

ofheaminniers ииститута 7גоринх necienotanua

E17-87-138

U.Behn*, V.A.Zagrebnov

ONE-DIMENSIONAL RANDOM FIELD ISING MODEL
 AND DISCRETE STOCHASTIC MAPPINGS

[^0]In this paper we consider discrete stochastic mappings whioh appear when one studies the onedimensional ling chain in a (frozen) random external magnetic field,

$$
\begin{equation*}
H_{N}=-J \sum_{n=1}^{N} S_{n} S_{n+1}-\sum_{n=1}^{N} h_{n} S_{n}, S_{n}= \pm 1, S_{N+1}=0, J>0 \tag{1.1}
\end{equation*}
$$

These mappings are originated, e.g. from the reduction of the problem of calculating the partition function for N spins in the external field $\left\{h_{n}\right\}_{n=1}^{N}$ to the equivalent problem of only one spin in some auxiliary (local) random field governed by a probability distribution depending on the probability distribution of the external field as well as on the parameters of the system.

To demonstrate the main idea, we explain how the partition function of the Ising chain (1.1) can be calculated. According to the identity ${ }^{x}$

$$
\begin{equation*}
\sum_{S_{n}= \pm 1} \exp \left(J S_{n} S_{n+1}+\xi_{n} S_{n}\right)=\exp \beta\left[A\left(\xi_{n}\right) S_{n+1}+B\left(\xi_{n}\right)\right] \tag{1.2}
\end{equation*}
$$

where $\beta=\left(k_{8} T\right)^{-1}, T$ beeing the temperature, and

$$
\begin{align*}
& A\left(\xi_{n}\right)=(2 \beta)^{-1} \ln \left[c h \beta\left(\xi_{n}+J\right) / \operatorname{ch} \beta\left(\xi_{n}-J\right)\right] \tag{1.3}\\
& B\left(\xi_{n}\right)=(2 \beta)^{-1} \ln \left[4 c h \beta\left(\xi_{n}+J\right) \operatorname{ch} \beta\left(\xi_{n}-J\right)\right] \tag{1.4}
\end{align*}
$$

the partition function Z_{N} can be summed up step by step starting from the site $n=1$. In the $(N-1)$-th step the partition function is obtained as
\bar{x} Galam and Salinas $/ 1$, are incorreot at this point (see their formula (4)).

$$
\begin{equation*}
Z_{N}=\sum_{s_{N}= \pm 1} \exp \beta\left[\xi_{N} s_{N}+\sum_{n=1}^{N-1} B\left(\xi_{n}\right)\right] \tag{1.5}
\end{equation*}
$$

Thus, the partition function of the whole system is reduced to that for one spin in the auxiliary field ξ_{N} which is defined by the recursion formula

$$
\xi_{n}=h_{n}+A\left(\xi_{n-1}\right) \equiv f\left(h_{n}, \xi_{n-1}\right), \xi_{n=0}=0, n=1,2, \ldots, N . \text { (1.6) }
$$

If $\left\{h_{n}\right\}_{n>1}$ is a random field, then (1.6) is nothing but a stoohastic equation (disorete stochastic mapping) which is the main object of our investigation, and the main problem is to find the density $P_{n}(x)$ of the probability measure $\mu_{n}(d x)$ of the auxiliary random field ξ_{n} or its weak limits $\{\mu\}$ for $n \rightarrow \infty$

This probability density is useful for calculating physical observables. For example, from (1.5) we obtain the free energy density in the thermodynamic limit

$$
\begin{align*}
f(\beta) & =-\lim _{N \rightarrow \infty}\left(\frac{1}{N} \sum_{n=1}^{N-1} B\left(\xi_{n}\right)+(\beta N)^{-1} \ln 2 c h \beta \xi_{N}\right)= \tag{1.7}\\
& =-\lim _{N \rightarrow \infty} \int \mu_{N}(d x) B(x)=-\int \mu(d x) B(x)
\end{align*}
$$

These equalities suppose some ergodic properties of the random sequence $\left\{\xi_{n}\right\}_{n \geq 1}$ and convergence of $\mu_{n}(d x)$ to the stationary measure $\mu(d x)$ and hold with $\mu-\operatorname{Pr}=1$, e.g., the second term in the bracket tends to zero only with these restrictions. A second example is the magnetization per spin m in the thermodynamic limit. We consider the expectation value for a spin on the site k of the ohain. Applying the recursion procedure described above from both ends of the chain up to this site we obtain:

$$
\begin{aligned}
\left\langle s_{k}\right\rangle_{H_{N}} & =Z_{N}^{-1} \exp \left[\beta \sum_{n=1}^{k-1} B\left(\xi_{n}\right)\right]\left\{\sum_{S_{k}= \pm 1} S_{k} \exp \left[\beta\left(\xi_{k}+\tilde{\eta}_{k}\right) S_{k}\right]\right\} \times \\
& \times \exp \left[\beta \sum_{n=N}^{k+1} B\left(\eta_{n}\right)\right]=\operatorname{th} \beta\left[\xi_{k}+A\left(\eta_{k}\right)\right]
\end{aligned}
$$

where ξ_{n} is governed by (1.6), η_{n} is governed in a similar way by $\eta_{n-1}=h_{n-1}+A\left(\eta_{n}\right), \eta_{N}=h_{N}, n=N, N-1, \ldots, k+1 \quad$ and $\tilde{\eta}_{k}=A\left(\eta_{k}\right)$. In the thermodynamic iimit we obtain for the magnetization (with the same restrictions as hold for (1.7)):

$$
\begin{align*}
m(\beta) & =\lim _{N \rightarrow \infty} N^{-1} \sum_{k=1}^{N}\left\langle S_{k}\right\rangle_{H_{N}}= \tag{1.9}\\
& =\int \mu(d x) \int \mu(d y) t h \beta[x+A(y)]
\end{align*}
$$

