \sigma_{\mathrm{o}}+2 \overline{\mathrm{n}} \sigma_{2}-4 \overline{\mathrm{n}} \sigma_{1}^{2}$,
$\mathrm{S}_{2}=2 \sigma_{\mathrm{o}}-2 \overline{\mathrm{n}} \sigma_{2}$.
For very short times (gt <<1), we find from Eqs. (1la), (5) and (4) the asymptotic expressions
$S_{1}= \begin{cases}-\frac{1}{3} \bar{n}(g t)^{4} & \text { in the case } m=1, \\ -m(m-1) n^{-m-1}(g t)^{2} & \text { in the cases } m \geq 2,\end{cases}$
These negative expressions indicate the immediate appearance of squeezing in a_{1} for any photon multiple m and arbitrary nonzero intensity \bar{n} after switching on the atom-field interaction.

Such a behaviour is absent in the case when the atom is initially in the excited state ${ }^{/ 18 /}$.

Analogously, the. asymptotic expressions of S_{2} at very short times ($\mathrm{gt} \ll 1$) are found from Eqs. (11b), (5) and (4) to be
$\mathrm{S}_{2} \simeq$

$$
\begin{align*}
& \frac{1}{3} \bar{n}(g t)^{4} \tag{13}\\
& m(m-1)^{-m-1}(g t)^{2}
\end{align*}
$$

in the case $m=1$
in the case $\mathrm{m} \geq 2$.

These positive expressions indicate the lack of squeezing in a_{2} at the beginning of interaction for any photon multiple m and any initial field intensity $\overline{\mathrm{n}}$.

It should be noted that for the particular case $m=1$ the first equation in (13) and the fact that squeezing occurs in a_{1} at the onset of interaction, are in agreement with the results obtained recently by Butler and Drummond $/ 20 /$ for a cooperative Dicke system.

Figs. 1 present the time evolution of S_{1} computed numerica1ly from Eqs. (11), (5) and (4) for various intensities \bar{n} of the coherent initial field and various photon multiplies m. As soon as $t>0$, we observe nonclassical negative values of S_{1}. For the cases $(m=1, \bar{n}=0,2),(m=2, \bar{n}=1.12)$ and ($m=3$ $\mathrm{n}=3$) the maximum magnitudes of squeezing in the region of short times are $S_{1}=-0.28,-0.49$ and -0.57 (i.e. $28 \%, 49 \%$ and 57%), respectively. As time goes on, S_{1} starts oscillating and then reaches positive values. The long-time behaviour of S_{1} is characterized by recoveries of squeezing. The squeering in a_{1} appears, disappears, and later may appear again, see Fig. 1(d). The maximum magnitude of squeezing recovered again (e.g., $=.52 \%$ for $g t=17.28, \bar{n}=1.12, m=2$ see Fig. $1(d)$) may be larger than the maximum magnitude of squeezing in the short-time region ($\sim 49 \%$ for $g t \approx 0.92$). It is seen from the figures that for the larger intensity \bar{n} the duration of the first squeezing is generally shorter (except for the cases when overlapping of the first and second squeezing regions occurs).

In Figs. 2(a) and 2(b), we plot S_{2} versus time gt for the cases $(m=1, \bar{n}=0.2)$ and ($m=2, \bar{n}=5$). It is clear from the figures that squeezing may also occur in the field component a_{2}. The delay of squeezing in a_{2} for the cases examined here is seen.

To conclude briefly, we have obtained squeezing states in the exactly soluble multiphoton Jaynes-Cummings model, where the atom is initially in the ground state and the fields are

Figs.1. Time evolution of S_{1}. (a) $\mathrm{m}=1$, short times: $\mathrm{gt}<5$. Here, the maximum magnitude $\mathrm{S}_{1} \approx-0.28$ of the first squeering occurs for $\overline{\mathrm{n}}=0.2$ at $\mathrm{gt} \simeq 2.75$. (b) $\mathrm{m}=2$, short times $\mathrm{gt}<2$. The maximum magnitude $S_{1}=-0.49$ of the first squeezing occurs for $\bar{n} \simeq 1.12$ at $\mathrm{gt}=0.92$. (c) $\mathrm{m}=3$, short times $\mathrm{gt}<1.2$. The maximum magnitude $\mathrm{S}_{1}=-0.57$ of the first squeezing occurs for $\overline{\mathrm{n}}=3$ at $\mathrm{gt}=0.27$. (d) Long times: gt <20. The full line corresponds to the case $m=1$, $\overline{\mathrm{n}}=0.2$. The dashed line corresponds to the case $\mathrm{m}=$ $=2, \overline{\mathrm{n}}=1.12$. The Large magnitutes of squeezing: $\mathrm{S}_{1} \simeq$ $=-0.31$ for $m=1, \quad \overline{\mathrm{n}}=0.2, \mathrm{gt}=19.65$ and $\mathrm{S}_{1}=$ $=-0.52$ for $m=2, \bar{n}=1.12, \mathrm{gt}=17.28$ are obtained.

