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1. INTRODUCTION

In this paper we consider discrete stochastic mappings which
appear when one studies the one-dimenslonal Ising chain in a (frozen)
random external magnetic fileld,

N N
, 1,1)
H=-1) 55 —Zﬁs S, =*4 s =0 J=0 Q.
fn .
N Ny hnoneq et no n 3 N+4 »
These mappings are originated,e.g., from the reduction of the problem
of calculating the partition function for N spins in the external
field {fl }mdto the equivalent problem of only one spin in some
auxiliary {10cal) random field governed by a probablility distribu~
tion depending on the probability distribution of the external field
as well as on the parameters of the systenm.
To demonstrate the main idea, we explain how the partition

function of the Ising chain (1.1) can be calculated. According to
the identity X

Z exp (J snsn+4+gnsn) =exph [A (gn)3n+4+ B(gn)] , (1.2)

Sn:-i 4

-4
where ﬁ>=.(k;r) » T beeing the temperature, and

A(e)=(p) tn [chp (g, 3)/chp(E,-T)] | (1.3
B(,)=(p) tn [4chp(E +DechpED] o

the partition function ZZN can be summed up step by step starting
from the site R = 1, In the (N—1)~th step the partition function
is obtained as

* Galam and Salinas /17

formula (4)),

are incorrect at this point (see their

, ,xonaﬂsl
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Z=> expple,s,+Z Bk . (1.5)

N n=A
S =14

Thus, the partition function of the whole system is reduced to that

for one spin 1n the auxiliary field &Ie which is defined by the

recursion formula

€n=ﬁn+A(£n D= fH Eny), B =0 ,n=12,. N 1.8

If {iln}néqis a random field, then (1.6) is nothing but a stoohastlc
equation (disorete stochastic mapping) which is the main object
of our investigation, and the main prodlem is to find the density

Pn(®)  of the probdability measure S (o) of the auxiliary
random field £, or its weak limits {m] for N-» oo

This probability density is useful for calculating physical

observables. For example, from (1.5) we cbtaln the free energy
density in the thermodynamic limit

N-1
§(9)=—&m (%Z B(En)+(§N54€n20ﬁﬁE~)= .7

mlim [, [0 BE = - J p(d=) B

N ~»oc

These equalities suppose some ergodic properties of the random
sequence {an}nad and convergence of j&nﬁix) to the stationary
measure M(dx) and hold with m-Pr = 1, e.g.,the second term
in the bracket tends to zero only with these restrictions. # second
example is the magnetization per spin n in the thermodynamic
limit. We consider the expectation value for a spin on the site

k of the chain. Applying the recursiom procedure described
above from both ends of the chaln up to this site we obtain?

<8, Z exp [szB(t;n)]{Z s, explp (€475, ]}
k+4

x exp BagNB(?Zn)] =thp [gk+ A (?Zk)} ,

(1.8)

where &n is governed by (1. 6),‘Qn is governed in a similar
way by '32,11 ’hnﬁ-A(?Zn) 'JZN ‘A ,n=N,N-'l,.,,,k+4 and
Q /\QQ Y . In the thermodynamic 1imit we obtain for the magneti-
zation (with the same restrictions as hold for (1.7) )@

m(p) = fim N"'Z <S>

N~+oc

[ p ) ﬂ(dg)%p[w%\(‘d)]

(1.9

Similarly, one obtains for the Edwards-Anderson psrameter ‘igA
the following:

et fim N‘1Z<S > Sﬁ(alm)SJu(alg) [th;s(auA(né))] (1.10)

N-roo e=dq

The idea to reduce the system with many degrees of freedom to
a fictitious one-particle system in an auxiliary field substituting
the influence of the surrounding is a common approach on the level
of an approximation (e.g.;the Bethe approximation). Only in the last
few years this approach is used to obtain-exact results for a
rather general class of Ising models 724/ . In the one-dimensional
case thils idea was applied as well to the random field as to the
random exchange Ising model 5-9/ . Stochastic mappings like (1.86)
are investigated only for uncorrelated driving fields ’

In the present paper the previous results are generalized to
a Markovian random magnetic field. we construct the corresponding
stoohastic mapping and investigate different limit cases for the
transient probability of the driving process both for zero and non-
zero temperatures. It is shown that for T = O all results can be
obtained in the frame of the standard theory of finite-state Markov
chains. The main results here concern the description of the essel-
tial states and their dependence (besides on the Markovian parameter)
on the parameters J ﬁ‘ and 'ho . The same approach is developed
for T > O (an infinite-state Markov chain) including the evalua-
tion of the fractal (Hausdorff) dimensionality d; of the support

S of the unlique stationary measure Ju(dm) + The dependence of S

and d on J y FL y fto and the T phase dlagram for ﬁ0=0
are also discussed.

