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1. INTRODUCTION 

In this paper we consider disorete stochastic mappings whioh 
appear when one studies the one-dimensional Ising ohain in a (frozen) 
random external magnetic field, 

N N 

H=-JI.ss -LhS S-=±1 S =0 J>O (1.1)
N h. 1"+1 n. h., h. 'N+-1' • 

n.~1 n."d 

These mappings are originated,e.g.,from the reduction of the problem 
of calculating the partition function for IV spins in the external 
field {hl'l);1to the equivalent problem of only one spin in some 
auxiliary (local) random field governed by a probability distribu­
tion depending on the probability distribution of the external field 
as well as on the parameters of the system. 

To demonstrate the main idea, we explain how the partition 
function of the Ising chain (1.1) can be oaloulated. Acoording to 
the identity x 

(1.2)I exp(J Sn.5n.+1+~n.SJ = exp f-' [A(~II)SM~+ B(en)] 
S,,"'±'I 

where fo = (kJr1
, T beeing the temperature. and 

(1.3)A(t;n.) = (2J>r1 ttl. [Ch f' (~n.+J)/chJ (l;n.-J)] 

B C!;n.) = (2"ten [4 ctt.~O;n.+J)cf,.,1' (~h.-J)] (1.4) 

the partition function Ztv can be summed up step by step starting 
from the site 11. == 1. In the (N-1)-th step the partition funotion 
is obtained as 

x Galam and Salinas III are incorreot at this point (see their 
formula (4):>. 

"}~ ....c __ , 
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N-" 
(1.5)Z =L exp f-'[~NSN+L B(~h)J

N s _+-' 11...1 
N--" 

Thus, the partition funotion of the whole system is reduced to that 
for one spin in the auxiliary field e which is defined by the 

-- SN 
recursion formula 

~n. = -kn.+ A(~11.-1) == t (~11.,i;n.-1) 1 ~n.=D= 0 ,rt=1,2, ... ,N. (1.6) 

If {~ni~1iS a random field, then (1.6) is nothing but a stoohastio 
equation (disorete stochastio mapping) whioh is the main objeot 
of our investigation, and the main problem is to find the density 

p,..C-::C) of the probability m~asure f'n(doc) of the auxiliary 
ra.ndom field t;n or its weak limits {J-l} for n ..... 00 

This probability density is useful for oaloulating physical 
observables. For example, from (1.5) we obtain the free energy 
density in the thermodynamic limit 

N-1 

f (1)) = - tm (~L B(~n.) + (f>N)"£n. 2chJ!;N) = (1.7) 
N..... oo 11.=1 

= tLm. S}tN (d~) B(:x:) = - Sjt (dx) B (x) . 
N...oo 

These equalities suppose some ergodio properties of the random 
sequence {t,,Jn.~1 and convergence of }tn.(cl-:c} to the stationary 
measure }t(dx) and hold with J'-Pr = 1, e.g.,the second term 
in the braoket tends to zero only with these restrictions. " second 
example is the magnetization per spin tn in the thermodynamio 
limit. We conSider the expectation value for a spin on the site 

k of the ohain. Applying the reoursion procedure described 
above from both ends of the chain up to this site we obtain: 

k-1 
<\)H = Z~1 e:x:p [;. L B(~h.)]{L. Sk exp~(~k+'k)S,JJ)(

N 11.=1 Sk",±1 (l.a) 
k+1 

X exp [~:;N B(~n)] t~ f-> [E;k+ A(-azk)] , 
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where t;", is governed by (1.6), 1'ln is governed in a similar 

way by 'a(1l_1=h"'-1+A(~I1.)' 1(N=hN ,11.= N,N-1, "'J k+1 and
i2k =A('iI2k) • In the thermodynamio limit we obtain for the magneti­
zation (with the same restriotions as hold for (1.7) ):

N 

m(f.» = Urn N-
1 L<Sk>H = 

N-+oo k=d tV 
(1.9) 

= SfA (dx))yt (dif) .tt'\.f-> [x+ A(1f)] 

~imilarly, one obtains for the Edwards-Anderson parameter ~£A 

the following: 
N 

(1.10)~EA=k N-1L<sr:>' = )f(J:x:))j.t(ct'!t) [thf->(oc+A(1j))]2 
N+""" 11.-1 HN 

The idea to reduoe the system with many degrees of freedom to 
a fiotitious one-partiole system in an auxiliary field substituting 
the influenoe of the surrounding is a common approach on the level 
of an approximation (e.g., the Bathe approximation). Only in the last 
few years this approach is u5ed to obtain exact results for a 
rather general class of Ising models /2-4/ • In the one-dimensional 
case this idea was applied as well to the random field as to the 
random exchange Ising model /5-9/ • Stochastic mappings like (1.6) 
are investigated only for uncorrelated driving fields /a,9/ • 

In the present paper the previous results are generalized to 
a MarkOVian ra.ndom magnetic field. tIe construct the corresponding 
stoohastio mapping and investigate different limit cases for the 
transient probability of the driving process both for zero and non­
zero temperatures. It is shown that for T • 0 all results oan be 
obtained in the frame of the standard theory of finite-state Markov 
chains. The main results here concern the desoription of the essen­
tial states and their dependence (besides on the Markovian parameter) 
on the paramet ers J I h and to . '.I.'he mme approach is develolled 
for T > 0 (an infinite-state Markov chain) including the evalua­
tion of the fractal (Hausdorff) dimensionality of the supportdJ 

S of the unique stationary measure peax) . The dependenoe of S 
and d;f on J , f.t , ho and the t-T phase diagram for to= 0 
are also disoussed. 

