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Squeezed states of the radiation field that may have po-
tential application in low-noise precision measurement and de-
tection, have become the subject of extensive theoretical[1—1ﬂ
and experimental works[14,15] . The potential applications of
the single—mode[16] and two—mode[17] squeezed states in the
detectors of the gravity waves have been considered.

The squeezing in the resonance fluorescence has been in-
vestigated ijlﬁ-13] . In particular, the spectrum of squéezing
in a one-atom fluorescent field has been calculated by Walls
and coworkers in ref. b?) , where the possible maximuﬁ squeez-
ing was considerably less than a perfect squeezing and absent
for the case of intense external field.

In our previous work DB] , we have shown the existence of
a large squeezing in the mixture of two sidebands of the col-
lective resonance fluerescence in the case of intense external
field when squeezing is absent for the whole fluorescent field
and for the separate spectral line of Mollow's triplet,

In the present paper we wish to give a spectral analysis
of the squeezing in the mixture of two sidebands of the collec—
tive fluorescent field. The calculation based on the experimen—‘
tal scheme with the use of the Fabry-perot spectrum analysers is
discussed too.

We consider the resonant fluorescence from N two-level
atoms of the Dicke model interacting with a monochromatic driv-
ing field with. the frequency &, and an emitted field (Fig.1).
In treating the external field classically and using the Mar-

kov and rotating waves approximation with respect to the coupl-
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w, ;Q 12> Fig. 1. Two - level atoms inter-

Y Y Ty T acting with the external field
W, t and with the emitted field.
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ing of the system with the vacuum field, one can find a master
equation for the reduced density matrix @ for the system alone

in the form,PBJ

g;g: -t [%(JLV‘TH) + G (Jil.":);4)) 9]
X (T Ty 8- TS5y + M) = Lo, (1

where ¥ is the transition rate |2> —»|1> for spontaneous ra-
diation; 4 :‘k&{-COL is the frequency detuning of & resonance;
G =- d“ E, is the matrix element of the driving field and
atomic interaction, J,; (k ,J = 1,2) are the collective angu-
lar momenta of atoms having the following form in the Schwinger

representation.ﬁ9]
. .
ka = C‘( CJ. ( k,J = 4, 2,) )

where €, obey the boson commutation relation

[C ICJ'J = 6"] .

Further, we investigate only the case of an intense driving field
or a large deturning 4 , so that

1
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As in the work P3] , we make the canonical transformation permit-—

ting us to move from bare two-level atoms to atoms"dressed'by

external field

(‘,1 = 056G Q, + Stng Qg i

C =—-5L'n§Q1 + CsG Qg

where tg 2¢ = 2G /A and Gu satisfy the boson commutation

relation

.[Gx'Qj] = 5::5 ’

go that the collective angular momenta for the dressed atoms

Rkj (k, J o= 1,2) satigfy the commutation rela-
tion
R . ses P . ‘. ’ .
[Rej. R ] = Ry - Ry Siv - )

After making the canonical transformation (3) and in the
case when the condition (2) is fulfiled, one can use the secular
approximation[?O,TB] y 1.e. neglect the part of the Liouville
operator appeared in eq. (1) which contains ra-
pidly oscillating terms at frequencies 2 and 4«1 , and find
the stationary solution of the master equation in the form[13]

N
§= vueout= ZJZ x™ [N ><N ] (5)
M:o
where U is a unitary operator representing the canonical

transformation (3) ,
N+4

A= cigfe = (X -4)/(X-4),

A
H&} is an eigenstate of the operators KH , N = RH + RZL'

By using solution (5), one can calculate the statistical
n
moment < R44 >, where < B> is' the mean value of an operator B

insteady-state (5). In particular, we find

- + 2
<RH> = 24(NX~’2:(N+4)X~4+ X)/(X—4) 6)

-4 4
RYy=1 (V552 b ane X" )

- x-x)/ (x-1)°,

In the cagse of a large number of atoms, by application of

(7

the quantum fluctuation regression theorem and the method of

factorizaticn by Compagno and Persico{?1l » one finds the sta-




tionary atomic correlation functions (Ru(f) Rulo)> ’
LRy (DR (@Y, (R (O Ry (Dena  (Ryl0) R, (1)

in the form

(-2n-roHv
{Rg(®) Ryyt2y = € {RgRy?> ®
(-2tn - )T .
{Rgy (0 Ry (D> e P KB Ry > (9)
(2n -T)T
(R, (® R, (02> = (4 (R Ry> (10)
) (2l -13)t
{ Ril(t) R“(O)) = < R“ RM >, (11)

where

[ < ¥ [sin's + sinGcos ™ + L (sin' - 505%)(”'“’(“»](12) ’