The paper is organized as follows. In Section 2 the general
properties of the discrete stochastic mapping (1.6) are discussed
and the Chapman-Kolmogorov eguation for the corresponding probability



density Pn(x) is derlved for a Markovian random external

magnetic field. In the following parts we consider only binary
random external fields Hxn:ﬂotﬁ 3ﬁ030,ﬁ>0jnﬂ . In Sections
3 and 4 we consider the important case of zero temperature where

the mapping (1.6) is plecewise-linear and the support of the statio-
nary {invariant) measure consists of a finite set of points. In
Section 5 we consider the nonzers temperature case, in which the
support of the stationary measure has a fractal structure with a
nonzero fractal (Hausdorff) dimension depending on the physical
parameters of the system, The possible changes in the support of the
stationary probability measure are so drastic that we would like

to call them “phase transitions" characterized by the fractal dimen-
sion of the support as the “order parameter®.

2. THE STOCHASTIC MAPPING

The properties of the stochastic mapping (1.6) depend obviously
on the properties of the driving process {'ﬁln}nzi . For dariving
processes with continuous support of its probability density Pn(x)
the support of the measure Jun(dx) is also continuous, However,
for driving proocesses with a disorete support of Pn(:x:) a drastic
change of the structure of the support of yn(d:x:) is possible.
Therefore, we consider in the following as a model for the driving
process the two-valued homogeneous, stationary Markov chain.

The properties of (1.6) are further determined by the behaviour
of the function A given by (1.3) (ef. Fig.1).

Fig.l.

The function A(:)c) for
zero and nonzero temperatures.

Sinoe A(TK) is monotonous and bounded (from below and above)

we are not faced with the problem of intrinsic chaos which appears
for discrete mappings with nommonotonous A=) (see,e.g., Ref. 10 ).
For zero temperature the function A(ﬁ?) is piecewise~linear,
whereas for nonzero temperature A(x) is infinitely many diffe-
rentiable, As will be shown in the followlng Sections, for the
former case the support of the stationary measure f&(d:x:) consists

of a finite set of points, whereas in the latter case it is an

uncountable set of points which constitute a fractal.
To calculate the probability density for the driven process

{gn}nM we remark, that if the driving process is a first-
order Markov chain, the driven one is of second order. Therefore,
we introduce the vector ( £, , 4. ) with the joint probability
density pn(:c,'lz} which is governed by a first-order Chapman-Kolmo-
gorov equation (see,e.g.,Ref, 11 Ch, V, §3 ). From (1.6) we obtain

pn(«:,?z)zso{az'jdx’ T(ﬁzlzz’)}:)n_4(xf22’) 5(:::-? ~A)) , (2.1)

where we introduced the transient probability density T(’?]?z')
for the driving Markov chain and its stationary distribution
density 9(’42) .

If we restrict ourself to an uncorrelated driving provess,

then T(th’):\p(’q) s and we obtain

Pn(x)-_—;jdzz Pn(xﬂz>=§&'ozj&x’ﬁ("z)Pn-K"‘-") & (a -az—A(cc’)) , (2.2)
which is nothing but the Chapman-~Kolmogorov equation for the
first—order Markov chain.

In the opposite case of a constant field, fxn:-ft (purely correw
lated case), where T(’é?l?z')= g(’iz—?z’) and P(r‘?)=5‘(?2—f‘)' we

obtain from (2.1)
Pn(“—‘,ﬁ):fdx’pn_i(ac)’ﬁ)g(ac-?'i—A(oc’)) (2.3)

with the fixed point solution

P*@Coi‘) =38 (e-x(h) , x*=h+ A (™) (2.4 )

Thus, we reduced the investigation of the model (1.1) to the
study of the stochastic mapping (1.6) and finally to the Chapman-
Kolmogorov equation (2,1) for a driven Markov process {&n}nu
The stationary solutions of (2.1) (fixed point probability densities
P(Q:,Bz)) give us a complete information about the thermodynamic
properties of the model (1.1). Hence, our further strategy follows
the Markov chain theory /11 and consists of two steps. Firstly,
using the mapping (1.6) we describe the space of states of the Markov
chain &, Y. . Secondly, specifying the initial conditions
(aistributions) we classify the states into essential (support) and



inessential ones and using (2.1) we calculate the invariant (sta-
tlonary) measures which have this support.