Similarly, one obtains for the Edwards-Anderson parameter $q_{E A}$ the following:

$$
\begin{equation*}
q_{E A}=\lim _{N \rightarrow \infty} N^{-1} \sum_{n=1}^{N}\left\langle S_{n}\right\rangle_{H_{N}}^{2}=\int \mu(d x) \int \mu(d y)[\operatorname{th} \beta(x+A(y))]^{2} \tag{1.10}
\end{equation*}
$$

The idea to reduce the system with many degrees of freedom to a fictitious one-particle system in an auxiliary field substituting the influence of the surrounding is a common approach on the level of an approximation (e.g., the Bethe approximation). Only in the last few years this approach is used to obtain exact results for a rather general class of Ising models $/ 2 \rightarrow 4 /$. In the onedimensional case this idea was applied aswell to the random field as to the random exchange $I_{s i n g}$ model $/ 5-9 /$. Stochastic nappings 11ke (1.6) are investigated only for uncorrelated driving fields $/ 8,9 /$.

In the present paper the previous results are generalized to a Markovian random magnetic field. "e construct the corresponding stoohastic mapping and investigate different limit cases for the transient probability of the driving process both for zero and nonzero temperatures. It is shown that for $T=0$ all results oan be obtained in the frame of the standard theory of finite-state Markor chains. The main results here concern the description of the essential states and their dependence (besides on the Lariovian parameter) on the parameters J, h and h_{a}. The sawe approach is developed for $T>0$ (an infinite-state Markov chain) including the evaluation of the fractal (Hausdorff) dimensionality d_{f} of the support S of the unique stationary measure $\mu(d x)$. The dependence of S and d_{f} on J, h, h_{0} and the $h-T$ phase diagram for $h_{0}=0$ are also d1scussed.

The paper is organized as follows. In Section 2 the general properties of the discrete stochastic mapping (1.6) are discussed and the Chapman-Kolmogorov equation for the corresponding probability
density $P_{n}(x)$ is derived for a Narkovian random external magnetic field. In the following parts we consider only binary random external pields $\left\{h_{n}=h_{0} \pm h, h_{0} \geqslant 0, h>0\right\}_{n \geqslant 1}$. In Sections 3 and 4 we consider the important case of zero temperature where the mapping (1.6) is piecewise-linear and the support of the stationary (invariant) measure consists of a finite set of points. In Section 5 we consider the nonzero temperature case, in which the support of the stationary measure has a fractal structure with a nonzero fractal (Hausdorff) dimension depending on the physical parameters of the system. The possible changes in the support of the stationary probability measure are so drastic that we would like to call them "phase transitions" characterized by the fractal dimension of the support as the "order parameter".

2. THE STOCHASTIC MAPPING

The properties of the stochastic mapping (1.6) depend obviously on the properties of the driving process $\left\{h_{n}\right\}_{n \geqslant 1}$. For driving processes with continuous support of its probability density $\rho_{n}(x)$ the support of the measure $\mu_{n}(d x)$ is also continuous. However, for driving prooesses with a disorete support of $\rho_{n}(x)$ a drastic change of the structure of the support of $\mu_{n}(d x)$ is possible. Therefore, we consider in the following as a model for the driving process the two-valued homogeneous, stationary Markov chain.

The properties of (1.6) are further detemined by the behaviour of the function $A(x)$ given by (1.3) (cf. Fig.1).

Fig. 1 .
The function $A(x)$ for zero and nonzero temperatures.

Sinoe $A(x) \quad$ is monotonous and bounded (from below and above) we are not faced with the problem of intrinsic chaos which appears for discrete mappings with nonmonotons $A(x)$ (see, e, g., Ref. 10). For zero temperature the function $A(x)$ is piecewiseminear, whereas for nonzero temperature $A(x)$ is infinitely many differentiable. As will be shown in the following Sections, for the former case the support of the stationary aeasure $\mu(d x)$ consists
of a finite set of points, whereas in the latter case it is an uncountable set of points which constitute a fractal.

To calculate the probability density for the driven process $\left\{\xi_{n}\right\}_{n \geqslant 1}$ we remark, that if the driving process is a firstorder Markov chain, the driven one is of second order. Therefore, we introduce the vector (ξ_{n}, h_{n}) with the joint probability density $P_{n}(x, \eta)$ which is governed by a first-order Chapman-Kolmogorov equation (see, e.g., Ref. 11 Ch. V, §3). From (1.6) we obtain

$$
\begin{equation*}
P_{n}(x, \eta)=\int d \eta^{\prime} \int d x^{\prime} T\left(\eta \mid \eta^{\prime}\right) P_{n-1}\left(x^{\prime} \eta^{\prime}\right) \delta\left(x-\eta-A\left(x^{\prime}\right)\right) \tag{2.1}
\end{equation*}
$$

where we introduced the transient probability density $T\left(\eta \mid \eta^{\prime}\right)$ for the driving Markov chain and its stationary distribution density $\rho(\eta)$.

If we restrict ourself to an uncorrelated driving provess, then $T\left(\eta \mid \eta^{\prime}\right)=\rho(\eta)$, and we obtain

$$
\begin{equation*}
P_{n}(x)=\int d \eta P_{n}(x, \eta)=\int d \eta \int d x^{\prime} \rho(\eta) P_{n-1}\left(x^{\prime}\right) \delta\left(x-\eta-A\left(x^{\prime}\right)\right) \tag{2.2}
\end{equation*}
$$

which is nothing but the Chapman-Kolmogorov equation for the first-order Markov chain.