The paper is organized as follows. In ~eotion 2 the general 
properties of the disorete stoch~9tic mapping (1.6) are disoussed 
and the Chapman-Kolmogorov equation for the corresponding probability 
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density P~(X) is derived for a Markovian random external 
magnetic field. In the following parts we consider only binary 
random external fields [h/t=ft.oth ,{o<l>O,{>O)n.::..1 • In Sections 
J and 4 we consider the important case of zero temperature where 
the mapping (1.6) is piecewise-linear and the support of the statio­
nary (invariant) meaSure consists of a finite set of points. In 
Section 5 we consider the nonzero temperature case, in which the 
support of the stationary measure has a fractal structure with a 
nonzero fractal (Hausdorff) dimension depending on the physical 
parameters of the system. i~e possible changes in the support of the 
stationary probability measure are so drastic that we would like 
to call them "phase transitions" characterized by the fractal dimen­
sion of the support as the "order parameter". 

2. THE S'J.'OCHASTIC M,Al'.i'ING 

The properties of the stochastic mapping (1.6) depend obviously 
on the properties of the driving process i{I1.}n...,.1 • For driving 
processes with continuous support of its probability denSity JPn.(x) 

the support of the measure ~n(d;:c) is also continuous. However, 
for driving prooesses with a disorete support of ftt(X) a drastic 
change of the structure of the support of JAn.(dx) is possible. 
Therefore, we consider in the following as a model for the driVing 

process the two-valued homogeneous, stationary Lmrkov chain. 
The properties of (1.6) are further determined by the behaviour 

of the function A(~) given by (l.J) (cf. Fig.l). 

J 
Fig.l. 

The function A(x) for 
zero and nonzero tempera,tures.-1 h 

J ::x: 
-" 

/. 

-- .... "- '" -­
-J 

Sinoe A(~) is monotonous and bounded (from below and above) 
we are not faced with the problem of intrinsic chaos which appears 
for discrete mappings with nonmonotonous A(;:c) (see, e.g., Ref. 10 ). 
For zero temperature the function A(;:c) is piecewise-linear, 
whereas for nonzero temperature A(x) is infinitely many diffe­
rentiable. As will be shown in the following Sections, for the 
former case the support of the stationary ~easure ~(d::x:) consists 

4, 

of a finite set of pOints, whereas in the latter case it is an 
uncountable set of pOints which constitute a fractal. 

To calculate the probability density for the driven process 
{~n..}n..~1 we remark, that if the driving process is a first-

order Markov chain, the driven one is of second order. Therefore, 
we introduce the vector ( ~I't' ~ I't ) with the jOint probability 
densi ty Pn (;:C;lZ) which is governed by a first-order Chapman-Kolmo­
gorov equation (see,e.g.,Ref. 11 Ch. V, § J ). From (1.6) we obtain 

Pl't(~'~)::: jd.~1Jd:x:' T('azl~')Pn-lX:~12I) E(x-~ -A (x'») (2.1) 

where we introduced the tranSient probability density 1'(~1~') 
for the driving Markov chain and its stationary distribution 
density f (?[) 

If we restrict ourself to an uncorrelated drivine provess, 
then T(1£lf')= 'p('il) , and we obtain 

(2.2)PIT. (x) =5d:az PI't(:C,lZ)=Jd-azJd:x.'.pC'az)Pttjx') F(x -~ -A (x'» 

which is nothing but the Chapman-Kolmogorov equation for the 
first-order Markov chain. 

In the opposite case of a constant field,itn.= h (purely corre­
lated case), where T(~/1Z') = 5 (12-72/) and P<'1/.)=6(1Z- A). we 
obtain from (2.1) 

Pn. (~>It)= Jd:c I Pn-1 (:x:~.f.t) 5 (x-it - A(-;x:I») (2.J ) 

with the fixed pOint solution 

p*(;x:}I.) = () (:c-.::x:*(I..») x.*= -h + A (:;c*) (2.4 ) 

Thus, we reduced the investieation of the model (1.1) to the 
study of the stochastic mapping (1.6) and finally to the Chapman­

Kolmogorov equation (2.1) for a driven Markov process f i;1't}n~1 . 
The stationary solutions of (2.1) (fixed point probability densities 
p(~;a2» give us a complete information about the thermodynamic 

properties of the model (1.1). Hence, our further strategy follows 
the MarkOV chain theory /11/ and consists of two steps. Firstly, 
using the mapping (1.6) we describe the space of states of the Markov 
chain i ~nJ /1.>1 • Secondly, specifying the initial condi tions 
(distributions) we claSSify the states into essential (support) and 
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inessential ones and using (2.1) we calculate the invariant (sta­
tionary) mea~ures which have this support. 