3. ZERO TEMPERATURE AND ZERO MEAN EXTERNAL FIELD

3.1, The Support

For zero témperature the function A(:xc) which governs the
mapping (1.6) is plecewise~linear

-7 x<~-F
Alx) = B for Jocj=] . (3.1)
J x> J

As a conseguence, for a finite-state driving process the mapping
(1.6) penerates for a given J  only a finite number of values
X:{tx:i} , which constitute together with the possible values
of the driving process {ﬂn}n;d the space of states of a fimlte-—
-state (second-order) Markov chain: {2} = {:x:b,ﬁ 3.
Assuming that the {ﬁc 5n>4 can take only the wvalues *’ﬁL s

>O one shows straightforward that the fg }n:wi can take

only the values

x(m+Ty=mb+3J , and S G

I

m#b . (3.3

i

x (m, 0)
In both cases M = 0, +1, + 2, ... has to be chosen such that

%, € [heT heTJU AT -R-T] (3.4)

Thus, the space of the states X as a function of J can ‘be
found in Fig.2.
x b

Fige?2.

""""""""" The space of states X of the
Markov chain (2.1) as

0F T T T . 0 < & < 1, Dashed lines
correspond to inessential
states.

function of J for [ =0 and

Speoifying the transient probability density T 1in (2.1)
for the two-valued driving process by

T(?ghg’):o(S('zz+32’)+(4—o¢)5“(32-g2f) (3.5

we can dlstinguish between essential and inessential states in
dependence of the value of o .

For O<ol<4 the {:x:(m,ij)} are the essential states S
which map exclusively into themselves. For example, for O<J< i/

we have four essential states as can be seen in the corresponding
flow diagram:

{H»}' —‘A 3’

ﬂ.//l

-£+7 =P J

\

Disgram 1, .

Here, wmmep and c—JP  denote the actlon of the mapping (1.6)
with realization { =h and -R , respectively. The {foc(m,0)}
are the 1nessential states, since there 1s a net outflow into
essential states. Thils can be seen in the above diagram as well

as,e.8.y 10 the part of the diagram for A< J< 312&/2 which contains
these statess

»
»
-

h-J \
-1 &

Q

2ht==-h e 0 Ty, Fo e 211

T
/
%—fwl

L d
-
-

Diagram 2.

Thus, in the limit A -»oo the probabllity that we find the system
in the states {x(m,0)} vanishes and the support S  oonsists
only of the states {x(m *J)} , the number of which is 29+6
for (i}u/z <J < (%4‘4)&/2 , 1s9 .

Now 1t may be worthwhile to consider speclal values of of

.



Obviously, for o« ={) (homogeneous field, cf. {(3.5) ) the states
x,=+(h+J) for An-.-:j;‘ﬁ; are trapping states corresponding
to the fixed point solutions (2.4).

For of =l (alternating field with period one, ¢f. (3.5) ) we
study different lnitial conditions {4«--1?., and 0dd (even) number
n of iterations which correspond to ooincidence (noneoincidence)
of the fleld on the site n under consideration with the inlitial

one, We denote the corresponding state by X T :x:‘

As above we obtain from (1.6) ho=eh ™
xt=xt=-x)=-xc = h-T for 0sJ<h/a ;
Xi=~-X_ = ;T
xf=—x;=ﬁfJ ﬁr‘%&@jsg.; (.8)

xt=-x-=Hh }

Ocj: :Jc;‘:U

for hsT s

Fig,3.

The space of states X of the
Markov chain (2.1) as function
of J for | =0 in the limit
cases: ol = O (solid lines) and
ol = 1 {dashed lines).

see also Fig.3., From (3.6) we see that for ﬁﬂzsgj we have at

least two disconnected sets of essential states, so that the mixing
property is destroyed and the ergodicity of the corresponding Markov
chain is broken. For example, in the case g,s J we find the sets
(et >y ) ana (2 = ¥ ), see also Diagram 2. These

sets are disconnected because there is no poséibility to arrive

at XI  starting from X7 .

