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I, Introduction

In recent years, a large amount of theoretical (Walls 1983,
and refs. cited there) and experimental (Siusher et al. 1985,
Ling-An Wu et al. 1986) works are concentrated on the problem of
generation of squeezed light characterizing by thatlits nolse
in a one electric—field quadrature 1s less than that of a coherent
state. A possible application of one mode (Caves 1983) and
two modes (Bondurant and Shapiro 1984) squeezed light in t he
detection of gravity waves it discussed.

The squeezing in the resonance fluorescence field for a
one-atom case {(Mandel 1982, Walls and Zoller 1981, Loudon 1984,
Collet et al., 1984) and a multiatom case (Lakshmi and Agarwal
1984, Fioek et al. 1984, Bogolubov et al. 1986) has been an
objeot of investigation. In our previous work (Bogolubov et al.
1987) we have shown that a substantial squsezing is present in
some mixtures of the fluorescent spectral band from a oolleotive
double resonant proosss for the case of intense external fields
when squeezing is absent for separate speotral bands. In this
work we wish to give a spectral analysis for our previous work
(Bogolubov et al. 1987). We also discuss a posalble gxperimental
scheme with the use of the Fabry-Ferot filters for an cbserva-
tion of the spectral squeezing and show a condition to receive

nearly perfect squeezing.
11, Basic equations

We consider a system of N three-level atoms of the Dicke

model (fig.l) interacting with two external filelds E: ’ E:
with frequencies <L, , 1, and with an emitted field. The
external fields E: and E; are assumed to be intense and can
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@3 13> pig. 1. Three-level atoms interscting
f; S\;(’b with two monochromatic external fields
w, 12> and an emitted field.
9 |
Ly (R
i
be treated classically. For simplicity the external field €
is assumed to be 1n resonance with the level separation
iy
Wy~ W, = @y, and the fielda &, 1s assumed to be in~
resonance with €, . = &) h=4) . After Agarwal (1974),

using the Markovisn and rotating-wave approximation, one can

find the master equatlon for the atomlc system
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where € 1s the atomic density matrix, .&B’a and 27, are
radiative spontaneous transition probabilitlies per unit time for
a single atom to change from level i2>to |1 and from [3) to
[ 2>, respectively, G = (Gu ffi”') "% and fgd zG“'/ g
where ﬁu and &,L are the Rabi frequencles for the atomlo
transitions 2> —> | 1D>and | 3>—>)2), respectively, J'u

(k,& = 1,2,3) are the collective angular momenta of the atoms
which havé the following form in the Schwinger representation
(Sonwinger 1965)

+
Jee = S (k= 1,2,3),

+
where the operators Cb and ('b obey the boson commutation

relation

and can be treated as the annihillatlon and creation operators
for the atoms populating the level |k > .
Further we investigate only the case of the intense

external fields when the following relation is fulfilled

(2)
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After the canonical transformation
~ih . -4 .
€ = -2 Sina Q + cosd Qp + 2 " sind Qy )
-, -4
CL H 2 Q1 + 2 Qa ’

i . -1/
, =- 1 Cosd @ -Sind @ + 4 cosd Qg

and using the secular approximation (Agarwal et al, 1978,
Bogolubov et al. 1985),1i.e.,, ignoring the part of the Liouville
operator L  contalning rapidly oscillating terms with frequen-
cies MG (n=1,2,3,4), one can find a statlionary solution of the
master equation in the form (Bogolubov et al. 1985)

$=F E X Z P M><M, P » (4)
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where
1= ¥,cosu /% sin “x ,
2= [one)x™ % cnenx™ 1] Jx-n®

- +
2=USU with U being a unitary operator representing
the canonical transformation (3) ; [P, M D>, an eigenstate of the
operators R =R, + R R and of the operator
14 * Tay T P
of the total number of atoms, N« R, 4+ R, 4 R” where
*

Roe= Q@ (k €=1,2,3) are the collective angular

momenta of "dressed™ atoms. The operators Gk, , Q: satisfy

the boson commutation relation
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Applying the stationary density matrix (4) one calculates the
statistical moments
- Ned
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where {***< > indicates the mean value in the statiomary state

Now we calculate the "dressed™ atomic correlation functions
CRGEIR, (0D, (R (TIR,(0)D , (R (0)Ry, (x>) and
¢ Rl{(°) R‘zﬁt)>* which are useful for a subsequent calculation
of the spesctrum of squeezing.