J. ZERO TEMPERATURE AND ZERO MEAN 3X'l'EHlML FIELD 

J.l. '£be Support 

For zero temperature the function A which governs the 
mapping (1.6) is piecewise-linear 

x < JJ 
for Ixl~J 	 (J.I)ACx) :::c 

X>JJ 

As a consequence, for a finite-state 	driving process the mapping 

(1.6) generates for a given J only 	a finite number of values 

X {:x:J ' which constitute together with the possible values 

of the driving process {-ft,Jn.>-1 the space of states of a finite­
-state (!lecond-order) Markov chain: {J:J {Xi.. ,~d . 

Assuming that the {hh }h~ -I can take only the val ues ±-It. 
~ > 0 , one shows straightforward that the can take 

only the value!l 

x(m±J)=mh±J , and (J.2) 

::x:: (m,O)=mh. 	 O.J) 

In both cases m = 0, ;:1, ! 2, .•. 	has to be chosen such that 

::c t E -J , J] U [-{+J, /t-J] 	 CJ.4) 

Thus, the space of the states X as a function of J can be 

found in Fig. 2. 

:x: Fig.2. 

The space of states X of the 
Markov chain (2.1) ash 
function of J for T = 0 and 

o 	 o < 0( < 1. Dashed lines 


correspond to inessential 


states. 


11-	 J 

«) 

Speoifying the transient probability density T in (2.1) 


for the two-valued driving process by 


T (~hZ') = 0( (; (T(+1f.') +(1-0(.)5 (~-12') 	 (3.5) 

we can distinguish between essential and inessential states in 

dependence of the value of d 


For 0<0(.< 1 the {::c(m,±J)} are the essential states S 

which map exclusively into themselves. For example, for O<J < It/'). 

we have four essential states as can be seen in ~~e corresponding 

flow diagram: 
 0­

/1-.+1 ...-h-J, 
h 11 Q 1 -h 

'-!t+J ===t>-t-J /' 

Diagram 1. ... ~. 

Here, --+ and ==i> denote the ~n of the mapping (1. 6) 


with realization -1..11.= "- and -It ,respectively. The tx(m,O)} 

are the inessential states, since there is a net outflow into 


essential states. This can be seen in the above diagram as well 


as, e. g., in the part of the diagram for I.. < J < 31t./2 which contains 

these states; 


•.. •• 

h.-J ...... I 4==:J ,/h+J


""" -2e.. <l=::::I-n -.
o~ h ......21.. ~-h+J
-h-J ~ .... 	 •• .. 
Diagram 2. 

Thus, in the limit n ...... oo the probability that we find the system 
in the states ia:::(m,O)} vanishes and the support S oonsists 

only of the states {:r(m,± J)j ,the number of which is 2'i. + 6 
for 'j.'~/2. < J < (~+1){/2 , -1 ~ 9- . 

Now it may be worthwhile to oonsider special Talues of ot 
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Obviously, for 0(, =. 0 (homogeneous field, cf. (J.5) ) the states 
X+= ± (h+J) for It =±-h are trapping states corresponding-	 n 

to the fixed point solutions (2.4). 
For d. ..1 (alternating field with period one, cf. (3.5) ) we 

study different initial conditions {'I "'" ± ~ and odd (even) number 
n of iterations which correspond to oOincidence (noncoincidence) 

of the field on the site n under consideration with the initial 
~ -tl,.one. We denote the corresponding state by X ft.~+J. :!!; 

As above we obtain from (1.6) .- ­

~ + - -.P J~+ '" x_ = - X+::: -x_ -:::: 11.- for O:oJ<1t/z 

xt:: ::x:.= =:r }

-:c: -x:; =: ft-J forft.h~J~~ (J.6) 


X~ -X: =ft. l 

;:c~ = x:;: = 0 J for ft:!: J 


It 

o 

--

Fig. J. 

The space of states)( of the 
Markov chain (2.1) as function 
of J for T = 0 in the limit 
cases: ol = 0 (solid lines) and 
d"' 1 (dashed lines). 