REFERENCES

1. Slusher R.E., Hollberg L.W., Yurke B., Mertz J.C., Val-ley-J.F. Phys.Rev.Lett., 1985, 55, 2409.
2. Shelby R.M., Levenson M.D., Perlmutter S.H., Devoe R.G., Wa1ls D.F. Phys.Rev.Lett., 1986, 57, 691.
3. Ling An Wu, Kimble H.J., Hall J.L., Huifa Wu. Phys.Rev. Lett., 1986, 57, 2520.
4. Walls D.W. Nature, 1983, 306, 141.
5. Collett M.J., Walls D.F. Phys.Rev., 1985, A32, 2887.
6. Klauder J.R., McCall S.L., Yurke B. Phys.Rev., 1986, A33, 3204.
7. Mandel L. Opt.Commun., 1982, 42, 437.
8. Hillery M.H., Zubairy M.S., Wodkiewicz K. Phys.Lett., 1984 , Al03, 259.
9. Loudon R. Opt. Commun., 1984, 49, 67.
10. Yuen H. P. Phys.Rev., 1976, A13, 2226.
11.Lugiato L.A., Strini G. Opt.Commun., 1982, 41, 374.
11. Reid M.D., Walls D.F. Phys.Rev., 1983, A28, 332.
12. Walls D.F., Zoller P. Phys.Rev.Lett., 1981, 47, 709.
13. Lakshmi P.A., Agarwall G.S. Phys.Rev., 1984, A29, 2260.
14. Haroche S., Raimond J.M. Adv.Atom.Mol.Phys., 1985, 20, 347. Eds. D.R.Bates and B.Bederson (Academic Press, New York) 1985.
15. Rempe G., Walther H., Klein N. Phys.Rev.Lett., to be published.
16. Yoo H.I., Eberly J.H. Phys.Rep., 1985, 118, 239.
17. Meystre P., Zubairy M.S. Phys.Lett., 1982, 89A, 390.
18. Compagno G., Peng J.S., Persico F. Opt.Commun., 1986, 57, 415.
19. Butler M., Drummond P.D. Opt.Act., 1986, 33, 1.
20. Knight P.L. Physica Scripta T12, 1986, 51.

WILL YOU FILL BLANK SPACES IN YOUR LIBRARY?
You can receive by post the books listed below. Prices - in US 8. including the packing and registered postage
D11-83-511 Proceedings of the Conference on Systems and Techniques of Analitical Computing and Their

Applications in Theoretical Physics. Dubna, 1982. 9.50
D7-83-644 Proceedings of the International School-Seminar on Heavy Ion Physics. Alushta, 1983.
D2,13-83-689 $\begin{aligned} & \text { Proceedings of the Workshop on Radiation Problems } \\ & \text { and Gravitational Wave Detection. Dubna, 1983. }\end{aligned}$.
D13-84-63 Proceedings of the XI International Symposium on Nuclear Electronics. Bratislava, Czechoslovakia, 1983.
$\begin{array}{ll}\text { E1,2-84-160 } & \begin{array}{l}\text { Proceedings of the } 1983 \text { JINR-CERN School } \\ \text { of Physics. Tabor, Czechoslovakia, } 1983 .\end{array}\end{array}$ 6.50
D2-84-366 Proceedings of the VII International Conference On the Problems of Quantum Field Theory. 11.00
D1,2-84-599 Proceedings of the VII International Seminar on Bigh Energy Physics Problems. Oubna, 1984.
017-84-850 Proceedings of the 111 International Symposium Dubna, 1984. 12 volumes $/$. 22.50
D10,11-84-818 Proceedings of the V International Meeting on Problems of Mathematical Simulation, Progranming and Mathematical Methods

 for Solving the Physical Problems,
 Dubna, 1983 7.50
Proceedings of the IX All-Union Conferenceon Charged Particle Accelerators.Dubna, 1984. 2 volumes.25.00
D4-85-851 Proceedings on the International School on Nuclear Structure. Alushta, 1985. 11.00
D11-85-791 Proceedings of the International Conference on Computer Algebra and lits Applications in Theoretical Physics. Dubna, 1985. 12.00
D13-85-793 Proceedings of the XII International Symposium
on Nuclear Electronics. Dubna, 1985 14.00
D3,4,17-86-747 Proceedings on the V International School on Neutron Physics. Alushta, 1986. 25.00

Orders for the above-mentioned books can be sent at the address: Publishing Department, JINRHead Post Office, P.O.Box 79 101000 Noscow, USSR

Шумовский А.С., Фам Ле Киен,
Алискендеров Э.И.
Сжатие света в многофотонной модели
Джейнса - Каммингса
Исследовано сжатие света в многофотонной модели Джейнса - Каммингса.

Работа выполнена в Лаборатории теоретической физнки ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1987

Shumovsky A.S., Fam Le Kien,
E17-87-165
Aliskenderov E.I.
Squeezing in the Multiphoton
Jaynes-Cummings Model
Squeezing in the exactly soluble multiphoton Jaynes-Cummings model is examined.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