3.2, The Invariant Measure

For zero temperature the mapping (1.6) generates a finite-state
(second-order) Markov chain, the probability demsity p,(x,%)  of
which consists of a sum of § ~functions with relative weights {wi}
located at the points {QL} which constitute the space of states
(ef. (3.2-4) ). Inserting

Pr (“C»“Z>=Zw-f“’ 5 (ez_ﬁé)g(x_xa) 3.7

into the Chapman-Kolmogorov egquation (2.1) and using (3.5) we
obtain

Zw'(n)g(?z ’g‘ )X(C’\: CXZ) Z{dw(h 1)5(?4-?‘ )X(CC+£L A(ﬁc ))+
(3.8)
+ -o()w:j.(n 4)5(?2—%,,:)5("‘"%“A@é))} :

Having in mind that the "‘ﬁ- +A(GC') are ncthing but certain
points of the support, we may reorder the sum of the right-hand
side of (3.8) as

ZD u)'(n 05( ~h,)8 () (3.9)
%
with .
] g ox;=fh,x=f(h,)
f g (3.10)
Dy vt g mmd (hz=f ()
8] otherwise.
Introducing the vector w" {ur‘"’} we may rewrite (3.8) using
(3.9) shortly as follows:
TM_pHnY (3.11)

The invariant probabllity measure densities
* »
P (w,"z):;i;w‘: 5 (p-h )8 (=-=) (3.12)

where the {uf?} are the components of the fixed point vector of
(3.11), .can be found by solving the linear equation

(1-D)w*=0 . (3.13)



If the state space consists of only one connected set of essential
states, the invariant measure is unique and should coincide with the
limit value
%= Atim DT (.14
n->oco
for arbitrary initial vector (distribution) {E(c) ( see,e.g.y Ref,
11 ). :

The number of independent solutions of (3.13) 1s equal to the
number of disconnected sets of essential states. These solutions can
be found also from {3.14) starting with different initial distribu
tions with support on the corresponding subsets of connected
essential states 1 .

For example we first consider the case 0<J<?€¢/2 . Then the
essential states, as can be seen in Diggram 1, are

{2-;}524={(%:r,‘k),(&-J,{a),(-ﬁx.l,-ﬁ),(-ﬁ-J,-ﬂ)}= Sxfzh} (3.15 )

The one-step transition matrix D  according to (3.10) has the
form:

Yy 00
D= {00 oL (3.16 )
oot 00 ‘
povryy
Solving (3.13) we obtain for J <ol <1 the unique fixed point
distribution
T
= 4
w*=§(r,oc,oc,a') ) (.17
which can also be obtained from (3.14), observing that
yryr
/& Dn___4 & of o & (3.18)
haills = 2\et kot al
o2 Y¥rvyg

and starting from arbltrary initial weights {}(0) .

For « -0 the states 2, and X, Dbecome trapping and hive
the same weight.

For of + 1 we have an oscillation between 22 and 33 which
both occur with the same welght,

For & =0 the transition matrix ) becomes idempotent and has

10

two different fixed points corresponding to the trapping states
&, and &, , cf. Diagram 1.

For o= 1 the transition matrix ) describes osecillations
between &, and &, . Formally, this_corresponds to a fixed
point solution W* = (0, 1/2, 1/2, 0 ) . We remark, that lim D'

2 an n-»oo
does not exist, dbut D =D ( n= 1,2, ... ) has two different
elgenvectors (fixed points) €0, 1, 0, 0)7 and (O, 0, 1, © ).

As a second example, we consider the case h<T< 3/2%, . Here
we should take into account alsc those states which are for O<od<q
inessential, because part of them become essential for o = l.The full
gpace of states can be found in the Table. From the second column
of this table we can obtain the elements of the transition matrix
D . The matrix elements corresponding to solid (broken) lines are

¥ (o) . Disconnected points correspond to zero matrix elements.
For 1nstance,DM= o, D,”': § and DM:D « In the next column
one can find the weights of the corresponding invariant measure.

As in the previous case one should distinguish the cases - 0
and o£ = 0

For of{+1 we have oscillations between the four pairs of
states &, and 2y 2, and Z,,, %, and Ry s Ry, and o,
but with different welights. R

For of= 1 we have in addition oscillations between 3.‘5 and

P &, and 2, , which were former inessential, Accordingly,
we have six independent formal fixed points of I} , cf., the Table.
The matrix D { n =1,2y «o. ) has twelve different fixed points.

