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J. INTRODUCTION 

The three-dimensional Cbulomb lattice ga s (CLC) is often 
considered as the simplest nontrivial model of the s ystem o f 
charged point defects in ionic crystals. The model is a latti
ce version oE the restricted primitive model (charged hard 
s phe r es) oE ionic solution theory and consists oE positive and 
negative charged particles occupyin~ the sites oE a regular 
lattice with the restriction that two particles cannot occupy 
the same lattice site. However, the importance oE the Cl.C i& 
not r estricted to the case of the charged de Eect s. It is a 
well-known Eact that there exist the isomorphisms (with possi
bl e s hor t ranse modiEications oE the Cou l omb interaction) bet
ween the CLC and other interesting s t a t i s t i ca l mechanical mo
deIs - namely "discrete gaussian" and "harmonic rotator" mo
deI s 11 / . In this paper we will not use the a spects of these 
is omorphisms. . 

Some time ago a conrnonly used approach Eor studying the 
CLC and r e l a t ed models was the Debye - Hückel (DII) theory / 2- 4/ 

or i t s later modifications / 5 . 6/ • It i s wel1 known that the 
DH theory i s predictive when the cbncentration oE particles 
is bel ow ~ 1% and the coupling constant is not very high. In
deed, in thi s case it has recently been rigorously proved that 
the DH resul t s are correct..'7 / . In Eact, there i s a l arge 
class of mat eriaIs known as superionic conductors (see, Eor 
exa~p le , '8 / ) which appear to have the cóncentrations of ,de
fect s hi gher than is the limit of the validity oE the DH ·t h eo
ry. Some oE the superionic conductors (CaF2 , for exampl e ) 
e xh i b i t a dif fusive phase transition when the temperature in
creases. March e t alo 19 / have proposed that the transition 
may be driven by the defect subsystem. These proposals have 
s t i mu l a ted a new interest in the study of the CLC. 

Rec ently, the CLC has bee~ investigated by Walker and Cil
l ~n /l01 . They obtained the free energy of the CLG by the Pa
de' extrapolation of the series expansion of the fr ee energy 
in powers o f kDa (k o is the DH s cr een i ng parameter and a 
is a lattice constant): They found the phase transition oE the 
vapour-liquid type. There i~ a cl ear connection betweeri this 

itlU 1!fídt'UHhii\ v,Hcmryl l 
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criticaI point and the criticaI point found by Stell et al(ll! 
in the restrictive primitive model (further RPM). Very recent
ly another attempt towards the understanding of the behaviour 
of the CLG has been made by Harder and Allnatt /12/ • They have 
obtained the thermodynamic quantities and correlation functi 
ons from the numerical solution of the hypernetted chain pqua
tions. A good agreement with the results of Walker and Gillan 
was found altho~gh they were not able to reach numerically the 
criticaI point. 

On the other hand, there have appeared renormalisation group 
treatments of the problem /13. 14/ • It is interesting that 
they led to the contradictory result that the three-dimensio
nal CLG does not exhibit the transition. However, as we shall 
see, the value of the· coupling constant plays a crucial role 
hare and we leave further discussion of this controversy to 
the last paragraph. 

. 'I'he aim of this paper is to find the correlation func tions 
of the C~G by a different method from the previously reported 
ones. In sect. 2 we define the model and use the correlation 
functions t~eory in the mean spherical approximation as a me
thod of solution. We shall see that it will be convenient to 
express the free energy by the Pade~ extrapolation of Walker 
and Gillan but the coefficients will be recalculated according 

.	 to the present results. The comparing with the previous treat
ments will be given in sect. ~ by the example of the localiza
tiDn of the criticaI point. The last paragraph is devoted to 
the brief discussion of the results. 

2.	 THE MODEL AND IT8 SOLUTION WITHIN THE MEAN
 
8PHERICAL APPROXlMATION
 

We consider a neutral system of two kinds of partictes with 
charges ± e . The n particles of each kind occupy a three-dimen
sional simple cubic lattice with the lattice constant a and 
the total number of sites N . Theparticles i and j with the 
positions ri and r j , respectively, interact through the pair 
potentials 

00,	 r i = r j 

-+ -+ /
ep(]r i -rj I) .	 (1)e i	 e j'" ri * ~j 

f	 Iri - rj I o 

~ 

where f is the dielectr~c constant. The total energy is given 
by 

-+ -+)
E(r , ••0., r 2n E 4> <-\ 1i - 1j I ),1 

lo::;;: i <j ~2n (2) 