In the opposite case of a constant field, $h_{n}=h_{h}$ (purely correlated case), where $T\left(\eta \mid \eta^{\prime}\right)=\delta\left(\eta-\eta^{\prime}\right)$ and $\rho(\eta)=\delta(\eta-h)$, we obtain from (2.1)

$$
\begin{equation*}
P_{n}(x, h)=\int d x^{\prime} P_{n-1}\left(x^{\prime}, h\right) \delta\left(x-h-A\left(x^{\prime}\right)\right) \tag{2.3}
\end{equation*}
$$

with the fixed point solution

$$
P^{*}(x, h)=\delta\left(x-x^{*}(h)\right), \quad x^{*}=h+A\left(x^{*}\right)
$$

Thus, we reduced the investigation of the model (1.1) to the study of the stochastic mapping (1.6) and finally to the ChapmanKolmogorov equation (2.1) for a driven Markov process $\left\{\xi_{n}\right\}_{n \geq 1}$. The stationary solutions of (2.1) (fixed point probability densities $P(x, \eta))$ give us a complete information about the thermodynamic properties of the model (1.1). Hence, our further strategy follows the Markov chain theory/11/ and consists of two steps. Firstiy, using the mapping (1.6) we describe the space of states of the Markov chain $\left\{\xi_{n}\right\}_{n>1}$. Secondly, specifying the initial conditions (distributions) we classify the states into essential (support) and
inessential ones and using (2.1) we calculate the invariant (stationary) measures which have this support.
3. ZERO TEMPERATURE AND ZERO MEAN EXTEINAL FIELD

3.1. The Support

For zero temperature the function $A(x)$ which governs the mapping (1.6) is piecewise-linear

$$
A(x)=\left\{\begin{array}{cr}
-J & x<-J \tag{3.1}\\
x & \text { for } \\
|x| \leqslant J \\
J & x>J
\end{array}\right.
$$

As a consequence, for a finite-state driving process the mapping (1.6) Generates for a given J only a finite number of values $X=\left\{x_{i}\right\}$, which constitute together with the possible values of the driving process $\left\{h_{n}\right\}_{n z 1}$ the space of states of afinite--state (second-order) Markov chain: $\left\{\mathcal{Z}_{i}\right\}=\left\{x_{i}, h_{i}\right\}$

Assuming that the $\left\{h_{n}\right\}_{n>1}$ can take only the values $\pm h$ $h>0$, one shows straichtforward that the $\left\{\xi_{n}\right\}_{n \geqslant 1}$ can take only the values

$$
\begin{align*}
& x(m, \pm J)=m h \pm J \quad, \text { and } \tag{3.2}\\
& x(m, 0)=m h
\end{align*}
$$

In both oases $m=0, \pm 1, \pm 2, \ldots$ has to be ohosen such that

$$
\begin{equation*}
x_{i} \in[h-J, h+J] \cup[-h+J,-h-J] \tag{3.4}
\end{equation*}
$$

Thus, the space of the states X as a function of J can be found in Fig. 2.

Speoifying the transient probability density T in (2.1) for the two-valued driving process by

$$
\begin{equation*}
T\left(\eta \mid \eta^{\prime}\right)=\alpha \delta\left(\eta+\eta^{\prime}\right)+(1-\alpha) \delta\left(\eta-\eta^{\prime}\right) \tag{3.5}
\end{equation*}
$$

we can distinguish between essential and inessential states in dependence of the value of α

For $0<\alpha<1$ the $\{x(m, \pm J)\}$
are the essential states S which map exclusively into themselves. For example, for $0<J<h / 2$ we have four essential states as can be seen in the corresponding flow diagram:

Diagram 1.

Here, \rightarrow and \Longrightarrow denote the action of the mapping (1.6) with realization $h_{n}=h$ and $-h_{2}$, respectively. The $\{x(m, 0)\}$ are the inessential states, since there is a not outflow into essential states. This can be seen in the above diagram as well as; e, g., in the part of the diagram for $h<J<3 h / 2$ which contains these states:

Diagram 2.
Thus, in the limit $n \rightarrow \infty$ the probability that we fiad the system In the states $\{x(m, 0)\}$ vanishes and the suppart S oonsists only of the states $\{x(m, \pm J)\}$, the number of which is $2 q+6$ for $q h / 2<J<(q+1) h / 2,1 \leqslant q$.

Now it may be worthwhile to consider special values of α.

Obviously, for $\alpha=0$ (homogeneous field, cf. (3.5)) the states $x_{ \pm}= \pm(h+J)$ for $h_{n}= \pm h$ are trapping states corresponding to the fixed point solutions (2,4).

For $\alpha=1$ (alternating field with period one, of. (3.5)) we study different initial conditions $h_{1}= \pm h$ and odd (even) number n of iterations which correspond to ooincidence (noncoincidence) of the field on the site n under consideration with the initial one. We denote the corresponding state by $x^{h_{n}= \pm h} h_{h_{1}= \pm h}=x_{ \pm}^{ \pm}$.
As above we obtain from (1.6)

$$
\begin{aligned}
& x_{+}^{+}=x_{-}^{+}=-x_{+}^{-}=-x_{-}^{-}=h-J \quad \text { for } \quad 0 \leqslant J<h / 2 \text {; } \\
& x_{\ddagger} \ddagger=-x_{-}=\mathrm{J} \\
& \left.\begin{array}{l}
x_{+}=-x_{-}=J \\
x_{-}^{+}=-x_{+}^{-}=h-J
\end{array}\right\} \quad \text { for } h / 2 \leqslant J \leqslant h ; \\
& \left.x_{+}^{+}=-x_{-}^{-}=h\right\} \\
& x_{-}^{+}=x_{+}^{-}=0 \\
& \text { for } h \leqslant J \text {, }
\end{aligned}
$$

 least two disconnected sets of essential states, so that the mixing property is destroyed and the ergodicity of the corresponding Markov chain is broken. For example, in the case $h \leqslant J$ we find the sets ($x_{+}^{+} \rightleftarrows x_{\mp}^{-}$) and ($x_{-}^{-} \rightleftarrows x_{ \pm}$), see also Diagram 2. These sets are disconnected because there is no possibility to arrive at x_{-}^{-}starting from x_{+}^{+}.