By applying the guantum fluotuation regression theorem
(Lax 1968) and the secular approximatiocn one finds the equations

for "dressed® atomio correlation functions take the form
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After Bompagno and Persico (1982) we factorize
{I.tT) ﬂuttJig‘(o)} = (L) 4R, (D R“(o)> ’
4 r_’(t)ﬁu('r)ilu(o)>= (L>-< Kz‘m Ra.z(°)> , (15)
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Using the stationary solution (4) it 1s easy to show that in the
case of a large number of atoms the factorization (15) gives a
smaller error with higher order than N’K in the calculation of
the steady-state spectrum, By applying the factorizatlon (15)'

equations (9-12) yield the"dressed’ztomic correlation functions
in the form
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The values <4 > and < I. > are the spectral widths of the
spectrun bands centered at frequenoles JL, T & and f,%t&
respectively (Bogolubov et al 1985) . As is easily seen from the
relatlons (13-14), in the case of ¥ = 4 the spectral widths
{05 and <. > are the same as in the single-atom spectrum, For
the case of X #*4 and a large number of atoms N the spect—
ral widths {{, > and { {. > are proportional to N  and are
approximately equal, With the use of the commutation relations
(5-6) the statistical moments L “> and { xa> can be

written in the form
(R Ry > = < RygRyu> = wsa)eRS - £<R*S & ()

Y = 4o - 4R
SRRy >=<RyyRy > = g (KRS - <RS0 e

where the quantities <R> and ¢ R") can be found in (7-8).

111, Spectrum of sgueezing in fluorescent fields

In this seotion we diécuss the squeesing in the fluorescent
field in the colleotive double resonant process and give a
speotral plcture of sgueezing. In the radiation zone, the posi
tive frequency parts of the electrioc fields E:%if) and

E(n -

b (a:., t) y corresponding to the lower and upper atomis
transition |2%-»|1> and |3 to }2) have the form (Mandel
1982, Walls and Zoller 1981, Collet et al 1984)

Bt = E (zt)+ LT, (4= ).

a a, fre
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(20)
.exp [-in, (t-2af)]

. e d -
where i}fa(x.) and *{',(x) are geometrical factors, X

is the veotor of the observatiom point, A4 = lﬂ?} .
With the use of the canonical tranaformation (3) the atomio-
o0llective angular momenta Iu(ﬁ and Jz (t) have the structure
t
4 { UG
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where Dag Ras“aﬁ = R'zR“ 1
-~ aiat ~ Ty ¥
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- * -~ ..'a
Ry ()= R, ) et R, (&)= R ()e” ,
cat
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In the seoular approximation Rkt £y (k,€=1,2,3) are slowly
varying "dressed™ atomic operators.

In subsequent calculations we drop out the free parts E:) (5:'1#) ‘

E:}r‘fgc #) in relations (19-20) which do not affect the no’rmf:fley

ordered variance of fluorescent fields E:‘(C.E,t) and Et ,(i 1.
For the stationary limit the delayed time contribution has been
also ignored (Cresser 1983, Collet et al 1984),

After the works (Aspect et al 1980, Apanasevich et al 1979,

Bogolubov et al 1985) we can consider the operators
~dcosa R, (8), -4 sina R (8 Leosa D (2),. L sinat R (1)
T 1 T g 1371 30 4

and »;'-Coset RM (#) as amplitude operators for the sources of the

spectrum bands centered at the frequenciles ﬂ.‘-zé,ﬂ.‘_a,ﬁ? » .n.‘.;&

and ft,+2G ; and for simplioity we denote these operators



by L,z I Ly, L, and ’-1‘ s respectively. Analogously, the
3 ~ 1. —- -
operators - 4 sinmol Ry (£), & cosd R, (2}, % sénod By (4)
L -~
i cosd Rutn
de~operators for the sources of the speotrum bands centered at the

frequencies

) Y

and for simplicity we denote these gperators (.I_'z P -1 LY, v,

and U,' sy respectively.

In the case of intense external fields when condition (2)
13 fulfilled, it 1s easy to show {Bogolubov et al. 1987) that
squeezing 18 absent for all separate spectral bands L& and
U“ (k= 0,:1, xz). for the whole fluorescent fields ocorresponding

to the lower and upper atomic transitions. The squeezing exists

only in the mixture of two spectrum bands L., and U_,1 or L__’

and Ui ; moregver, the degree of sgqueezing in the mixtured L,

and U, and in the mixture of L_1 and U, 1s the same.

and fsc‘nd Ra‘(t) oan be considered as amplitu-

Ny -26G,0,-6G, a,, 2, +G and £, +2G

Purther, we analyse a spectral picture of squeezing in the

mixture of two speotrum bands Ly and U, Cor L.1 and Y, )-

With the uss of the relations (19-22) and the secular approxima-

(), -
tion one finds the Fourier transform of the field E (x, 1)

at a frequency ¥ located near 4L, ~ G and field E"cé’#)

at a frequency )”' located near .0.4-;& in the form

E¥% -G8 )= - Ls¢ ()R
a (% 1~G+‘)-——;_—£$¢ﬂ¢( Y “(’E,) )

(23)

Ey'(%, N 06-8)= Leosa v @)K (&),

where

51“’,"“«“‘):5;‘“;*““9; .