". J 

see also Fig.J. From (J.6) we see that for f../'}.~J we have at 
least two disconnected sets of essential states, so that the mixing 
property is destroyed and the ergodicity of the corresponding Markov 
chain is broken. For example, in the case ft.:!: J we find the sets 
(x.!:;;:!' x:; ) and (::.:: :;::!: 0:+ ), see also Diagram 2. These 
sets are disconnected because there is no possibility to arrive 
at::c: starting from x; 

8 

J.2. The 	 Invariant Measure 

For zero temperature the mapping (1.6) generates a finite-state 
(second-order) Markov chain, the probablli ty density ?tJ. (-;;c, "l) of 
whioh consists of a sum of 0 -functions with relative weights {w;;J 
located at the points f~L} which constitute the space of states 
(cf. (J.2-4) ). Inserting 

(J.7)Ph. (x, 'O() = r. 1Aftl.) 0' (7{- It;.) b (x- Xi) 
~ 

into the Chapman-Ko1mogorov equation (2.1) and using (J.5) we 
obtain 

Zw.:.(t'l.)Q' (-Z--hJ S'(x-x;.) = r {o( W:t'-1) a(-az+~)H:x:+~-A (~))+ 
I. 	 if 

{ 1) (J.8) 
+ (-1-O()~ n.- O(12-ftJ)b(x-4LJ-A C':X:JJ )} 

Baving in mind that the ±.ftd + A(xJ) are nothing but certain 
pOints of the support, we may reorder the sum on the right-hand 
side of (J.8) as 

2. :D .. w:(h.-i)o (n-k)~ (x-x,) 	 (J.9) 
i..J~ I..<:t d l" 

with 

0<. ~J x~ = ! (ft., Xr' f (-~,.)) 
(J.1 0) 

D··= ;r:::1-C( LJ Xi:; J (f.t., XJ ! ( {,. ) ) 
'ij 

o otherwise. 
. - (n.) j (It)} 	 ( )Introduc~ng the vector 1.U = l1..lT.:. we may rewrite J.8 using 

(J.9) shortly as follows: 

Ui(It)= D 	Uj:(t'I.-i) (J.ll) 

The invariant probability measure densities 

p1t(":X:,,?)=,[ urt O("l-{i.)cr(~-:X:iJ (J.12) 
I. 

where the {W-r} are the components of the fixed point vector of 
(J.11), .can be found by solving the linear equation 

(-1- D) t;j:* =- 0 	 (J.13) 
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--
two different fixed pOints corresponding to the trapping states 

If the state space consists of only one connected set of essential ~., and~,y ,cf. Diagram 1. 

states, the invariant measure is unique and should coincide with the For 0(. == 1 the transition matrix D desoribes osoillations 
limit value 

u;:* = -&m :ort Ui (0) (J.14) 
rt_<><> 

for arbitrary ini tinl vector (distributton) w (0) ( see t e. g., Ref. 
11 ). 

The number of independent solutions of (J.lJ) is equal to the 
number of disconnected sets of essential states. These solutions can 
be found also from (J.14) starting with different initial distribu­
tions with suppori on the corresponding subsets of connected 
essential states 1111 

For example we first consider the case 0 < J <::-1./2 • '!'hen the 
essential states, as can be seen in Di~gram I, are 

{2th~~ l(h+J,"-),(I't-J,{J,(-i..+J,-ft),H.-J,-t)f= S x {tiL} (J.15 ) 

The one-step tranSition matrix ]) according to (J.lO) has the 
form: 

roo 0)
DOo(.ol (J.16 ).D= 
0(0( 00( o 0 ~ r 

Solving (J.lJ) we obtain for 0 < 0{ ..; 1 the unique fixed point 
distribution 

--* -1 ( y)T CJ.17 )'tV =~ (,o(.,"',u 

whioh oan also be obtained from (J.14), observing that 

0 r YY) (J.18 )t.m D rt :::: i 0(. 0( 0(. 0<. 

tI ...... oo 20(0(.0<.0(.
( 

¥ ~ 04' 

and starting from arbitrary initial Weights t;j-CO). 
For d..- 0 the states:it" and~.It become trapping and h,'ve 

the same weight. 
For 0(.-1 we have an osoillation between .:t2. and <3 which 

both oocur with the same weight. 
For 0(, =0 the transition matrix D becomes idempotent and has 

)0 

between ~2 and 23 • Formally, this corresponds to a fixed 
point -* ,. (0, 1/2, 1/2, 0 )T • . remark, that 11m DI't.solution 'Ui We 
does not exist, but D.=D~ (n= 1,2, ••• ) has two different 
eigenvectors (fixed points) (0, 1, 0, 0)T and (0, 0, 1, 0 )T. 

As a second example, we consider the oase h <:: J <:: 36, It . Here 
we should take into account also those states whioh are for O<c« 1 
inessent1al, because part of them become essential for 0(.= I.The full 
space of states oan be found in the Table. From the seoond oolumn 
of this table we can obtain the elements of the transition matr1x 
]) • The matrix elements correspond1ng ta solid (brOken) lines are 
~ (ot) • Disconnected pOints oorrespond to zero matrix elements. 

For instance, D&-1== d '])"1= /( and ])2.1= 0 • In the next column 
one can find the weights of the corresponding invariant measure. 