3.2. The Invariant Measure

For zero temperature the mapping (1.6) generates a finite-state (second-order) Markov chain, the probability density $p_{n}(x, \eta)$ of which consists of a sum of δ functions with relative weights $\left\{w_{i}\right\}$ located at the points $\left\{\mathcal{Z}_{i}\right\}$ which constitute the space of states (cf. (3.2-4)). Inserting

$$
\begin{equation*}
P_{h}(x, \eta)=\sum_{i} w_{i}^{(n)} \delta\left(\eta-h_{i}\right) \delta\left(x-x_{i}\right) \tag{3.7}
\end{equation*}
$$

into the Chapman-Kolmogorov equation (2.1) and using (3.5) we obtain

$$
\begin{align*}
& \sum_{i} w_{i}^{(n)} \delta\left(\eta-h_{i}\right) \delta\left(x-x_{i}\right)=\sum_{j}\left\{\alpha w_{j}^{(n-1)} \delta\left(\eta+h_{j}\right) \delta\left(x+h_{j}-A\left(x_{j}\right)\right)+\right. \\
& \left.+(1-\alpha) w_{j}^{(n-1)} \delta\left(\eta-h_{j}\right) \delta\left(x-h_{j}-A\left(x_{j}\right)\right)\right\} \tag{3.8}
\end{align*}
$$

Having in mind that the $\pm h_{j}+A\left(x_{j}\right)$ are nothing but certain points of the support, we may reorder the sum on the right-hand side of (3.8) as

$$
\begin{equation*}
\sum_{i, j} D_{i j} w_{j}^{(n-1)} \delta\left(\eta-h_{i}\right) \delta\left(x-x_{i}\right) \tag{3.9}
\end{equation*}
$$

with

$$
D_{i j}=\left\{\begin{array}{cc}
\alpha & \text { if } \quad x_{i}=f\left(h, x_{j}=f(-h, \cdot)\right) \tag{3.10}\\
\gamma=1-\alpha & \text { if } \quad x_{i}=f\left(h, x_{j}=f(h, \cdot)\right) \\
0 & \text { otherwise. }
\end{array}\right.
$$

Introducing the vector $\vec{w}^{(n)}=\left\{w_{i}^{(n)}\right\}$ we may rewrite (3.8) using (3.9) shortily as follows:

$$
\begin{equation*}
\vec{w}^{(n)}=D \vec{w}^{(n-1)} \tag{3.11}
\end{equation*}
$$

The invariant probability measure densities

$$
\begin{equation*}
p^{*}(x, \eta)=\sum_{i} w_{i}^{*} \delta\left(\eta-h_{i}\right) \delta\left(x-x_{i}\right) \tag{3.12}
\end{equation*}
$$

where the $\left\{w_{i}^{*}\right\}$ are the components of the fixed point vector of (3.11), can be found by solving the linear equation

$$
\begin{equation*}
(1-D) \vec{w}^{*}=0 \tag{3.13}
\end{equation*}
$$

If the state space consists of only one connected set of essential states, the invariant measure is unique and should coincide with the limit value

$$
\begin{equation*}
\vec{w}^{*}=\lim _{n \rightarrow \infty} D^{n} \vec{w}^{(0)} \tag{3.14}
\end{equation*}
$$

for arbitrary initial vector (distribution) $\vec{w}^{(0)}$ (see, e.g., Ref. 11).

The number of independent solutions of (3.13) is equal to the number of disconnected sets of essential states. These solutions can be found also from (3.14) starting with different initial distributions with support on the corresponding subsets of connected essential states

For example we first consider the case $0<J<h / 2$. Then the essential states, as can be seen in Diagram 1 , are

$$
\begin{equation*}
\left\{Z_{i}\right\}_{i=1}^{4}=\{(h+J, h),(h-J, h),(-h+J,-h),(-h-J,-h)\}=S \times\{ \pm h\} \tag{3.15}
\end{equation*}
$$

The one-step transition matrix D according to (3.10) has the form:

$$
D=\left(\begin{array}{llll}
\gamma & \gamma & 0 & 0 \tag{3.16}\\
0 & 0 & \alpha & \alpha \\
\alpha & \alpha & 0 & 0 \\
0 & 0 & \gamma & \gamma
\end{array}\right)
$$

Solving (3.13) we obtain for $0<\alpha<1$ the unique ilxed point distribution

$$
\begin{equation*}
\vec{w}^{*}=\frac{1}{2}(\gamma, \alpha, \alpha, \gamma)^{T} \tag{3.17}
\end{equation*}
$$

which can also be obtained from (3.14), observing that

$$
\lim _{n \rightarrow \infty} D^{n}=\frac{1}{2}\left(\begin{array}{cccc}
\gamma & \gamma & \gamma & \gamma \tag{3.18}\\
\alpha & \alpha & \alpha & \alpha \\
\alpha & \alpha & \alpha & \alpha \\
\gamma & \gamma & \gamma & \gamma
\end{array}\right)
$$

and starting from arbitrary initial weights $\vec{w}^{(0)}$.
For $\alpha \rightarrow 0$ the states Z_{4} and Z_{4} become trapping and hive the same weight.

For $\alpha \rightarrow 1$ we have an oscillation between \mathcal{Z}_{2} and \mathcal{X}_{3} which both occur with the same welght.

For $\alpha=0$ the transition matrix \mathcal{D} becomea idempotent and has
two different Pixed points corresponding to the trapping states Z_{1} and Z_{4}, cf. Diagram 1 .

