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1. INTRODUCTION

The three—-dimensional Coulomb lattice gas (CLG) is often
considered as the simplest nontrivial model of the system of
charged point defects in ionic crystals. The model is a latti-
ce version of the restricted primitive model (charged hard
spheres) of ionic solution theory and consists of positive and
negative charged particles occupying the sites of a regular
lattice with the restriction that two particles cannot occupy
the same lattice site. However, the importance of the CI.G is
not restricted to the case of the charged defects. It is a
well-known fact that there exist the isomorphisms (with possi-
ble short range modifications of the Coulomb interaction) bet-—
ween the CLG and other interesting statistical mechanical mo-
dels - namely 'discrete gaussian'" and "harmonic rotator" mo-
dels "' . In this paper we will not use the aspects of these
isomorphisms. '

Some time ago a cormonly used approach for studying the
CLG and related models was the Debye - Hiickel (DH) theory/2”4/
or its later modifications /%8’ . It is well known that the
DH theory is predictive when the concentration of particles
is below = 17 and the coupling constant is not very high. In-
deed, in this case it has recently been rigorously proved that
the DH results are correct 7/ . In fact, there is a large
class of materials known as superionic conductors (see, for
example, "/ ) which appear to have the concentrations of -de-
fects higher than is the limit of the validity of the DH .theo-
ry. Some of the superionic conductors (CaF, , for example)
exhibit a diffusive phase transition when the temperature in-
creases. March et al.’®/ have proposed that the transition
may be driven by the defect subsystem. These proposals have
stimulated a new interest in the study of the CLG.

Recently, the CLG has beer investigated by Walker and Gil-
lan’17 | They obtained the free energy of the CLG by the Pa-
de” extrapolation of the series expansion of the free energy
in powers of kpa (kp is the DH screening parameter and a
is a lattice constant). They found the phase transition of the
vapour-liquid type. There is a clear connection between this
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critical point and the critical point found by Stell et alfll/
in the restrictive primitive model (further RPM). Very recent-—
ly another attempt towards the understanding of the behaviour

of the CLG has been made by Harder and Allnatt ' 18/ They have
obtained the thermodynamic quantities and correlation functi-

ons from the numerical solution of the hypermetted chain equa-
tions. A good agreement with the results of Walker and Gillan

was found although they were not able to reach numerically the
critical point.

On the other hand, there have appeared renormalisation group
treatments of the problem/13'14/ It is interesting that
they led to the contradictory result that the three-dimensio-
nal CLG does not exhibit the transition. However, as we shall
see, the value of the coupling constant plays a crucial role
hare and we leave further discussion of this controversy to
the last paragraph.

* The aim of this paper is to find the correlation functions
of the CLG by a different method from the previously reported
ones. In sect. 2 we define the model and use the correlation
functions theory in the mean spherical approximation as a me-
thod of solution. We shall see that it will be convenient to
express the free energy by the Pade” extrapolation of Walker
and Gillan but the coefficients will be recalculated according
to the present results. The comparing with the previous treat-
ments will be given in sect. 3 by the example of the localiza-
tion of the critical point. The last paragraph is devoted to
the brief discussion of the results.

2. THE MODEL AND ITS SOLUTION WITHIN THE MEAN
SPHERICAL APPROXIMATION

We consider a neutral system of two kinds of particles with
charges t e . The n particles of each kind occupy a three-~dimen-—
sional simple cubic lattice with the lattice constant 2 and
the total number of sites N . The particles i and j with the
positions T; and'ﬂ-, respectively, interact through the pair
potentials k

5> /
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where ¢ is the dielectric constant. The total energy is given
by : .
> > - -
E(r,,.o., 1, ) = X d(jr. = 1. 1),
1 2n i i
1<i<j<en (2)
Now we start from the well—known Ornstein - Zernike relatlon
(see, e.g- ,/15/) between the pair correlation functions ngU)—
= h T)+1 and the direct correlation functions ¢ (r) writ—
kl fm
ten in the lattice form

hp (1T ) = cd(1§\)+~i P Byn(IT, Ve plT =1 ). K01, 2

j (3)