As in the previous case one should distinguish the cases ct.- 0 
and ot =: 0 

For d.. -1 we have oscillations between the four pairs of 
states :II.( and :lg , .:t, and 2-/2' <., and ~12>' il-/1 and ii1s 
but with different weights. 

For 0( = 1 we have in addi tion oscillations between <.s and 
~~O' ~3 and ~4,y ,which were former inessential. Acoordingly, 

we have six independent formal fixed pOints of j) , cf. the Table. 
The matrix D2M. ( n = 1,2, ••• ) has twelve different fixed points. 

4. ZERO TEMPERATURE AND NONZERO MEAN EXTERNAL FIELD 

In this ohapter we shortly oonsider the case of a nonzero mean 
external field, i.e., lhlt}M.~1 takes now the values lto±J.. 
( -ho, it. > 0 ). As in the previous case the mappine (1. 6) generates 
a finite state (seoond order) Markov chain. 

Fig.4. 

The space of states X of the 
Markov ohain (2.1) for non­
zero mean external field ho = 
=h/4 as fUnction of~ for 

k.:! -
"0 rrO 

Ji-It T=O, °<. co( L.. 1. Only the essen­~ o 
tial states are shown. 

J 
I I t J ..o (1) (2)(3) It J 
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-----

TABLE In Fig.4 we present the dependence of the essential st~tes for 
Sta1"A Mapping 	 uJ'i"l!­ o < 0( < 1 as a function of J for f..o less than It , namely 

i zi n n+l 0 <: 0<.. <: 1 0<. ..0 0( ..1 for ;"0 == {/4 • For this value of Ito the support shows a behaviour ---- ----	 -------- similar to that for {o'" 0 with the difference that the symmetry 
1 (h+J, h) 4' 191 "1,0 o with respect to '/. = 0 is broken, and that for 1 not too 

2(1+2«) small the states are denser beoause the bifurcations at (1), (2), ••• 

2 (2h, h ) o o o have 	a smaller period oompared with the zero mean case. 
For":!;1" and O<c<.~1 we find a completely different behaviour.etaJ (Jh~, b) o o 	 We first consoider the flow diagram for {",!to and 2'l."- < J<:' 2(<j.d)"-, 

2(1+0<.)(1+20(.) ('},=1,2, ... ): 

4 (J, h) 
 0(2 

o 	 ()
(l+ O() (1+2C(J Wa 


5 (h, h ) 
 o o 
"10 	 J+ZhD00

0(.6 (2h...J, h) o------ "12 • «) 2h"'/ 1'~2(1+ 0<:) (1+ 2«) 	 O.....2ho-.·· .2(h-1)""..... , J~ 
7 (-h+J, h) o--~~-- "lJ 

2(1+ 0<) (1+20£) 

a (-h+J, -h) o o0(. 	
Diagram J.------	 "4 

2(1+20(.) 
It Bhows that the only essentl"J. :;tate" S .3.2(: J ;'!1'0(~ ]'1-2/;.0 


9 (0, h ) 
 o o .t ::;1l.:j 12.1' an&lysis gives the resul t that these states are the
"14 

only essential ones also for {< 1.0 • Note that the space of 
10 ( 0, -h ) o o essential states is the same both for stoohastic ( 0 < 0( < '1) 

and periodic ( ¢( = 1 ) external fields. 
"5 

11 (h~, h ) Wa o 
"15 This drastic reduction of the spaoe of states in dependence 

12 (h~, -h) o 	 on the mean value of the external field can also be found for11'7 "6 
nonzero temperature, see belo". 

lJ (-2h+J, -h) oW6 "7 
14 (-h.-h) o o 11'9 
15 (...J. -h ) o 	 5. THE I4APl'ING FOR NONZERO TEMPERATUREW4 w11 

16 (-Jh+J. -h) W o oJ 	 5.1. The Spaoe of the States and the Invariant Measure 

17 (-2h, -h ) o o o 	 To desoribe the spaoe of states of the stochastio mapping 
(1.6) for nonzero temperature, we introduoe the following nota­

18 (-h~, -h) WI 1--1 o 	 tion. We denote the result of the n-th iteration of the mapping 
(1.6) starting from the arbitrary initial value ~o=~ by 

(5.1)X b",6,,_< ,'" ,6~ ;"<1 f (!t.... -J (hl1._~,1. (... J (h,/,~).. .))) 

12 
13 



where tn.) ... ,h~~ is a given realization of the binary driving 
process and {6., ... J 6".... ~ is the corresponding sequenoe of signs. It 
is clear that the space of states of the driven Markov process 
consists of all pOints which can be represented in this way. 

As for the zero temperature oase, we call the sets of states 

which are invariant under the mapping (1.6) the sets of essential 

states. Sinoe for nonzerc temperature J E COO OR 2.) and 

o<o""J (;:.c,h) < 1 ,the sets of essential states are given by 
{{'i.m. :x: . }"~JR•• 1'he existence of these limits and their in­

rL ....... \.>O 	 6"'J··,,*it.. ,"1 -1
(/0;;;; 

dependence of the starting pOint "'(f E IR are provided by the pro-
J 	 IIWperty 0:cJ (:x:;n.) < 1 , see, e.g., Ref. • We denote these limits 

by S = l:x:.a ~ where ~ oorresponds to an infinite realization 1:: 
of the driving process. 