For $\alpha=1$ the transition matrix D describes oscillations between Z_{2} and Z_{3}. Formally, this corresponds to a fixed point solution $\vec{w}^{*}=(0,1 / 2,1 / 2,0)^{T}$. We remark, that $\lim _{n \rightarrow \infty} D^{n}$ does not exist, but $D^{2}=D^{2 n}(n=1,2, \ldots)$ has two diftrerent eigenvectors (fixed points) $(0,1,0,0)^{\top}$ and $(0,0,1,0)^{\top}$.

As a second example, we consider the case $h<J<3 / 2 h$. Here we should take into account also those states which are for $0<\alpha<1$ inessential, because part of them become essential for $\alpha=1$. The full space of states can be found in the pable. From the second column of this table we can obtain the elements of the transition matrix D. The matrix elements corresponding to solid (broken) lines are $\gamma(\alpha)$. Disconnected points correspond to zero matrix elements. For instance, $D_{81}=\alpha, D_{11}=\gamma$ and $D_{21}=0$. In the next columa one can find the weights of the corresponding invariant measure.

As in the previous case one should distinguish the cases $\alpha \rightarrow 0$ and $\alpha=0$.

For $\alpha \rightarrow 1$ we have oscillations between the four pairs of states Z_{4} and z_{8}, z_{6} and z_{12}, z_{7} and z_{13}, z_{11} and z_{15}, but with different weights.

For $\alpha=1$ we have in addition oscillations between \mathcal{Z}_{5} and Z_{10}, Z_{9} and Z_{14}, which were former inessential. Accordingly, we have six independent formal fixed points of D, cf. the Table. The matrix $D^{2 n}(n=1,2, \ldots)$ has twelve different fixed points.

4. ZERO TEMPERATURE AND NONZERO MEAN EXTERNAL FIELD

In this ohapter we shortly consider the case of a nonzero mean external field, l.e., $\left\{h_{n}\right\}_{n \geqslant 1}$ takes now the values $h_{0} \pm h$ ($h_{0}, h>0$). As in the previous case the mapping (1.6) generates a finite state (second order) Markov chain.

Fig. 4.
The space of states X of the Markov chain (2.1) for nonzero mean external field ho $=$ $=h / 4$ as function of for $T=0,0<\alpha<1$. Only the essential states are shown.

In Fig. 4 we present the depencence of the essential states for $0<\alpha<1$ as a function of J for h_{p} less than h, namely for $h_{0}=h / 4$. For this value of h_{0} the support shows a behaviour similar to that for $h_{o}=0$ with the difference that the symmetry with respect to $x=0$ is broken, and that for y not too small the states are denser because the bifurcations at (1), (2),... have a smaller period compared with the zero mean case.

For $h \leqslant h_{0}$ and $0<\alpha \leqslant 1$ we find a completely different behaviour. We first consider the flow diagram for $h=h_{0}$ and $2 q h<J<2(q+1) h$, $(q=1,2, \ldots)$:

It shows that the only essenticu states S aze J and $J+2 h_{0}$. a Einiler anclysis gives the result that these states are the only essential ones also for $h<h_{0}$. Note that the space of essential states is the same both for stochastic ($0<\alpha<1$) and periodic ($\alpha=1$) external flelds.

This drastic reduction of the space of states in dependence on the mean value of the external field can also be found for nonzero temperature, see below.
5. THE MAPPING FOR NONZSRO TBMPERATURE
5.1. The Space of the States and the Invariant Measure

To describe the space of states of the stochastic mapping (1.6) for nonzero temperature, we introduce the following notation. We denote the result of the n-th iteration of the mapping (1.6) starting from the arbitrary initial value $\xi_{0}=y$ by

$$
\begin{equation*}
x_{\sigma_{n}, \sigma_{n-1}, \ldots, \sigma_{1} ; y}=f\left(h_{n}, f\left(h_{n-1}, f\left(\ldots, f\left(h_{1}, y\right) \ldots\right)\right)\right) \tag{5.1}
\end{equation*}
$$

where $\left\{h_{1}, \ldots, h_{n}\right\}$ is a given realization of the binary driving process and $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ is the corresponding sequenoe of signs. It is clear that the space of states of the driven Markov process consists of all points which can be represented in this way.

As for the zero temperature oase, we call the sets of states which are invariant under the mapping (1.6) the sets of essential states. Sinoe for nonzero temperature $f \in C^{\infty}\left(\mathbb{R}^{2}\right)$ and $0<\partial_{x} f(x, h)<1$, the sets of essential states are given by $\left\{\lim _{n \rightarrow \infty} x_{6_{4}, \ldots, \sigma_{n i} y}\right\}_{y \in \mathbb{R}^{1}}$. The existence of these limits and their independence of the starting point $y \in \mathbb{R}^{1}$, are provided by the property $\quad \partial_{x} f(x, h)<1$, see, e.g., Ref. $/ 10 /$. We denote these limits by $S=\left\{x_{6}\right\}$ where 6 oorresponds to an infinite realization h of the driving process.

As a consequence of the independence of $\left\{x_{6}\right\}$ on the starting points $y \in \mathbb{R}^{1}$ one has: (1) for the stochastic mapping (1.6) the set $S=\left\{x_{G}\right\}$ is an attractor whose basin of attraotion is \mathbb{R}^{1}; (11) for $0<\alpha<1$ any two points $x_{\sigma}, x_{\sigma^{\prime \prime}} \in S$ can be connected by the mapping (1.6), so that there are ${ }^{6}$ no disconnected invariant subsets in S. Therefore, the attractor S is a unique set of essential states (support) for the driven Markov prooess (1.6) for $T>0$ and $0<\alpha<1$.

