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A substantial interest has eentered upon the reeent experi­
mental observations/ l - S / of squeezed field states /4/ whi ch pre­
sent a new nonelassieal effeet in radiation theory and may ha­
ve potential applieation in optieal eommunieation and gravita­
tional wave deteetion. Several sehemes for produeing squeezed' 
states have been analysed. Among them are parametrie amplifi ­
ers /5.31 , four wave mixing /6.1.2/ , two-photon interaetion 
with an absorber /7-9/ , two-pho t on lasers /10 -12/, resonanee 
fluoreseenee /13,14/ , eooperative Dieke systems and others. On 
the other hand, the progres~ in the realization of a single 
Rydberg atom in a resonant eavi ty /15/ and the first observa­
tion of quantum eollapse and revival in a one-atom maser /16/ 
make now possible testing of the simplest quantum eleetrodyna­
mie models of one-atom one-mode systems/ 17 / . It has been shown 
that light squeezing is possible in the Jaynes-Cummings model 
with a eoherent eavity fie~d/ffi/ and in the Jaynes-Cummings­
type models with spee1al bare-type initial states'19.21/. The 
magnitudes of squeezing in these systems are however rather 
small (~20%' in /18/, s: 25% in /211 and :{.' 42% in /19/). Moreover, 
the squeezing obtained númerieally in/~/ appears not at onee 
for t > O but only after some finite interval of interaetion 
time, and the initial eonditions f~r squeezing in/19.•211 are 
toe speeifie ând obviously only of aeademie interest. The aim 
of the present paper is to report the results showing that sta­
tes eontaining a large amount of squeezing ean be obtained 
from the exaetly soluble multiphoton Jaynes-Curnmings model 
with a eoherent eavity field. 

We eonsider a two-level atom interaeting with a single-mode 
radiation field in a lossless resonant eavity via .the m-photon­
transition meehanism. The effeetive Hamiltonian for this sys­
tem in the rotating wave approximation is 

H = iicua+a + 1ícu R Z + 1i g ( R+a m + R- a+m ) , (1)
o 

where cu and cuo=mcu are the frequeneies of the fie\d and the 
atom, respeetively, g s the mul t i.pho t on atom-radiation coup-:í 

ling eonstant, m is the photon multiple, RZ , R+ and R-are the 
atomie pseudospin operators, and a+ and a are the ereation and 
annihilation operators of the field. 
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We introduce the two slowly varying Hermitian quadrature 
atom and by In> the Fo ck states of the field. For the atom 

We denote by 11- >., I":'" > the excited and ground states of the 
components al'a2of the field, defined by
 

initially in the ground state [-> and the field initially in
 1 ( i(ú>t-8) + -i(ú> t-8) )a coherent [z .» , ai = '2 ae + a e , 

I z /2 znoe 1 i(ú>t-8 ) + -i (ú> t-8 ) (7 ) I z >. == exp ( - -) 2 -In> a 2 == 2T(ae - a e ) • 
2 n==o V~ , (2) 

where 8 is a phase angle that may be chosen at will. The con­the wave function of the total system in the interaction pic­

tur~ is found from the Hamiltonian (I) to be
 dition for squeezing in the quadrature component aa can be r'I'r written simply as /4/ 

1 'P(t»· (n ) 00 (n)~ 1-:-;n>A_(t) + 2 1+;n-m>A+ (t), Sa < O, (8) 
n == o n= m (3}
 

where
 where 
) 2 ( ô aa )2 - (ô aa coh 

2A~) (f) n' S = :z 4 < ( a a - < aci » > Lcos (gt V . ) , (9)a (ôa ) coh (n - m)! (4a) a 

A(n)(t) In terms of the photon operators, we find readily that+ - i sin (g t vi' n ! ) • 
(4b)(n - m)! 

Si = 2<a+a> + 2Re <a2e 2i(ú>t- 8 ) ;; _4{Re<aei (w t - 8 ) »2, 

Hence, the 'mean phóton number <a+a >, the mean photon ampli­ (lO)
tude <a>and the mean squars photon amplitude <a 2> are easily '+ 2 2 i (ú> t - 8) i (w t - 8) 2
derived to re~d S2 == 2 <a a > - 2Re < a e > - 4( Im < ae » • 

It is seen from Eqs.(5) and (10) that the quantities ao , ai-( a+a > U· 

oe 

o n. - m ~ P IA (n ) , 2 and a2 are real numbers, and therefore, the optimum choice of 
8 for squeezing should be 8 == cP , where ep is the phase of z', 

n==m n + . , 

i. e. Z == li Vz exp(iep}. Then, Eqs , (10) become
 
kut = _ (~ P A(n) *.Acn+ 1) ~ P A(n) * ln+1)
e <a> - Za1 - Z 40 _ _ -+- 40 n + n+ _ _ 2 

n==o n n==m VI _ m) 
S1 = '2ao + 2 n a 2 - 4 n a 1 ' (lIa)n + 1 " 