4, 2ZERO TEMPERATURE AND NONZERO MEAN EXTERNAL FIELD

In this chapter we shortly consider the case of a nonzero mean
external fleld, 1l.e., {&n5n>,4 takes now the values fto:t{:,
(%o,‘gt >{0 ). As in the previous case the mapping (1.6) generates
a finite state (second order) Markov chain.

Fig.4.

The space of states X of the
Markov chain (2.1) for non~-
zero mean external field ho =

= h/4 as function of 7} for
T=0, 04 « < 1, Only the essen-
tial states are shown.

11



TABLE
State Mapping “"a*
1 Zy n n+l 0 <X < 1 ol =0 o =l
1 (b, 1) v w,=1,0 0
, 2(1+200
2 (on, v ) 0 0 0
3 (3hd, h) —_——y 0
2(1+ o )(1+200)
4 (J, n) o o
(+rx) (v2a) ¥s
5 (b, h ) 0 0 "0
6 (2nd, h) .. 0 %12
2(1+ o) (1+ 200
7  (-h+d, Bb) X 0 w5
2(1+ ) (Qe2al)
8 (~n+J, -h) X 0 w
e o 4
2(14200)
0
9 (0,h) 0 0 "4
10 ( oy, - ) 0 0 vy
11 (hJ, n ) g 0 s
12 (hd, -h) 2 0 wg
13 (~2n+Jd, -h) " 0 g
14 {(~h, -b) 0 0 g
15 (~dy =h ) w, 0 ",
16 (=3h+J, -h) v, 0 0
17 («2h, «b ) 0 0 0
i
18 (~h-J, =h) v 1"1 0

12

In Fig.4 we present the dependence of the essential states for
0 < o <« 1 as a function of J for ﬁa less than A namely
for ﬁoz-.ﬂ/iq + For this value of ‘Ao the support shows a behaviour
similar teo that for 'ﬁ.cﬂ 0 with the difference that the symmetry
with respect to X = O is broken, and that for J not too
small the states are denser because the bifurcations at (1), (2),...
have a smaller period compared with the zero mean case.

For fz<fz and O<olg4we find a completely different behaviour.
Ve first consider the flow diagram for fnf?q and 2«1:& <J= 2(‘;*”)£

(g=1,2,..): O
Q @ @ J+2h

Q ~2h0~ sew “2(“"4)&'0 ﬁ?nf\‘o

Tt shows that the only essenticl stutes S are J une J+2A,
A giniler anelysis gives the result that these states are the
only essential ones also for ‘?Lx: ﬂ‘o « Note that the space of
essentlal states 1s the same both for stochastic ( O<of< )
and periodic ( ®« =4 ) external flelds.

This drastic reductlon of the space of states in dependence
on the mean value of the external field can alss be found for
nonzero temperature, see below.

Diagram 3.

5. THE MAPPING FOR NONZERO TEMPERATURE

5.1« The Space of the States and the Invarlant Measure

To describe the space of states of the stochastlo mapping
(1.6) for nonzero temperature, we introduce the following nota-
tion. We denote the result of the n-th iteration of the mapping
(1.6) starting from the arbitrary initlal value Eo'::'g. by

e, oy f@nsf(ﬁm‘,f(-.. ,f(ﬂwg)..,))) ’ (5.1)

613 Gpngsie, 6y

13



where f%“...,ﬁn} 1s a given realizatlon of the binary driving
process and {6’“.,.,6‘“3 is the corresponding sequenoe of signs. It
1s clear that the space of states of the driven Markov process
consists of all points which can be represented in this way.

As for the zero temperature casey we call the sets of states
which are imnvariant under the mapping (1.6) the sets of essential
states. Sinoe for nonszerc temperature f € C”(R% ang
O<'bxf(ac,ﬁ)-<1 » the sets of essential states are given by
{ﬁiftmxsu---,ﬁna‘j ¥ eRY The existence 31’ these 1imits and their in-
dependence of the starting point M€ R are provided by the pro-
perty ’bx:f(ac,fp)<1 s See,e.g., Ref, 1 +» We denote these limits
by S= {xg} where O oorresponds to an infinite realization ﬁ
of the driving process. -

As a confequence of the independence of {X,} on the starting
polats y € R" one hast (1) for the stochastic mapping (1.6) the
set S= -{mg} is an attractor whose basin of attraotion 1s /94 3
(11) for 0< o<1  any two points X, 4%, €S  can be con-
nected by the mapping (1.6), 80 that there are no disconnected ine
variant subsets in S . Therefore, the attractor .5 is a unique
set of essential states (support) for the driven Markov prooess
(1.6) for T>0 and O<xX <4 ,