Now we start from the well-known Ornstein - Zernike relation 
(see, e v g , , /15/) between the pair co r r e La t.ion functioJls gke(;)= 
= hke (1) + 1 and the direct correlation func.tions cem (r) writ
ten in the lattice form 

hkP (\ ri [) = c ke ( I~i I) + 1 P ~ h k (Iti) c n ( I; .- ti). k , P = 1, 2 
m	 

m 
J m J rnr 1 J (3) 

Here, we explicitly assumed that the correlations are indepen
dent of the direction (k,P, m denote the types of particles, 
P is the concentration of particles of the type m ). In ourm 
case Pl = P2 = P = n/N and because of the syrrnnetry of charges 
we have h 11( lr i I) = h 22 ( I"r i I), h 12 (\i\ I) = h 2 t (I;i \L It is 
clear that analogous relations hold for the direct correlation 
functions. No~ only two equations (3) remain instead of four. 
If	 we add and subtract them, we obtain 

-+ -+-+ 

H + ( I r i \) = C + ( I r i I) + P ~ H+ ( I r j I) C+ ( I r i - r j I), (4a) 
J 

H_ (I~i I) = C_([o;i I) + P ~ H_(lt j \)C_(17 i - rj I)', (4b) 
J 

with 

H+ ( i ri I) = h 11 (I ~ i I) + h 12 (,1; i I) 

-+	 -+-. 
H_ ( I r i I) = h 11 ( I ri I) - h 12 ( I r i I) 

-+ -+ -+ (4c)
C+ ( Ir i I)' = C 11 ( Ir i I) + c 12 ( I r i I)' 

C _ ( I;i I) = c 11 ( I; i I) - C 12 ( r -; i I). 

Now for the direct correlation functions we assume the mean 
spherical approximation/ 16 / 

3 



-+( l~ ) kI = - --+--' , n i I O (5a)c 11r i 
Ini I' 

c 12 (Ir i P = -r-. I: (5b)- n i o
 
I n i !
 

together with 

h (O) = h (O) = - 1 (5c)11 . 12 

and the coupling constant K is given by 

K =. 
e 2 

(5d)
(ak T

B 

and finally 
-+. 1-+ 
n. = -r .. 

I a I (Se) 

In the lattice case for the complete solution of equations (4) 
and (5) only the quantities C+(O) and C_CO) are needed. From 
(4a) with the use of (5) we immediately obtain 

2p

pC+ (O) = - •
 

1 - 2p (~) 
The quanti ty C_.(O) = c 11 (O) -: c12 (O) is more difficult to findo 
We rewrite (4b) into the reciprocal space and by assuming (5) 
we obtain the relation 

d 3 g 
=_1 r ------ 1, (7) 

817 3 1 - p C_ ,(0) + P 2 K çp (g ) 

where 

-+ -+
 
-i g . Il ,
 

-+
 e I 
(8)çp(g) = 2 -----, 

~i I: O \n Ii 

and the integration in (7) has to be performed over the first 
Brillouin zone~ Equation (7) in a slightly different form is 

x 2 
M ( a) d. ---, (9) 

417 

4 

where 

'{}3-+1 . g
M( a ) .f -, (10) 

817 3 a- 1+ çp(g ) 

where 

-1 1 -' pC_ (O) 
a ( 1 1) 

2x 

417 

and 

817p e 2 
k 2 2x 2 

817p K Da (12) 
k T (a

B 

Now we consider the function M(a) defined by (10). M(a) is 
finite in the interval O':;:.a .::;':.ac;; 0.572 ... and M(ac) ;;·2.86. 
The values of M(a) are found numerically by the modified 
Monte-Carlo method with typical errors :::: 0.5-3%. (The details 
of the numerical part of the work will be given elsewhere/ 17 / ) . 

The importance of the func t í.on M(a) is clear from the fact 
that the internaI energy U of the system may be expressed by 

U 1 
- = - pk T C (O) . ( 13)N 2 B -, ' 

which follows fram (4b) and (5). A convenient representation 
of M(a·) is obtained by using for the internaI energy the Pa
de' expression of Walker and Gillan./ 10 / 

u 1 
-- =.- kBT f"·(x)x,· ( 14) 

N 24'17 

with 

3 1 + P1 x
f (x ) x 2 (15) 

1 + g 1 x + g 2 x 

Originally the con~tants P1 , gl' g2 were found from the series 
expansion for the free energy as a function of x up to x6 -or
der. This procedure gave P1 = 0.555, gl = 1.087, g2 = 0.2396. 
However, the series appeared to be an alternating one with a 