As a consequence of the independence of {Xgt on the starting 
points 'if E IR'" one has: (i) for the stochast1c~mapPing (1.6) the 
set 5 -= {-::c, j is an attractor whose basin of attraotion is IR'" ; 
(11) for 0'< 0( < -1 any two points x~" :X::G''' E S can be con­
nected by the mapping (1.6), so that there are-no disconnected in­
variant subsets in S . Therefore, the attractor S is a unique 
set of essential states (support) for the driven Markov prooess 
(1.6) 	for T> 0 and 0 < 0{. < -1 

We can construot the invariant measure for this process by 

iteration of the corresponding Chapman-Kolmogorov equation (2.1) 

start~ng from an arbitrary nontrivial probability density poCX'~)4 

on IR x l ft.. ± It} • Because the basin of attraotion of 5 is IR, 
there exists a compact K =K/< K<. such that 

) dP~(;:.c,~)= -1 • t'l~1 dP~ (':C.'''1) == Pt1.(;:.c,~) dx d'2 (5.2) 
K.'(/(l 

Then by Prohorov's theorem /121 the sequence of probability measures 
fPI\}It').~ is compact with respect to weak convergence, i.e. ,there 

are subsequences { Pit } It '1 such that for arbitrary 
,of,of "k::' 

~ E: C ( IR '" IR ) one has 

(5.J)trn 	 5clPltk (x>~)~(x,~)= JdP:(;X:.~)~(::c,az)ItIc.... OO 

~ construotion (5.J) the invariant measures tl'k*} have the same 
support ooinciding with the attractor S which is the only set 
whioh is invariant with respeot to the mapping (1.6) (transitiT1ty). 
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This means that the measures (J?k*} are ergodic. But on the same 
support there exists only one ergodic invariant measure IIJI, i.e., 
the sequence tPI1. } 11..,1 converges to the unique invariant proba­
bllity measure P* 

5.2. 	 The Geometrical Structure of the Support and the Fractal 
Order Parameter 

We now consider the geometrical structure of the attractor 
S on IR'" • As it follows from 5.1, for the binary driving 

process there is a one-to-one oorrespondence between the pOints 
~ E S and the infinite sequences!§ of + and - • Therefore, the 
cardinality of the set S is the continuum. 

Further, by construction (5.1) the pOints of the support S 
are located in the interval [::>'::6- ,':l::6·..] ,where €±= {611.= + 
or Gh.=-}:::-i • As it follOWS from (5.1), the two pOints 
are the trapping states (fixed pOints) for 0(. .. 0, the case 
the constant field (see Seotion 2). Thus, in this limit the 
attractor reduces to two disjoint parts concentrated at the pOints 

S+= ~+ and ::>'::6- (cf. 5.1 ). 'fo discuss the details we re­
striot ourselves in the following to the case of a zero mean random 
field. Then one has (see Fig.5) 

±X
-It 

(5.4) 

For ci., " 1 (alternating external !ield) the attractor S (see 
(5.1) ) also reduces to a two-point set I ± :Cp } ,where Xp XE:+­

( <0 +- is the infinite alternating sequence starting with + ), or 
equtvalently, the solution of the equation Xp= 1- (h,- ;:.cp) . 
But now S • ;;Cp 3- is a connected invariant set correspond:ing 
to an attractive orbit of the mapping (1.6) for c( • 1 (cf. Fig.5). 

As oan be seen from (5.1) (cf. also Fig.5) there are no 
states from S between the points 

X+ G- =: f C~,X6-) and 'X._ 6 +=j(-"-,xfi+) (5.5)
'- ~ 	 '- ­

Therefore, the set S has a gap of the length 

t::, = X+,6'--X_6~ = 2 CZk-:c*). 	 (5.6)- ' ­
After 	applying the mapping (1.6) this gap produces two gaps of the 
next generation, whose end-points are (see Fig.5) : 
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http:1-(h,-;:.cp


-::JC .t = 1 (-ft~,f(h.j'X~±)).'.l,G.. }~ 

Fig.5. 

The construction of the 
support (attractor) S 
and the origin of its 
fractal structure for 
mapping (1.6) and for 
its linearised version 

(bold dashed lines). 
-x 	 :x For 01..:0 1 

(alternating field) ti 
reduces to an attracting 
orbit (dot-dashed lines), 

i.e. S=i :x::",:X::p). 

-x-­

In the same w83 one can construot the end-points of the gaps in the 

n-th generation as 


(5.7):X:6n.,t>n_~""JG..P €:t =:f (ftn."" ,j (-h,pX'i,:t) .. ,) . 
This procedure allows one to construot all gaps in the attraotor S. 
We call the finite sequenoe of n (different) signs ~ead" , and 
the infinite sequence of identical signs -tail-. The two end-points 
of one of the gaps in the n-th generation can be represented bt two 
infinite sequenoes consisting of a head of n signs which differ 
only in the first sign and an infi·nite tail of signs opposite to 
the first one of the head. 