We can construct the invariant measure for this process by
iteration of the corresponding Chapman-Kolmogoroy equation (2.1)
startiing from an arbitrary nontrivial probabllity density Po(:x'
on R x {ﬁot ‘fl} + Because the basin of attraction of S 1is
there exists a compact K =K x Kz such that

2,

S dPn(m,zé)=4 =l dPn(ac,vz)z-Pn(x,?z)c{xdzz_ (5.2)

K4KK2

Then by Prohorov's theorem 72/ the sequence of probability measures
{P“}n},1 is compact with respect to weak convergence, i,e.,there
are subsequences {P"k }“kﬂ such that for arbitrary

3 eC (i&"x fRA) one has

tim denk(x,oZ)a(x,az)=de:(x,az)%(x,ﬂz) G

ﬂk-v-oo

By construotion (5.3) the invariant measures {P:} have the same
support ooinciding with the attractor S which is the only set
which 1s invariant with respeot to the mapping (1.6) (transitivity).

14

This means that the measures ka*} are ergodic. But on the same
support there exlsts only one ergodic invariant measure /13/, 1.8,
the sequence {Pn}n>1 converges to the unique invariant proba-

bility measure P* .,

5.2. The Geometrical Structure of the Support and the Fractal
Order Parameter

We now conslider the geometrical structure of the attractor
S on IR' . & 1t follows from 5.1, for the binary driving
process there is a one-to-one oorrespondence between the points
X, € S and the infinite sequences § of + and - . Therefore, the
cardinality of the set S  1s the continuum.
Further, by construction (5.1) the points of the support 3
are located in the interval f:x:s_,i)ce+] s where §i= {6n,=+
or G,,F—}::__a4 . As it follows from (5.1), the two points CC%»:
are the trapping states (fixed points) for « = 0, the case of
the constant field (see Section 2), Thus, in this limit the
attractor reduces to two disjoint parts concentrated at the points
S, = X+ and S =2y~ (ef. 5.1 ). To discuss the detalls we re-
strioct ourselves in the followlng to the case of a zero mean random
field. Then one has (see Fig.5)
*
xg}’ = X (5.4)
For o = 1 (alternating external field) the attractor S ( see
(5.1) ) also reduces to a two-point set {t:np} » where XCp= 4~
( §*‘ is the infinite alternating sequence starting with . ), or
equivalently, the solutlon of the equation :x:P:f (fz,—mP) .

But now S = {-acP, Q:P}' is a connected invarignt set corresponding
to an attractive orbit of the mapping (1.6) for o =1 (ef. Fig.5).
As oan be seen from (5.1) (ef. also Fig.5) there are no

states from S between the points

3Q+’§- = f (4!-,0'-"%.) and X_ g+ =f (*)er.,x§+) ) (5.5)
Therefore, the set S has a gap of the léngth
A=, oo—x_ =2 (2h-2%) (5.6)

After applying the mapping (1.6) this gap produces two gaps of the
next generatlon, whose end-points are (see Fig.5) :

15


http:1-(h,-;:.cp

% ggt = F Chy f R, 5 0).

[

:x:* ('ﬁa‘A(ZC)

Fig.5.

The construction of the
support (attractor) S
and the origin of its
fraetal structure for
mapping (1.6) and for
its linearised version
X,,e- (bold dashed limes).
x* x For ol =1
(alternating field) &
reduces to an attracting
orbit (dot—dashed lines),
tee. S=1{-o,, xp}.

In the same way one can construct the end-points of the gaps in the
n-th generation as

mGn,Gn-u..«,Gugt :f (&m‘“:.’)f (’{va‘%ﬁ:)_“) . (5.7

This procedure allows one to construcst all gaps in the attraotor S.
We call the finite sequence of n (different) signs “head” , and
the infinite sequence of ldentical signs “tail®. The two end—points
of one of the gaps in the n-th generation can be represented by two
infinite sequences consisting of a head of n signs which differ
only in the first sign and an infinite tail of signs opposite to
the first one of the head.