~ -
The mixture of the two freguency components E;”(x, %)

E("f!

and % ) 1s defined as

~, ~ baed -y

By e.)s L [E]'(K, 0,648 + E(X, 2y46-6)],
ol ool M pod S

[ES %, 0-646)+ E (%, 0y06-6)] -

After Collet et al.(1984) the quadrature phase com-
gti’ s

ponents for the mixture & e") arg defined as?

{é -id

{g’(k’esw E T, £,8)€ (a0

2 477

o~

="
E, (x.€.8)

ol

which for #30 and ?= -! colnoide with the in-phase

-
( E_'Cx , € Y ) and out-phase ( E (9:, £.§) ) components,
respeotively. By using the stationary atomic correlation

functions (16) one finds

4 KL
<R (e)R(6)) = 6(£,-8,). <R, RS - P Y )

- - ) 240>
SRy (IR, (€)) = 6¢g,-£, <R, 8, > - —= =2 .

E,” 4 <l >z (26)

The ncrmally grdered variance of the quadrature phase‘oomponent
E' (51,?1) can be found using the relations (23-24) and
(25-26)

o 2
<: (BE,(E,E)):> = &(g-£). S,(E) (27)

2

with

Se(8) = £ (¥ sind - cosavsin.cosa (), Y,) )

-S> (28)

. <R > " 3+ L (¥ cosH -
12 %24 PIIRTES 3(5
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——————— >
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17
- cos 28.5tndd.cosd (%) 9.



where we identify S, (£ ) with the phase sensitlive normally
ordered spectrum of the operator g’, (g, & ) -

In relations (27-28) y for simplicity, we have dropped the
argument :i:" (the position of the detector). Moreover, we
have followed the usual convention and bave renormalised the
oorrelation functions to the total flux (Mandel 1982, Collet
et al. 1984) . The integration of the speotrum S, (€ ) over
all frequencies gives the following expression for the normally

ordered varlance of mixture of two speotrum bands Ly

and U_, (or L., ang U,) :
. LA Yy %
:(aE,): > = ;xa si7 <RuR“> +

1

+ 4 Y cos" LR Ry D> - L Cos 20 (2, 0)

Sind.cosd (<R R, > +<R R, >) )

thus, squeezing in the mixture of two spectrum bands Ly

and U_,,' in agreement with the work by Bogolubovy et al. (1987).
In fig.2, the spectrum §(§7 (i.e. when 4=0 ) is plot-

ted as a function of & /#¥, for the case of Cig’«"l =0,8

and 3;/{

point 5’ =0 , i.e., when the two frequency components
g;‘)’,)and ‘E”:“(% ) are looated at the freguenoles SRT

L]

1 . the peak degree of squeezing ocgcurs at the

and .ﬂ-‘-ﬁ (or 41, -6 and 2, +G& ), respeotively. The
peak sgueezing S‘ {8, = 0) a8 a funotion of the parameter
Cfg‘ol for the ocase of ¥, /¥, = 4 (solid ourves) and
¥ /);: 1.8 (dashed curves) is plotted in f£ig.3. For the
case of X = 4 we have
<Ry Ry >z dRy Ry > and
as a result, Sy (t, )2 © , thus squeezing is absent 1in this

10

SED Fige. 2. Spectrum Sj (51) a8 a functlon
-02 -Gt o310 Al 02 2 =
2L tr of E¢/Nx, for the case of cig(
-G08 - =0,.,8, ﬂ/fwn Te

Pige. 3+ Peak of spectral squeezing
$4(£4:0) as a function of the para-
meter ctglx for the case ofyp [y, ={
{solid curves) and ‘g'é/rmz 1.8 {dashed
curves).

-005

015

-0.25]

oase (see fig.3). ‘Squeezing is also absent for the case of X=o0
and X-» > , As is seen from figs. 2-), a large squeezing
coours, and for the case of X<4 and N>> {1 the squeeming
tends to a limited value S5, =-0,25 (Perfect squeezing). We
note that though the degree of squeezing for the mixture of two
frequency components g‘; ’( “U,+G) and E:H(n,t -G

EZ’(&,-G) and E:"(-n.:éG) ) is large and nearly

perfect sgueezing 1s possible, as mentioned above, the squee-

(or

zing is absence for any separate spectrum bands Lk » U&

(k=0,+1, +2) and any separate frequency components.