Bence the set of all end-points is obviously countable. Qn the 
other hand, it is dense in the support S : in an arbitrary neigh­
bourhood of a point Xli Eo 5 one can find an end_point (an end-point 
is as closer to ~, - as longer its "head" is which coincides with 
the corresponding first signs of G ). Vice versa, the set S 
is nowhere dense. Therefore, the ~pport S constitutes a Cantor­
-type-fractal 114/, but in contrast to the Cantor set it has no 
simple self-similar structure. 
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To elucidate the latter, let us linearize the mapping (1.6) 
on the interval [-x*, ;:rl!-] substituting the function I (:!:f.t,x) 

by ±ft. + x (:x;~ft)/::x.* ,see Fig.5. CL'hen the above procedure (5.4-7) 
gives us instaad of S the standard Cantor set Ct; with the lar­
gest gap equal to Ll (5.6). Now it is clear that S is nothing 
but a smooth deformation of ,and deviations of the support SCA 
from the Cantor set are due to the nonlinearity of the functionCA 

A(x) , see (1.6) and Fig.5. 


Now we give a qualitative analysis of the Hausdorff (fractal) 

dimension /131 d! "" dH (5) of the support S in dependence on the 

physical parameters of the system (1.1). 


For the zero mean external random field we represent this de­

pendence in Fig.6 (the phase diagram). The condit1on b. (-ft, 

'X*(J,-ft, T>O») 0 (5.6) defines the boundary between two 

T 


2.J Fip,.6. 

kafn.3 


'fhe phase diagram for the model
) b.>O 

(1.1) (zero mean external1~O<d;f<1 with fractal order parameter d:f •~=:O 

d£='1 

1 1dJ~ 0
• "d.r "" 0 " , _~ ~""" .. ;o. Ito """"W'" 

essentially different regions: for fJ."> 0 the support S has 
a fractal structure with O<d.f < 1 , whereas for 6 = 0 (and 
formally for 6< 0 ,see (5.6) ) the support has no gap, i.e.~= 
=~. To discuss the behavioUr of d, as a function of (J,.ft,T) 
we use the approximation dr=:lci (CA) , whose accuracy depends on

H 
the accuracy of the linearized mapping considered above. Because the 
Hausdorff dimension dH(CA) of the Cantor set Ct; is well ­
-known /14/, one gets 

for { Cit,T) : fl ( h,;;C*) ~ 01 
d. (J, k,T) =1 :n. 2 

::f 	 x"t for l (t.,T): b.(h,x*»O}
il1.-	 (5.8)

x>t_h 
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The result (5.S) establishes the phase diagram presented in 
Fig.6 and gives a reason to consider 
fractal order parameter x • 

cI; == ci.; (J,"-, T) as a 

For instance, we obtained above that at T '" 0 the support S 
consists of a finite number of states (see Sections J and 4 )), i.e. 
cl.j(J,lt,T=O)=O • Therefore, with T-'t>O one should obser­

ve a transition of d.] to zero (cf. (5.S) ) which is continuous in 
the gap region, but should be discontinuous in the gapless one 
(see Fig.6). On the other hand, the function A (:c) tends to zero 
for T __ 00 (cf. (l.J) ). Then the support S reduces to the two­
-point set i-A,it.} because for A(x) - 0 the first gap increa­
ses and its end-points converge to ±Xil=±Jt. (cf. (5.6) and Fig.5). 
Consequently, d.j(J,h,T-'t>oo) 0 and the border l:1ne on the phase 
diagram shOUld behave for T -­ C>o as it is presented in Fig.6. 

Finally, for a nonzero mean external random field, f -itn. = 
=fto±hJ;:: we observe that for small fto>O (fr.o '-6 J) the fractal 
structure of the support.s becomes nonsymmetric. It contracts 

* *)to the left end-point Xl and stretches near Xr (cf. Fig.7 
while in the linear approximation the fractal structure is similar 
to that for ho 0 • .r'or large ho>D (Ito» J) the first gap rapid­
ly increases and the fractal structure approaches that in the linear 
approximation because the curvature of A (x:) for x;:e. Xl(x;- 00 for Ao ........ oo ) tends to zero. Therefore, in this case 
one can again utilize the approximation ct U (S)=d H (C 6 ) to evalua­
te the dimensionality of the support. 