We can construot the invariant measure for this process by iteration of the corresponding Chapman-Kolmogorov equation (2.1) starting from an arbitrary nontrivial probability density $P_{0}(x, \eta)$ on $\mathbb{R}^{1} \times\left\{h_{0} \pm h\right\}$. Because the basin of attraction of S is \mathbb{R}^{1}, there exists a compact $K=K_{1} \times K_{2}$ such that

$$
\begin{equation*}
\int_{K_{1} \times K_{2}} d P_{n}(x, \eta)=1, n \geq 1 \quad ; \quad d P_{n}(x, \eta)=P_{n}(x, \eta) d x d \eta \tag{5.2}
\end{equation*}
$$

Then by Prohorov's theorem /12/ the sequence of probability measures $\left\{P_{n}\right\}_{n \geq 1}$ is compact with respect to weak convergence, i.e., there are subsequences $\left\{P_{n_{k}}\right\}_{n_{k} \geqslant 1}$ such that for arbitrary
$g \in C\left(\mathbb{R}^{A} \times \mathbb{R}^{\wedge}\right) \quad \begin{gathered}n_{k} \\ \text { one has }\end{gathered}$

$$
\begin{equation*}
\lim _{n_{k} \rightarrow \infty} \int d P_{n_{k}}(x, \eta) g(x, \eta)=\int d P_{k}^{*}(x, \eta) g(x, \eta) \tag{5.3}
\end{equation*}
$$

Hy construotion (5.3) the invariant measures $\left\{P_{k}^{*}\right\}$ have the same support ooinciding with the attractor S which is the only set whioh is invariant with respeot to the mapping (1.6) (transitivity).

This means that the measures $\left\{P_{k}^{*}\right\}$ are ergodic. But on the same support there exists only one ergodic invariant measure /13/, 1.e., the sequence $\left\{P_{n}\right\}_{n \geq 1}$ converges to the unique invariant probability measure P^{*}.
5.2. The Geometrical Structure of the Support and the Fractal Order Parameter

We now consider the geometrical structure of the attractor S on \mathbb{R}^{4}. As it follows from 5.1, for the binary driving process there is a one-to-one oorrespondence between the points $x_{\underline{G}} \in S$ and the infinite sequences σ of + and - . Therefore, the cardinality of the set S is the continuum.

Further, by construction (5.1) the points of the support S are located in the interval $\left[x_{\sigma^{-}}, x_{G^{+}}\right]$, where ${\underset{\sigma}{ }}^{ \pm}=\left\{\sigma_{n}=+\right.$ or $\left.\sigma_{n}=-\right\}_{n=1}^{\infty}$. As it pollows from (5.1), the two points $x_{G} \pm$ are the trapping states (fixed points) for $\alpha=0$, the case of the constant field (see Seotion 2). Thus, in this limit the attractor reduces to two disjoint parts concentrated at the points $S_{+}=x_{6}+$ and $S_{-}=x_{6}$ (cf. 5.1). Co discuss the detalls we restriot ourselves in the following to the case of a zero mean random field. Then one has (see Fig.5)

$$
\begin{equation*}
x_{G^{ \pm}}= \pm x^{*} \tag{5.4}
\end{equation*}
$$

For $\alpha=1$ (alternating external lield) the attractor S (see (5.1)) also reduces to a two-point set $\left\{ \pm x_{p}\right\}$, where $x_{P}=x_{G}{ }^{+-}$ (${\underset{\sim}{~}}^{+-}$is the infinite alternating sequence starting with +), or equivalently, the solution of the equation $x_{p}=f\left(h,-x_{p}\right)$. But now $S=\left\{-x_{p}, x_{p}\right\}$ is a connected invariant set corresponding to an attractive orbit of the mapping (1.6) for $\alpha=1$ (cf. Pig.5).

As oan be seen from (5.1) (cf. also Fig.5) there are no states from S between the points

$$
\begin{equation*}
x_{+, \sigma^{-}}=f\left(h, x_{\sigma^{-}}\right) \quad \text { and } \quad x_{-, \sigma^{+}}=f\left(-h, x_{6^{+}}\right) \tag{5.5}
\end{equation*}
$$

Therefore, the set S has a gap of the length

$$
\begin{equation*}
\Delta=x_{+, \sigma_{\sim}^{-}}-x_{-, \underline{\sigma}^{+}}=2\left(2 h-x^{*}\right) \tag{5.6}
\end{equation*}
$$

After applying the mapping (1.6) this gap produces two gapa of the next generation, whose end-points are (see Pig. 5) :

$$
x_{6_{2}, \sigma_{1}, \xi^{ \pm}}=f\left(h_{2}, f\left(h_{1}, x_{\mathbf{\sigma}^{ \pm}}\right)\right) .
$$

Fig. 5.

The construction of the support (attractor) S and the origin of its fractal structure for mapping (1.6) and for its linearised version (bold dashed lines). For $\alpha=1$ (alternating field) S reduces to an attracting orbit (dot-dashed lines), 1.e. $S=\left\{-x_{p}, x_{p}\right\}$.

In the same way one can construot the end-points of the gaps in the n-th generation as

$$
\begin{equation*}
x_{\sigma_{n,} \sigma_{n-1}, \ldots, \sigma_{1}, \sigma^{ \pm}}=f\left(h_{n}, \ldots, f\left(h_{1}, x_{6} \pm\right) . . .\right) \tag{5.7}
\end{equation*}
$$

This procedure allows one to construct all gaps in the attraotor S. We call the finite sequence of n (different) signs wead", and the infinite sequence of daentical signs "tail". The two end-points of one of the gaps in the $n-t h$ generation can be represented by two infinite sequenoes consisting of a head of n signs which differ only in the first sign and an infinite tail of signs opposite to the first one of the head.