Here, we explicitly assumed that the correlations are indepen-—
dent of the direction (k.f, m denote the types of particles,
pn 1s the concentration of particles of the type m ). In our
case pP1= pg =p = n/N and because of the symmetry of charges
we have h ﬂ\rlj = hgg(\ri 12 (Ir,\) = hy, (lrll) It is
clear that analogous relations hold for the dlrect correlation
functions. Now only two equations (3) remain instead of four.
If we add and subtract them, we obtain

)

HL (16 1) = CUnD + 3 H (T DO (T =1y ], (42)
H_ T ) = C_(It, ) + p s H_(r; DC_(|t; -7, 1), (4b)
with

HoOrn D o= b (5D + by (JT; D)

H_UF D = 0oy (15 D = hyp (17 D)

C+(‘;1D = Cll(l;il) + 012(|Fi |) (4c)

C_(f, ) = e, (IT; ) = e, (IT].

1

Now for the direct correlation functions we assume the mean
spherical approximation /18/
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together with
hy, © = h,©) = -1 (5¢)

and the coupling constant K is given by

K = e® )
B ’ (5d)
fakBT
and finally
- 1 -
o= —rg. (5e)

In the lattice case for the complete solution of equations (4)
and (5) only the quantities C,(0) and C_(0) are needed. From
(4a) with the use of (5) we immediately obtain

2p
e
P (&)

The quantity C_(0) = ¢y (0) —:¢y5(0) is more difficult to find.
We rewrite (4b) into the reciprocal space and by assuming (5)
we obtain the relation

1 a°g
5 f = = 1, (7)
87 I -pC_(0) + p2K ¢(g)
where
Cip e
d)(g) _ s (] _ , (8)
BAo (D

and the integration in (7) has to be performed over the first
Brillouin zone. Equation (7) in a slightly different form is
2
M(a) 2 X, (9)
47

1 432
M(a) = f—5 (10)
873 a”l+ ¢(g)
where
-1 1 - PC_(O)
a = ——— (11)
x® <
47
and
2
8mpe
x* = 8npK = = k5a®. (12)
kBT(a

Now we consider the function M(a) defined by (10). M(a) is
finite in the interval 0 <a <ag= 0.572... and M(a o) = 2.86.
The values of M(a) are found numerically by the modified
Monte-Carlo method with typical errors = 0.5-37. (The details
of the numerical part of the work will be given elsewhere’/177/).
The importance of the function M(a) is clear from the fact
that the internal energy U of the system may be expressed by

U—lkTC(O) 13)
N o it Y- (

which follows from (4b) and (5). A convenient representation
of M(a:) is obtained by using for the internal energy the Pa-

de” expression of Walker and Gillan. 10/
U 1
—_ - - k. T f(x)x, - (14)
N A B
with
1 + p,x
f(X) = X3 1 . (15)

2
1+ B X + goX

Originally the constants P;, 8. 85 were found from the series
expansion for the free energy as a function of X up to x8 —or-
der. This procedure gave P, = 0.555, 8, = 1.087, & = 0.2396.
However, the series appeared to be an alternating one with a




rather slow convergence. So, we will try to.find the constants
in such a way as to obtain.the best possible approximation of
the relation (9). This will be performed in the following man-
ner. Two relations between the coefficients will be the same
as in the original

P, = B, + g, ' (16)

g,=- B, - B g, 7) p
|

with B; = - 0.53199,, B, = 0.33869. The constant g; 1is ﬁ

found from the condition of the best approximation of (9) (in :

the least squares sense) in the interval O <a < 0.55. After
solving the corresponding nonlinear equation, one obtains
Py = 0.3295, g, = 0.8615, By = 0.1196. ' (18)
The approximation of M{« ) in this way is completely within
the previously involved numerical accuracy in the considered

interval. Now, by integration of the internal energy one ob-
tains the Helml'oltz free energy AcLg