6. CONCLUSIONS 

The present paper is devoted to the study of the one-dimensional 
random field Ising model (RFIM) by the stoohastio mappings method. We 
restrict ourselves to investigate the support S of the fixed 
pOints (or stationary) measure rather than calculating physical obser­
vables. As it follows from above, the knowledge of S and f'I (dx:) 
allows us to calCUlate the free-energy density (1.7), the magnetiza­
tion per site (1.9)and the Edwards-Anderson parameter (1.10). These 
calculations can be easily performed for T·O (e.g. using Table ); 
but not so easy for lr> 0 • Starting from the Chapman-Kolmogorov 

x VEry recently, the fractal dimenSion of the RFIM was calculated 
121/avoiding this approximation • The results support the phase 

diagram in Fig.6. 
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1.1 I 

-­ -, I .., 

x 

Fig. 7. 

The construction of the 
support (attractor) S 
and arising of its fractal 
structure for the mapping 
(1.6) with nonzero mean 
external field:O<~o<J. 

equation (2.1) (for unoorrelated random field see Ref. /8/ ) we can 
do these calculations as a systematiC expansion in terms of the 
momenta <~m> of the stationary probability measure corresponding 
to the Markov chain driven by the external field, see (J.5). Then 
for zero mean external field we get for the Edwards-Anderson para­
meter susceptibility the following l 

~i.tn~ 
T-O 0</;.2) 't EA= C>O 

(6.1) 

where the divergence is exponential for 0 <ol.:!; -1 • 
On the other hand, the most instructuve information about 

thermodynamics of the model is obviously contained in the behaViour 
of the support S including the "phase transitions" which we propose 
to characteri2le by the"order parameter" d.-r • Simultaneously as 
it follows from Section 4 we have lim m.'(/tD) = 0 for T'" 0 
( /15/ ) k.-±Osee also Ref. • Therefore, the phase transitions we discussed 
have no conneotion with the oontroversy oy the lower critioal dimen­
sion of RFlM (partially settled in Refs. 16-18/ ) where the magne­

tization is the order parameter. 
AB it is shown above, the local field. in the one-dimensional 

RFIN may have a very peculiar distribution with a nontrivial fractal 
dimensionality of its support. The natural question is whether this 
is also charaoteristio of other simple models, e.g. of mean-field 
ones. In recent papers /19,20/ the mean-field RFIN is considered for 
an independent and identically distributed random external field. 
From Ref. /20/ , ~ection J it follows that in this case the distri­
bution of the local magnetization only mimics that of the external 

field. 
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DeH Y., 3arpe6H08 B.A. EI7-87-138 

OAHOMepHaA MOAenb MaHHra B cnY4aHHoM none 

H CTOXaCTH4eCKMe AHCKpeTHWC oT06pa*eHMA 


OAHOMepHaR MOAenb MaHHra B cnY4aMHoM BHBWHeM none HccnBAOBaHa C no~~D 
CToxaCTH4eCKMX oT06pa*eHHH. PaccMOTpeH cnY4aH laaMapa*eHHOrol MapKOBCKOro 
BHBWHero nonR. OaKaaaHo, 4TO BCA HH$OpMaqMA 0 TepMOAHHaMM4eCK"X CBOMCTBax 
MOAenM COAepwHTCR B HHBapMaHTHOM Mepe, KOTopaR COOTBeTcTByeT HeKOTopaMY 
MapKoBCKOMY npoqeccy, ynpaBnReMOMY BHeWHMH noneM, H B 4aCTHOCTM, B HOCMTe­
ne S 3TOM MePW. npH HyneBoM TeMnepaType S COAepwHT KOHe4Hoe 4Mcno T04eK, 
a nPM HeHyneaoM ftBnfteTCA HexaOTM4eCKMM ICTpaHHWM/ aTTpaKTopOM C $paKTan~~ 
CTPYKTYpoM KaHTopaBCKoro THna. nOKaaaHo, 4TO $paKTanbHaR paaMepHOCTb df
HOCHTenft S HrpaeT ponb napaMeTpa nOpftAKa AnA AaHHoM MOAenM. MccneAoBaHa 
aaBMCMMOCTb S H d f OT napaMeTpOB MOAenM H TeMnepaTYPW. 

Pa60Ta BwnonHeHa B na60paTopMH TeopeTH4ecKOM $HaMKH OMHM. 

Coo&II_oca-o..., -C'I"In'yTII ~ _e,JIO...... Jlr&.1111 

Behn U., Zagrebnov V.A. EI7-87-t38 
One-Dimensional Random Field Ising Model and Discrete 
Stochastic Happings 

The one-dimensional random field Ising model is studied using stochas· 
tic mappings. The case of a (frozen) Markovian external random field is 
considered. We show that all information about thermodynamic properties 
of the model is contained in an invariant (stationary) measure correspon­
ding to some Harkov process driven by the external field and particularly 
in the support S of this measure. For zero temperature it contains a finite 
number of points, but for nonzero ones it is a nonchaotic (strange) attrac­
.tor with a Cantor-type fractal structure. The fractal dimensionality df of 
S is proposed as an "order parameter" for the model. The dependence of S 
and df on the model parameters and the temperature is studied in detail. 

The investigation has been performed at the laboratory of Theoretical 
Physics, JINR. 
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