5 



rather slow convergence. 50, we will try tO,find the constants 
in such a way as to obtain.the best possible approximation of 
the relation (9). This will be performed in the following man
ner." Two relations between the coefficients w~ll be the same 
as in the original 

P1 = B 1 + g1' (16 ) 

g 2 == - B2 - B 1 g 1 ' (17 ) 

wi t h B 1 = - 0.53199" B 2 = 0.33869. The constant g1 r s 
found from the condition of the best approximation of (9) (in 
the least squares sense) in the interval O ~a ~ 0.55. After 
solving the corresponding nonlinear 'equation, one obtains 

Pr = 0.3295, gl = 0.8615, g 2 = 0.1196. (18 ) 

The approximation of M( (l) in t h i s way iscompletely within 
the previously involved numerical accuracy in the considered 
intervalo Now, hy integration of the internal energy one ob-
t ai ns the He l.ml-o1 t z free energy A eLG ' 

A eLG = A LG + A e' ( 19) 

· where A LG is the latt ice gas part 

{J, A 
L G 

~ [J lu fi + ( I - :2 (J ) 1n ( I - :2 (J ) (20)
N 

and A e s the Cou l ornb par tí 

f3 A e __1 .1' (x ), 
(21 )- 12 77N 

(as usually (3 = 1, k B T ). 
~e have obtained the desired free energy but equations (5), 

(6) and (13) give also the estimations of the correlation func
tions. Moreover, because M(a) is divergent for a ., a e , we may 
express the boundary of the stable solution of equations (4), 
(~). Assuming M(u e ) ;: 2.86 together wi t h (9) we obtain a stab
le region 

x < 5.99. (22) 

6 

For x greater than this value we come to the region of the 
condensation /161 to th~ new (ordered) phase. It is rather in
teresting that very similar values were obtained by Harder and 
Allnatt (1986) by the numerical ~olution of the problem in the 
hypernetted chain approximation. They have assumed that the 
AgC} system may precipitate into a perfect 5uzuki phase /18/ • 

Their estimates of the stability of the disordered phase were 

x ~ 6. 76. 

li for T = 476K and 

x ~ 5.35 

for T = 676 K, which is in a remarkable agreement with our 
resulto 

3. THE VAPOUT-LIQUID CRITICAL POINT 

Ii1 this part we compare present results of the localization 
of the critical point with the estimations of Walker and Gil
lan /ill' and also with the classical DH theory so as to see the 
differences. 

The expression for the Coulomb part of the free energy is 
given by 

( OH) 

f:3 A e 
L_1_ ( x 2 _ 2 x 2 In (x ' 1 )). (23)

N 877 

We shall try to obtain the criticaI point parameters by its 
localization on the pressure-density diagramo The pressure is 
simply 

P (~) (24) 
ôN (3 

1

80th (21) and (23) together with (24) lead to the isotherms 
that exhibit the typical van der Waals at the sufficiently low 
temperature. The critical parameters are found by the solution 

.
 
a2 p
ap )IV (~-{3 ){3 o. (25) 

ap ./ ap 2 
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The c r i t i.caI parameters in the dimensionless units ( T * 

a . E • k BTa. :E • p * a· E ' •• 
= - ' , p *.= ---, , 11 = --2-" 11 ) are Lí.s t ed i.n the 

2e2 e e 

Table: 

Theory DH 

Pc 
T*c 

1Q4 p ê 
Il~ 

Xc 

0.002 

0.062 

0.27 

-1.25 

0.99 

WG Present 

0.009 

0.095 

1. 62 

-1.65 

1.56 

0.017 

0.104 

2.87 

-1.73 

2.03 

The Table shows that the DH estimates are cànsiderably lower 
when comparing with the other theories. It is also clear that 

• the correction of the Pade' term in the high x region leads to 
higher values of the criticaI parameters especially of the den
sity and pressure. It is known that the Pade' approximation of 
the series expansion of the RPM has led to th~ lower values of 
the criticaI parameters when comparing with the best estimatés 
as was illustrated by 5tell, Wu and Larsen 111/. 50, we believe 
that the increase of the values of the criticaI parameters 
when comparing with the "p'ure" Pade'" extrapolation is correct 
also for th~ CL~. 

4. DI5CU55ION 

In this paper we propose a solution of the CLG within the 
M5A. We have improved the accuracy of the expression for the 
free energy suggested by Walker and Gillan (1983), further we 
have obtained the estimations of the correlation functions and 
finally we have expressed the region of stable solution of the 
M5A equations. We have also find the vapour-liquid criticaI 
point with the criticaI pararneters higher than was reported by 
Walker and Gillan what is, as we believe, the right tendency. 