Hence the set of all end-points is obviously countable. On the other hand, it is dense in the support S : in an arbitrary neighbourhood of a point $x_{\underset{\sim}{6}}^{\in} S$ one can find an end-point (an end-point is as closer to $x_{5}{ }^{6}$ as longer its "head" is which coincides with the corresponding first signs of $\underset{\sim}{6}$). Fice versa, the set S is nowhere dense. Therefore, the support S constitutes a Cantor--type-fractal $/ 14$, but in contrast to the Cantor set it has no simple self-similar structure.

To elucidate the latter, let us linearize the mapping (1.6) on the interval $\left[-x^{*}, x^{*}\right]$ substituting the function $f(\pm f, x)$ by $\pm h+x\left(x^{*}-h\right) / x^{*}$, see Fig. 5. Then the above procedure (5.4-7) gives us instaad of S the standard Cantor set C_{Δ} with the largest gap equal to $\Delta(5.6)$. Now it is clear that S is nothing but a smooth deformation of C_{Δ}, and deviations of the support S from the Cantor set C_{Δ} are due to the nonlinearity of the function $A(x)$, see (1.6) and Fig. 5.

Now we give a qualitative analysis of the Hausdorff (fractal) dimension $/ 13 / d_{f}=d_{H}(S)$ of the support S in dependence on the physical parameters of the system (1.1).

For the zero mean external random field we represent this dependence in Fig. 6 (the phase diagram). The condition $\Delta\left(k_{2}\right.$, $\left.x^{*}(J, h, T>0)\right)=0 \quad(5.6)$ defines the boundary between two

Fig. 6.
The phase diagram for the model (1.1) (zero mean external field) with fractal order parameter d_{f}.
essentially different regions: for $\Delta>0$ the support S has a fractal structure with $0<d_{f}<1$, whereas for $\Delta=0$ (and formally for $\Delta<0$, see (5.6)) the support has no gap, i.e. $d_{f}=$ $=1$. To discuss the behaviour of d_{f} as a function of (J, h, T) we use the approximation $d_{f} \approx d_{H}\left(C_{\Delta}\right)$, whose accuracy depends on the accuracy of the linearized mapping considered above. Because the Hausdorff dimension $d_{H}\left(C_{\Delta}\right)$ of the Cantor set C_{Δ} is well--known /14/, one gets

$$
d_{f}(J, h, T)=\left\{\begin{array}{cc}
1 & \text { for }\left\{(h, T): \Delta\left(h, x^{*}\right) \leqslant 0\right\} \tag{5.8}\\
\frac{\ln 2}{\ln \frac{x^{*}}{x^{*}-h}} & \text { for }\left\{(h, T): \Delta\left(h, x^{*}\right)>0\right\}
\end{array}\right.
$$

The result (5.8) establishes the phase diagram presented in Fig. 6 and gives a reason to consider $d_{f}=d_{f}(J, h, T)$ as a fractal order parameter ${ }^{x}$.

For instance, we obtained above that at $I=0$ the support S consists of a finite number of states (see $S_{e c t i o n s ~} 3$ and 4)), i.e. $d_{f}(J, h, T=0)=0 \quad$. Therefore, with $T \rightarrow 0$ one should observe a transition of d_{f} to zero (cf. (5.8)) which is continuous in the gap region, but should be discontinuous in the gapless one (see Fig.6). On the other hand, the function $A(x)$ tends to zero for $T \rightarrow \infty$ (cf. (1.3)). Then the support S reduces to the two--point set $\{-h, h\}$ because for $A(x) \rightarrow 0$ the first gap increases and its end-points converge to $\pm x^{*}= \pm h$ (c1. (5.6) and Fig.5). Consequently, $\alpha_{f}(J, h, T \rightarrow \infty)=0$ and the border line on the phase diagram should behave for $T \rightarrow \infty$ as it is presented in Fig.6.

Finally, for a nonzero mean external random field, $\left\{h_{n}=\right.$ $\left.=h_{0} \pm h\right\}_{h=1}^{\infty}$ we observe that for small $h_{0}>0\left(h_{0} \leqslant J\right)$ the fractal structure of the support S becomes nonsymmetric. It contracts to the left end-point x_{l}^{*} and stretches near x_{r}^{*} (cf. Fig.7) while in the linear approximation the fractal structure is stmilar to that for $h_{0}=0$. For large $h_{0}>0\left(h_{0} \gg J\right)$ the first gap rapidly increases and the fractal structure approaches that in the linear approximation because the curvature of $A(x)$ for $x \geqslant x_{i}^{*}$ ($x_{\ell}^{*} \rightarrow \infty$ for $h_{0} \rightarrow \infty$) tends to zero. Therefore, in this case one can again utilize the approximation $d_{H}(S) \simeq d_{H}\left(C_{\Delta}\right)$ to evaluate the dimensionality of the support.

6. CONCLUSIONS

The present paper 1 s devoted to the study of the one-dimensional random field Ising model (RFIM) by the stoohastio mappings method. We restrict ourselves to investigate the support S of the fixed points (or stationary) measure rather than calculating physical observables. As it follows from above, the knowledge of S and $\mu(d x)$ allows us to calculate the free-energy density (1.7), the magnetization per site (1.9) and the Edwards-Anderson parameter (1.10). These calculations can be easily performed for $T=0$ (e.g. using Table) ; but not so easy for $T>0$. Starting from the Chapman-Kolmogorov

[^1]