Hence the set of all end-points is obviously countable. On the
other hand, it 1s dense in the support S tinan arbltrary nelgh-
bourhood of a point X € 5  one can find an end-point (an end-point
is as closer to X, “ as longer 1ts "head” is which coincides with
the corresponding first signs of § ). Vice versa, the set S
is nowhere dense. Therefore, the support it constitutes a Cantor-
~type-fractal /14/, but in contrast to the Cantor set it has no
simple self-similar structure.
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. To elucidate the latter, let us linearige the mapping (1.6)
on the interval [-oc*, a™] substituting the function £ (th,x)
by :tﬁ+ac(:x:t%)/ac* » see Fig.5, Then the above procedure (5.4-7)
gives us instaad of S the standard Cantor set CA with the lar-
gest gap equal to A  (5.6), Now it is clear that S 1g nothing
but a smooth deformation of CA s and deviations of the support S
from the Cantor set CA are due to the nonlinearity of the funection
Al(x) , see (1.6) and Fig.5.

Now we give a qualitative analysis of the Hausdorff (fractal)
dimension /ljiafde (S) of the support S in dependence on the
physical parameters of the system (1,1),

For the zero mean external random field we represent this de-
pendence in Fig.6 (the phase diagram). The condition A (4,

(I A,T>0) = 0 (5.6) defines the boundary between two

T
Fip.6.
The phase diagram for the model
T (1.1) (zero mean external field)
< with fractal order parameter oif .
=[]
0 > k

essentially different regions: for A >0  the support S has
a fractal structure with O<d§< 4 y whereas for A=0 ( and
formally for A< { , see (5.6) ) the support has no gap, i.e.d.=
=4. To discuss the behaviour of d, as a function of (‘T,ﬁ,"r) i
we use the approximation dfo.odﬂ CCA) sy whose accuracy depends on
the accuracy of the linearized mapping considered above. Because the

Hausdor;§4dimension d‘H(CA) of the Cantor set C, is well-
-Krnown s one gets
1 gor {(h,T): 8 (hx%) <0}
d (LA, T)= tna
i ac:l for { (B, T): A (hx*)>0} (5.8)
ok
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The result (5.8) establishes the phase dlagram presented in

Fig.6 and gives a reason to consider df :dj. (J,fz,'?”) as a

fractal order parameter x,

For lnstance, we obtained above that at T = 0 the support S

consists of a finite number of states (see Sectlons J and 4 )), i.e.
ci (3,4, T=0)=0 . Therefore, with T - 0 one should obser—
ve a transition of c{f to zero (ef. (5.8) ) which is continuous in
the gap region, but should be discontlnuous in the gapless one

(see Fig.6). Op the other hand, the function A (x) tends to zero
for T-+oo (cf. (1.3) ). Then the support S reduces to the twow
-polnt set {-ﬂ,ﬁ} because for Alx)-» U the first gap increa-
ses and its end-points converge to xx™=tfh ( cf. (5.6) and Fig.5).
Consequently, c{;(i;ﬁ,T—»oo):=D and the border line on the phase
dlagram should behave for | —»oo as 1t is presented in Fig.6.

Finally, for a nonzero mean external random field, {4, =

=Aotﬁ}; we observe that for small flﬁO (ﬁzné J)  the fractal
structure of the support S becomes nonsymmetric. It contracts

to the left end--point Cﬂg and stretches near GC:. {(cf. Fig.7)
while in the linear approximation the fractal structure is similar

to that for h,= 0 . For large k>0 (h,>>J) the first gap rapid-
ly increases and the fractal structure approaches that in the linear
approximation because the curvature of A (=) for :rz:xg
(1x:—*h00 for %Dﬂvoo ) tends to zero. Therefore, in this case
one can agaln utlllze the approximation ciu(3)==Cﬂ*(CA) to evalua—
te the dimensionality of the support.

6., CONCLUSIONS

The present paper is devoted to the study of the one-dimensional
random field Ising model (RFIM) by the stochastio mappings method. We
restrict ourselves to investigate the support S of the fixea
points (or stationary) measure rather than calculating physical obser—
vables. As it follows from above, the knowledge of S and m (dx)
allows us to calculate the free-energy density (1.7), the magnetiza-
tion per site (1.9)and the Edwards—Anderson parameter (1.10). These
calculations can be easily performed for T=0 (e.g. using Table ) ;
‘but not so easy for [ > O . Starting from the Chapman-Kolmogorov

-

Yery recently, the fractal 9imension of the RFIM was calculated
avolding this approximation /21 . The results support the phase
diagram in Fig.6,
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f »
Xr Fig.7.
hehe AX) -y | The construction of the
sAX D! il support {attractor) O
>/ | : :l ] and arising of its fractal
i : ’; ; structure for the mapplng
I B A A (1.6) with nonzeroc mean
h, : '______,::-:1 ' _1, external fieldta‘ﬂ?to(:f .
: 'Y
hyh+A() P Vo
Pl iSteap 1 x
- x* »*