AcLg = ALg + Ac (19)
"where A s 1is the lattice gas part

tiALG |

= (_’pln/} +(|—2p)]n(|—2{)) (20)
N

and A, is the Coulomb part

BAc 1,

~ TR, (21

(as usually B=1LkgT ).

e have obtained the desired free energy but equations (5),
(6) and (13) give also the estimations of the correlation func-
" tions. Moreover, because M(a) is divergent for a >ac , we may !
express the boundary of the stable solution of equations (4),
(5). Assuming M(a) = 2.86 together with (9) we obtain a stab-
le region

T— . —%

Y
X < 5.99. (22)

For x greater than this value we come to the region of the

- . / 16/ . :
condensation to the new (ordered) phase. It is rather in
teresting that very similar values were obtained by Harder and
Allnatt (1986) by the numerical solution of the problem in the
hypernetted chain approximation. They have assumed that the
AgCl system may precipitate into a perfect Suzuki phase 718/
Their estimates of the stability of the disordered phase were

X

A

6.76.

for T = 476K and
X < 5.35

for T
result.

= 676 K, which is in a remarkable agreement with our

3. THE VAPOUT-LIQUID CRITICAL POINT

In this part we compare present results of the localization
of the critical point with the estimations of Walker and Gil-
lan "9’ and also with the classical DH theory so as to see the
differences.

The expression for the Coulomb part of the free energy is

given by
( DH)
B A ‘
_M_TE_“__ Lo gl,(xd_ 2% « 2In(x + 1)). (23)
m

We shall try to obtain the critical point parameters by its
localization on the pressure-density diagram. The pressure is
simply
JdA
p = - (—) . (24)
IN B

Both (21) and (23) together with (24) lead to the isotherms
that exhibit the typical van der Waals at the sufficiently low
temperature. The critical parameters are found by the solution

g2
y o= (2P
ap B dp?

)B = 0. (25)



The critical parameters in the dimensionless units ( T* = The critical behaviour of the CLG is in a clear controversy

a~E-'kBT . a.€-p . a.e ) ) with the results of Kosterlitz’ls/ and with very recent results
= 5 Y, PT o= ST Ho= T ) are listed in the of Kholodenko and Beyerlein”4/. The claiming of Kholodenko
© © ‘ © and Beyerlein is: "Our results indicate the absence of phase
Table: ' { transition in d = 3 for a sufficiently diluted symmetric elect-

rolyte in complete agreement with the results of Kosterlitz".
It is clear that this claiming includes also the RPM model.

i ° I "owever, as Kholodenko and Beyerlein have claimed, their re-
Theory DH WG Present 1 normalization group method and al%f the corresponding method
of Kosterlitz are not valid for 7° > 1, where 7 is denoted by
Pe 0.002 0.069 0.017 1 them as a nonideality parameter which in our case reads
T 0.062 0.095 0.104 ez, 7,
10%p 0.27 1.62 2.87 1 LT a ’ (26)
. -1.25 -1.65 -1.73
X 0.99 1.56 2.03 where Z,, Zj are valgnc%es of the particleﬁﬂﬁg? Z = ij 1 in.
i our case). However, it is clear that n="T =- 10 at the cri-
tical point. From this point of view they are right: for T *>
> 1 there is really no phase transition at the CLG at low den-—
_ sities. However, in the light of present and previous treat-
The Table shows that the DH estimates are considerably lower ments of the CLG (and the RPM), their conclusion that there
when comparing with the other theories. It is also clear that is no transition at all is not correct, as we believe.