Fig. 7.
The construction of the support (attractor) S and arising of its fractal structure for the mapping (1.6) with nonzero mean external field: $0<h_{0}<J$.
equation (2.1) (for uncorrelated random fleld see Ref. /8/) we can do these calculations as a systematic expansion in terms of the momenta $\left\langle h^{m}\right\rangle$ of the stationary probability measure corresponding to the Markov ohain driven by the external field, see (3.5). Then for zero mean external field we get for the Edwards-Anderson parameter susceptibility the following:

$$
\begin{equation*}
\lim _{T \rightarrow 0} \frac{\partial}{\partial\left\langle h^{2}\right\rangle} q_{E A}=\infty, \tag{6.1}
\end{equation*}
$$

where the divergence is exponential for $0<\alpha \leqslant 1$
On the other hand, the most instructuve information about thermodynamics of the model is obviously contained in the behaviour of the support S including the "phase transitions" which we propose to characterize by the "order parameter" d_{f}. Simultaneously as it follows from Section 4 we have $\lim _{h^{\prime} \rightarrow 0} m\left(h_{g}\right)=0$ for $T=0$ (see also Ref. $115 /$). Therefore, the phase transitions we discussed have no connection with the controversy on the lower critioal dimension of RFIM (partially settled in Refs. 16-18/) where the magnetization is the order parameter.

As it is shown above, the local field in the one-dimensional RFIM may have a very peculiar distribution with a nontrivial fractal dimensionality of its support. The natural question is whether this is also charaoteristic of other simple models, e.g. of mean-field ones. In recent papers $19,20 /$ the mean-field RFIM is considered for an independant and identically distributed random external field. From Ref. $/ 20 /$, Section 3 it follows that in this case the distribution of the local magnetization only mimics that of the external field.

One of the authors (U.B.) thanks the Laboratory of Theoretical Physics JINR for hospitality during visits when main part of this research was done.

REFERENCES

1. Galam S. and Salinas S.R. J. Phys., 1985, C18, p. L439.
2. Thomsen M., Thorpe M.F., Choy T. C. and Sherrington D. Phys. Rev., 1984, B30, p. 250.
3. Thomsen M_{*}, Thorpe M.F., Choy T.C. and Sherrington D. Phys.Rer., 1985, B31, p. 7355.
4. Thomsen M., Thorpe M, F., Choy T.C., Sherrington D. and H. J. Sommers, Phys.Rev. B33, 1931, 1986.
5. Derrida D., Yannimenus J. and Pomeau Y. J. Phys., 1978, Cll, p. 4749
6. Bruinsma R. and Aeppli G. Phys. Hev.Lett., 1983, 50, p.1494.
7. Aeppli G. and Bruinsata M. Phys.Lett., 1983, 97A, p. 117.
8. Györgyi G. and Iujan P. J. Phys., 1984, C17, p.4207.
9. Normand J.M., Mehta M. L. and Orland H. J. Phys., 1985, A18, p. 621.
10. Schuster H. G., Deterministic Chaos (Physik-Verlag, Berlin, 1985).
11. Doob J.L. Stochastic Processes (John Wiley \& Sons, New York, 1953)
12. Billingsley P. Convergence of Probability Measure (John Wiley \& Sons, Hew York, 1968).
13. Cornfeld I.P., Fomin S.V. and Sinai Ya.G. Ergodic Theory (Springer-Verlag, Berlin, 1982).
14. Mandelbrot B. B. The Fractal Geometry of Nature (Freeman, San Frans1sco, 1982).
15. Berretti A. J. Stat. Phys. , 1985, 38, p. 483.
16. Fiaher D.S., Fröhlioh J. and Spencer T. J.Stat. Phys., 1984, 34, p. 863.
17. Imbrie J. Z. Phys.Rev.Lett., 1984, 53, p. 1747
18. Imbrie J.z. Commun. Math. Phys., 1985, 98, p.145.
19. Salinas S.R. and Wreszinski W.F. J.Stat. Phys., 1985, 41, p. 299.
20. Angelescu N. and Zagrebnov V.A. J.Stat. Phys., 1985, 41, p. 323.
21. Szepfalusy P. and Behn U. Z.für Physik, 1987, B65, p. 337.

Received by Fubliahing Department on March 4, 1987.

Бен У., Загребнов В.А.
Однонерная модель Изинга в случайном поле
и стохастические дискретные отобрашения
Одномерная модель Нзинга в случайном внешнем поле исследована с пономио стохастических отображений. Рассмотрен случай /замороженного/ марковского внешнего поля. Показано, что вся информация о термодинамическмх свойствах модели содержится в инвариантной мере, которая соответствует некоторону марковскому процессу, управлиешому внешним полем, и в частности, в носителе S зтой мери. При нулевой температуре S содермит конечное чнсло точек, а при ненулевой пяляется нехаотичесяи /странным/ аттрактором с фрактапьной структурой канторовского типа. Показано, что фрактальнап размерность d_{f} носителя S играет роль параметра порядка длп данной нодели. Исследована зависимость S и d_{f} от параметров модели и температуры.

Работа выполнена Лаборатории теоретической фиаики оияи.

Behn U., Zagrebnov V.A.
E17-87-138
One-Dimensional Random Field Ising Model and Discrete
Stochastic Mappings
The one-dimensional random field Ising model is studied using stochas$t i c$ mappings. The case of a (frozen) Markovian external random field is considered. We show that all information about thermodynamic properties of the model is contained in an invariant (stationary) measure corresponding to some Markov process driven by the external field and particularly in the support S of this measure. For zero temperature it contains a finite number of points, but for nonzero ones it is a nonchaotic (strange) attrac tor with a Cantor-type fractal structure. The fractal dimensionality d_{f} of 5 is proposed as an "order parameter" for the model. The dependence of s and d_{f} on the model parameters and the temperature is studied in detail.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

[^0]: Sektion Physik der Karl-Marx-Universität Leipzig, Karl-Marx-Platz, Leipzig, 7010, DDR

[^1]: Very recently, the fractal dimension of the RFIM was calculated avoiding this approximation $/ 21$. The results support the phase diagram in Fig. 6.