TIle criticaI behaviour of the C~G is in a clear controversy 
with the results of Kosterlitz/131 and with very recent results 
of Kholodenko and .Beyer l e i.n " 14/. The claiming of Kholodenko 
and Beyerlein is: 1l0ur results indicate the absence of phase 
transition in d = 3 for a sufficiently diluted syrnmetric el€ct
rol"yte in complete agreement with the results of Kosterlitz". 
It is clear that this claiuing includes also the RPM modelo) !:owever, as Kholodenko and Beyerlein have claimed, their re
normalization group TIlethod and also the corresponding method;1 3of Kosterlitz are not valid for 1 > 1, where ry is denoted by 
them as a nonideality parameter which in our case read€ 

e 
2 Zi Zj 

ry (26) 
f k T a

B 

where Z i ' Z j are valencies of the partic les (so Z i=: Z j 0= 1 in 
our case). Howcver , it is clear that TI -= T *-:1 ;. 10 at the cri
tical po i.n t , From this point of view they are right:' for T * > 
> 1 there is really no phase transition at the CLG at low den
sities. However, in the light of present and previous treat
ments of the CLG (and the RPM) , their conclusion that there 
is no transition at alI is not correct, as we believe. 

We may try to apply our results to the real problem of the 
defects in the ionic crystal. Probably, the most convenient 
will be a CaF2 which is a representative of the high tempe
rature superionic systems which exhibit the diffusive phase 
transition (Hayes 1978). The effective role of the chemical 
potential in that system is p l ayed hy t l.e erie rgy E F required 
for the formation of the vacancy-interstitial Frenkel defect 
pair. For CaF2 the ratio E F /k BTc (T c is the tempera ture 
of the superionic transition) is estimated to be ~ 20/9 / .Our 
estimation -: - Tt- 1 = 16.6 is in a qualitative agreement 
with this value. Our estimation of the critica] temperature 

2 

Te T* e ( é ~ 6.5, a = 0.28 nm) is ~ 950 K, whichc Eak B 

1 is again qualitatively right when comparing with the exper i.> 
mental value ~ 1420 K. The existing discrepancies are comple

1'1 tely understandable from the point of view of neglecting alI 
possible short range modifications of the interactions andr other factórs (many-particle interactions, etc). 

Finally, we note that the effect of "condensation" for the 
thermodynamic re~ion x ~ 6, we breifly discussed in the second 

I 
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part	 .of the paper. The possible appearance of ordering will be 
WILL YOU FILL BLANK SPACES IN YOUR LIBRARY!a subject of future investigations. 
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MHTam ll. El7-87-103 
KynoHOBCKHil pemeToqHblli rag 
B paMKax cpeAHec~epHqecKoro npH6n~eHHH 

llpHBeAeHo pemeHHe KynoHoBcKoro pemeToqHoro raga (d-3) 
B cpeAHec~epHqecKOM npHOn~eHHH C HCnOnbgoBaHHeM pegynb
TaTOB YonKepa H ~nneHa. lloKagaHo, qTo CHCTeMa npoHcxo
AHT qepeg KpHTHqecKyro TOqKy THna rag-XHAKOCTb npH HHgKHX 
KOH~eHTpa~HHX, H npHBeAeHbl COOTBeTCTByro~e KpHTHqeCKHe 
napaMeTpw. Hg pemeHHH MO~Ho AaTb o~eHKY KoppenH~HOHHb~ 
~YHK~HHM H oonaCTH CTaOHnbHb~ pemeHHH C TOqKH gpeHHH no-
HBneHHH BOgMO~HbJX 3~eKTOB ynOPHAOqeHHH. 

Pa6oTa BbmonHeHa B lla6opaTOPHH TeopeTHqecKo:H ~HgHKH 
mum. 

Coo6~eHHe 06J.e,!lHHeHHOro HHCTHyYTa R,!lepHbiX HCCJie,!lOBaHHH • .[(y6Ha 1987 

Mita's L. 
The Coulomb Lattice Gas within 
the Mean Spherical Approximation 

El7-87-I03 

The solution of the Coulomb lattice gas (d-3) in the 
mean spherical approximation by using the results of 
Walker and Gillan is proposed. It is shown that the sys
tem undergoes a vapour-liquid phase transition at low 
concentrations and the corresponding critical parameters 
are given. From the solution it is possible to obtain the 
estimation of the correlation functions and the region 
of stable solutions with respect so the possible ordering 
effects is estimated as well. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR • 
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