-tﬁe correction of the Pade” term in the high X region leads to We may try to apply our results to the real problem of the
h}gher values of the critical parameters especially of the den- defects in the ionic crystal. Probably, the most convenient
sity anq pressure. It is known that the Pade” approximation of will be a CaF, which is a representative of the high tempe-
the series expansion of the RPM has led to the lower values of rature superionic systems which exhibit the diffusive phase
the critical parameters when comparing with the best estimateés transition (Hayes 1978). The effective role of the chemical
as was i1¥ustrated by Stell, Wu and Larsen “11/. So, we believe potential in that system is played by tlie energy Ep required
that the increase of the values of the critical parameters for the formation of the vacancy-interstitial Frenkel defect
when comparing with the "pure" Pade” extrapolation is correct pair. For CaF, the ratio Ep/kglTs ( T is the temperature
also for the CLG. ! of the superionic transition) is estimated to be =~ 2079/ .our

estimation u& — TG~1! = 16.6 is in a qualitative agreement
., with this value. Cur estimation of the critical temperature
2
T, = T —2 (e = 6.5, & =0.28 nm) is =950K, which
4. DISCUSSION cakp
In this paper we propose a solution of the CLG within the . . . . . . . .

MSA. We have improved the accuracy of the expression for the is again qualitatively right Whe? comparing WIFh the exper:-
free energy suggested by Walker and Gillan (1983), further we , i mental value = 1420K . The ex1sF1ng dls?repanc1es are‘comple—
have obtained the estimations of the correlation functions and tely'understandable from'the point of v1ew.of neglgctlng all
finally we have expressed the region of stable solution of the possible Short range mOd%flcaFlons Of.the interactions and
MSA equations. We have also find the vapour-liquid critical ' OtheF factors (many-particle lnteractloﬂs, etc). .
point with the critical parameters higher than was reported by Flnally,.we note that the effect of gondensat}on for the
Walker and Gillan what is, as we believe, the right tendency. thermodynamic region X 2 6, we breifly discussed in the second
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part of the paper. The possible appearance of ordering will be
a subject of future investigations.
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Murtam JI. E17-87-103

KynounoBcKul peweTouHs ras
B paMKax cpepgHecdepuuecKoro npHbIHKeHUs

lipMBeneHO pemeHHe KYJOHOBCKOTO pemeTodHoro rasa (d-3)
B cpemHechepHueCKOM NPHGIIDKEHMH C HCIONb30BAHHEM pe3Yib—
TaToB Yonkepa u [xunneHa. [lokaszaHo, UTO cHUCTeMa MNPOHCXO-
OUT uYepes KPHTHYECKYI TOUYKY THIAa ras—XHOKOCTb IMPH HH3KUX
KOHILleHTpAalUMAX, M NpUBEAEeHh COOTBETCTBYWHHE KPUTHYECKHE
napaMeTrpsl. M3 pemeHHA MOXHO AAaTh OIEHKY KODPeIAIHOHHBIM
GYHKUMAM U 0671acTH CTAGMABHLIX pemeHHl ¢ TOYKH 3peHHA Mo-—
SABJIEHHUS BO3MOXHBIX 3bdEeKTOB YHNOPAMOUYEHHHA.

Pabora BemonHeHa B JlaBopaTopuu TeopeTHUuecKoOil ¢H3HKH
OUsAn.

Coobuenne O6benMHEHHOI'0 HHCTUTYTA ANEPHBIX UccefoBanmi. [ly6ua 1987

Mita'§ L. E17-87-103
The Coulomb Lattice Gas within
the Mean Spherical Approximation

The solution of the Coulomb lattice gas (d-3) in ‘the
mean spherical approximation by using the results of
Walker and Gillan is proposed. It is shown that the sys-—
tem undergoes a vapour-liquid phase transition at low
concentrations and the corresponding critical parameters
are given. From the solution it is possible to obtain the
estimation of the correlation functions and the region
of stable solutions with respect so the possible ordering
effects is estimated as well.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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