1V, Physical speotrum of sgueezing

In this seotion we discuss a possible experimental scheme
using the Pabry-Perot frequency analysers, We investigate the
squeezing  the mixture of two fields E;:fi) and E:Lt’i)
frequency~filtered from fluorescent fields by two 1denti'ca.l
(with-ut losses) Fabry-Perot analysers which have the filter

frequencies equal to

11



$ o)
W= N,-6-8 , w = N,+6+8 (29)
) @)
(oxr W = My+6-6 , W= Ny.G+8

After the works (Cresser 1983, Collet et al 1974) the fields
{4 e
€ ¢¢) ana FE"' (2 1
ra » b( ) can be written as

’

+ . -4 2
) gt (220, P
E (8¢)= T2y € . E et de
na ) __S’, 1 ) a ¢ (30)

+
;,'(A.,-G-ff,)t,u Nc*)
:5e - LUg+8).E (A, a.5) dg

— P
+ 2= . o) ]
C 2] —eC, (-2 4
E ) B ‘ b [§ ’ 4
,}.,“ r—ri:&(t the E, (t)d# =
+ a0 B
Ip(n;'ﬁa’-e‘t)t“" ol 24
=( e I, (848 )E (a +6-g)dg
-
where v
2, “fa T
LTy = cr) (ar, )" e v
Y A
3, (v = ecz)(.zt;)"‘.e B
with [, I veing the filter bandwidths; and 5’; (€ +8)
and 5‘; (€, +8), the Fourier transforms of J"‘ e )

and J;(t) y respectively,

We define an electric field operator with phase @
(42 )
or the mixture of E  (¢) ana F %
5 a D,b( ) as (24)

: 3] 13 2 - iy
E, (%) = -Z-{Em(«f,t)e + E;D’(d‘,t)e ‘ ] >

where
(L2 ¥ ) o)
852)= = .y £
E,51) = & [ ELa(82) o %rcf,z)} ,
e 3
i = e
E o (5.8 = = [ EMM, £, EM(&,:)]
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With the use of relatioms (23), (25-26), and (30-31) one finds
the normally ordered variance for the quadrature phase compow
nent E (&8,#) in the form

-

= < . 4 L
s“{&r)- <: (8E ) >= 1 (¥, cos"

"
- cos 28. sinat.cos(N%) )- <Ky B> Lc&r)s

(32)
L]
+ (Y sind -cos26. sind. cosd . (X, X)) D <Ry RS-
. L- cé‘, r)
where

+ 0
rr-¢<n>de
L&y = 4§ Y PR S
S (K SENN(rT (548)7)

+2
“"S r.<r.> dg,
n

L_ (éir) =
(<SS eM(r® (848)%)

-
Here for aimplicity two filter bandwidhts are assumed to be
:(!Hoﬁ&)t

equa.lf':fb:f' and ¢

a is chosen to be equal

to unity. The quantity S&'(J’ F) descrives the squeszing

in the quadrature phase component E0 ¢§) and can be considered
as a physical gpectrum of squeezing in the mixture of the two
spectrum bands L, and U., (or L, anda U, ). The peak

squesging occurs for the omse of &= O and has the form

Sb‘(!‘, d:0) =z % (’a; s _ cos28. sind. cosd .(x;x,)%).
(33

% <R, R,D>
.. COS2S. Sind.cosd . (¥ ) )___l_z_c__ .
Fa+<r_>»
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It 18 easy to see from the relation (33) that in the limit
case when § << (f;) , € [_ > the peak squeezing 5”' {F,Sz o)
coincides with the peak squeezing S' (€ =0) 1in the relation
(28); and in this case the squeszing tends tc a limit value
5'1, = 1/4 (Parfect squeszing) when X <4  and the
number of atoms is large.
In the case of "= <M, >, <[> the quantity 5c’zt;o=o)
describes the squeezing of the mixture of two spectral bands
Ly anda U Cor L, and U, ) and cen reach the value
-1/8 (50 per cent of squeezing), thus a meximum squeezing
is in agreement with our previous work (Bogolubov et al. 1986),
To oonclude, we néte that in our case the collective effects
increass the degree of squeeszing (see figs. 2-3), and the
desoribed scheme can be used as a possible experimental scheme

to observe speotral squeezing with a large degree of squeezing.
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Spectrum of Squeezing in Collective Double
Optical Resonance

The spectral squeezing in a fluorescent field of col-
lective double resonant process is investigated. A possib-
le experimental scheme with the use of the Fabry-Perot
filters for observation of spectral squeezing is also
discussed. The condition for a nearly perfect squeezing
is shown.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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