2iú>t 2 2 2( (n ) (n+2)DO 

S2 = 2ao - 2na2 • (11 b ) e < a > :== Z a2· == z , ~ P A_ * A_ + 
' n == o n 

(5) 
For very short times (gt« 1), we find from Eqs , (11 a), (5)

+ 1 p A(~) * A(nH) vÜ _----l!!..-) (l __m_)).n and (4) the asymptotic expressions
n==m + + n+2 n+l
 

1 ­--n(gt)4 in the case m = 1, 
S = 3 ,(12)Here Pn is the Poissonian distributí'on corresponding to the 

coherent initial state (2) of the field 1 { -m(m _ 1)n m- 1 (gt)2 in the cases m ~ 2" 
- - n These negative expressions indicate the immediate appearance 

of s queez i ng in a1 for any photon multiple mand 'arb t rary norr­
Pn == • e xp (- n ) n ! n! 

í(6 )
2 zero intensity n after switchingon the atom-field intef'action.and li = I Z1 is the dimensionless intensity of the field. 
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Such a'behaviour is absent in the case when the atom is initi ­
ally in the exci ted s tate 1181 • o 

-01Analogously, the.asYTIlptotic expressions of 82 at very short 
times (gt« 1) are found from Eqs . (J l b), (5) ando (4) to be	 v) 

-0.1 

...!.n(gt)4 in the case rn 
8 ~ (13 ) - 0.2 2
 

{ :(m-l)Õ m- 1 (gt)2 ln the case m ~ 2.
 
m=2-Q61	 , , ,. 

~	 , m=1 r "O 0.4' 0.8 1.2 1.6 2.0 

2 3 5 9t - ­" These positive expressions indicate the lack of squeezing (bJ
in a2 at the beginning of interaction for any photon multiple (aJ 
m and any initial field intensity TI • 

It should be noted that for the particular case rn = 1 the 
first equation in (13) and the fact that squeezing occurs in 

0.4 
ai at the onsct of interaction, are in agreernent with the re~ 0.3 
sults obtained recently by Butler and Drummond / 20 1 for a coope­

0.2
rative Dicke systern. . 

Figs. 1 present the time evolution of 8 1 computed numer i ca I> 0.1 

0.1 i i i I •ly from Eqs. (11), (5) and (4) for various intensities ri of the 

0.2 0.4 0.6 0.8 1.0 1.2 

o 
-0.1 

_ o 

coherent initial field and various photon· multiplies m . As 
soon as t > O, we observe nonclassicál negative vaiues of 8 1 • 

For the cases (m = 1, n = 0,2), (m = 2, n = 1. 12) and (rn = 3, 
n = 3) the maximum magnitudes of squeezing in the region of 
short times are 8 1 ~ -0.28, -0.49 and -0.57 (i.e. 28%, 49% and 
57%), respectively. As time goes on, 8 1 starts oscillating 

-0.6and then reaches positive values. The lqng-time behaviour of o 4 8 12 16 20
8 1 is characterized by recoveries of sgueezing. The squee?ing gl- 9t­

in ai appears, disappears, and later may appear again, see (ç1J(c)Fig. I(d). The maxirnum magnitude of squeezing recovered again 
(e i g, , ~ .52% flor g t ~ 17.28, ri = 1.12, m = 2 see Fig. 1(d)) 
may be larger than the maximum magnitude of squeezing in the Figs.l. Time evolution of 8 1 , (a) m=· 1~ short times: 
short-time region (~ 49% for gt~ 0.92). It is seen from the g t < 5. Here, the maieimum magnitude 8 1 .. -0.28 of the 
figures that for the larger intensity n the duration of the first equeeni.nq occure for ri ~ 0.2 at g t ~ 2.75. 
first squeezing is generally shorter (except for the cases , Cb ) m z: 2~ ehox-t: times gt < 2. The maxirrrwn magnitude 
when overlapping of the first and second squeezing regions oc­ 8 1 ~ -0.49 of the first equeeei.nq occune for n =: 1. 12 
cur s ) . at gt ::: 0.92. (c) m:= 3~ ehovt: times gt < 1.2. 

In Figs. 2 (a) and 2 (b), we plot 82 versus time gt for The maxirrrwn magnitude 8 1 = -V.57 of the first squee­
the cases (m = I, n = 0.2) and (m = 2, n = 5). It is clear zing occure for li =: 3 at g t == 0.27. Cd) Long times: 
from the figures that squeezing may also occur in the field /' g t < 20. The full line coxrreeponde to the case m:= 1~ 

component a 2 • The delay of squeezing in a for the ca se.s	 n := 0.2. The dashed line corresponds to the case m:=
2 

examined here is seen.	 z: 2~ n z: 1.12. The Larqe magnitudes of squeezing: 8 1 =:\}

To c"Onclude briefly, we have obtained squeezing states in :::: - 0.31 for m:= 1~ n:= 0.2~ gt ~ 19.65 and 81 == 

the exactly soluble rnultiphoton Jaynes-Curnrnings model, where -0.52 for m:= 2~ n:= 1.12~ gt :::: 17.28 are ob­
the atom is initially in the 3round state and the fields are t.ained. 
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