~* X
2ndgap 2ndgap "

equation (2.1) (for uncorrelated random fleld see Ref. /8/ ) we can
do these calculations as a systematlc expansion in terms of the
momenta <337> of the statlonary probability measure corresponding
to the Markov chain driven by the external field, see (3,5). Then
for zero mean external field we get for the Edwards-Anderson param
meter susceptlbility the following? ‘

fim 2 (6.1)
T0 'B<F¢2 CLEA !
where the divergence 1s exponential for [ <ols< 1.

On the other hand, the most instructuve information about
thermodynamics of the model is obviously contalned in the behaviour
of the support S  including the phase transitions which we propose
to characterize by the‘order parameter” ci; . Simultaneously as
it follows from Section 4 we have 1lim n1(ﬁa) 0 for T7=20
(see also Ref./ 5/ ). Therefore, the*bgase transitions we discussed
have no connegtion with the controversy o? the lower critioal dimen-
sion of RFIM {partially settled in Refs, 16-18/ y yhere the magne-
tization is the order parameter.

As it 1s shown above, the local field in the one~dimensional
RFIM may have a very peculiar distribution with a nontrivial fractal
dimensionality of 1ts support. The natural question is whether this
i1s also charaoteristic of other simple models, e.g. of mean-field
ones. In recent papers 19,2 the mean~field RFIM is considered for
an independant and ldentically distributed random external field.
From Ref. /2% , Section 3 1t follows that in this case the distri-
bution of the local magnetization only mimics that of the external
field.
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Ben Y., 3arpeGuos B.A. E17-87-138
OpnomepHan mopens Haukra B cnyuaiHom none
M CTOXaCTMUECKME AMCKpeTHWe oToBpamenun

OpromMepHan MOfens MawHra B CAYHANHOM BHEWNEM NONE MCCNEROBAHA € FOMOUBD
croxacruyecknx ovobpaxennin. PaccmoTpen Cnyuain /33aMOpOMEHHOrO/ MAapKOBCKOro
sHewHero nonA. TIoK33aHo, MTO BCA MHOODMBUMA O TEepMONMHBMWGECKMX CBOWCTBAX
MOfJESN COAEPMMTCA B MHBADMAHTHOM MEpE, KOTOPaR COOTBETCTBYET HEKOTOPOMY
MAPKOBCKOMY NpOUECcCY, YNPABAREMOMY BHEWHWM MONEM, M B YACTHOCTHM, B HOCHTE-
ne 5 a2Toh mepu. Mipn HYNEBON TemnepaType S COAEPMMT KOHEUHOE UWCNO ToueK,

3 Npy HeHyNeBOW ABNRETCH HEXAOTHUECKMM /CTPAHHWM/ BTTPAKTOPOM C GPAKTANLHON
CTPYKTYpPO#H KaWTOPOBCKOro Tuna. lokazawo, u4TOo $pakTanbHan PAAMEPHOCTL df
HOCHTENR S MrpaeT ponk NApasMeTPa NOPRAKS ANA faHHON mogenm. Mccnepoeana
338MCMMOCTE S u dy OT NAPaMETPOB HOAENM U TEMNEPATYPH .

PabBora swnonuwena s flabopaTopum TeopeTwuecKon Pusmkm OHRM,

Coobimmumwe OGREEMoenBOro SsRCTATYTS SESNX NocHenonamlk. lytixs 1987

Behn U., Zagrebnov V.A, E17-87-138
One~Dimensional Random Field Ising Mode! and Discrete
Stochastic Mappings

The one-dimensional random field Ising model is studied using stochas~
tic mappings. The case of a {frozen) Markovian external random field is
considered. We show that all information about thermodynamic properties
of the model is contained in an invariant (stationary) measure correspon-
ding to some Markov process driven by the external field and particularly
in the support S of this measure. For zero temperature it contains a finite
number of points, but for nonzero ones it is a nonchaotic {strange) attrac-
tor with a Cantor-type fractal structure, The fractal dimensionality d¢ of
S is proposed as an "order parameter'" for the model. The dependence of $
and d¢ on the model parameters and the temperature is studied in detail.

The investigation has been performed at the Laboratory of Theoretical
Physics, JINR.
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