[,=¥[sin*os’¢+ cos’g *%(5"”24 - cos’§ )(N'“RH%)] (13)

are the spectral widths of the two sidebands centered at the
frequencies COL-A'\'/-n— and CJL + &Ll | respectively.
Using the commutation relation (4), one can write the sta-

tistical moments (R“R11> and <R1LRM> in the form

X .
= - 1
{RyRy> = = <R/> + (MRS + N (14)

N

{RygRyy > = - SRy > + (N+<Ry> ’ (15)
where statistical moments < Ry,> and < R{:’) can be found in

(6-7). Further, we consider the normally-ordered veriance in
the mixture of two frequency components of two sidebands. In
the radietion zone, the positive frequency part of the electric

field has the form[8,12]

~{w, (E-2fc)

E"R, 1) = E;‘;’e;(&’,n + 90 T (t-2/e) e

bl
a7

where W(X) is a geometrical factor, A = || .
With the use of the canonical trensformation (3), the ato-
mic collective angular moment J;z(t) has the structure
. 1 ~ -ant
= . {)-Rd Co -
3y (2 Sin g.cos §(RL) R D+ Cos™G R (2 €
T it 18
, - sin*G Ry (1) € , (18)
where .
want int

R{Lu) = Rﬂ(t) 14 )

~ 2
Ru('t) = R“ (t) €

In the secular approximation R'l(t) and R“(t) are the
slowly varying "dress" atomic operators.

In the following calculations we drop the free part
+)

Efree

mally ordered variance of fluorescent field. The delayed time
contribution has been ignored too [22] in the stationary limit.

By applying the relations (17-18) and the secular appro-
ximation, one finds the Fourier transform of the field
at two frequencies \’1 and vz located on the two sidebands
in the form

O, w 2n-g)z vios’s Ryl
(19)

E(”(anc', W-2N+E ) = - W(x)sin'é Ry (€D

where

81
g, = -(W-22)+Y

{]

Q)L-gi.ﬂ.—l){ )

The in-phase ( 51 ) and outwof~phase ( E‘, ) components of the
mixture of two frequency components on the two sidebands of

fluorescent field are defined as

in relation (17) which does not . affect the nor-'



= - A E®R Eev
(%,€,8)= % [E xX,8.5) + E, (nguex)]’(eo)

> - e TSI )y =>
1 (X8 8 )= -z—f[EM (x,€,8)~ E': (%, El,ez)] »

where
o) { [ 2> e "
E"(x,ei,il)-ﬁ[E (x,c+2n-€)+ E (xw ung)},
) - % 420 -8 0 EC(E, w-20+€ )} :
E, x,s“ez)—vz[ﬁ C

By using the stationary atomic correlation functions (8-11),

one finds

R 2

Ry (e R (6))= SCE-EDKRy R "o, (1
E' + l;

R ar.

<Rm(e_,) ()= 8(E -ED<R R, Rey% - W. (22)

4 -

By applying relatlons (19~ -22), the normelly-ordered veriance of

the operators E{,L(Eﬂz,)ls
~ 2
<: (AEg,z(ff:EL)) $ D 6(81-£L)' SCE), (23)
where
. 4 2
51,5 (80 :g {(COS G 3 5in"G.cos'G ).<R Ry >
(24)
0 ( -
smé-rSL"GCOSG)(‘ ‘—}
2 144 2 2
E + r+ &7 L

For simplicity, we have dropped the argument 5; (the position of
the detector) in equation (23-24) and ha;e followed the usuel

convention after the works[7,12] o« The integretion of the spect- i
rum of squeezing Stz(s4)over all frequencies gives the expres- T[
sion for the normally-ordered variance of the mixture of two j’
gidebands given in our previous work[13] « One can easily sce o

6

from relation (24) that squeezing is absent.for the case 'of exact
resonance A = 1,

The gpectrunm Of‘Squeezing 31(81) as a function of §§ for
the case of X = 0.8 and various numbers of atoms are plotted in
fig. 2. The sgpectrum of squeezing 91(84) has the Lorentzian
form with an optimal degree of squeezing at the point 51 = 0,
i.e. when two frequency components are located a£ the frequenci-
es W +2n end W - 2.1 respectively. The value 5‘(ﬁ='b) as
a function of the parameter X for various numbers of atoms
is plotted in fig.3. As is seen from figs. 2-3 the"large squeez-~
ing is given. For the case of a large number of atoms the maxi-
mum squeezing tends to the limited wvalue St = ~-0.25 (perfect
squeezing), as for the case of ideal parametric oscillators
operating near the oscillation threshold[4] + We note that
for the case of intense external field .when the condition (2) is
satisfied, the squeezing for the separate freaquency component is
absent. The maximum squeezing’af the separate frequency compo-—
nent  for the one-atom case[j2] exists in a narrow band around
V=W, for the case 41 = (3 -V¥7) ¥/4 and can reach the value
-0.07 that is considerably less than the giVén about maximum
squeezing of the mixture of two frequency component located near

the two frequencies CJL+111 and CJL..QJI s respectively.
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Fig. 2. Spectrum of squeezing L N=100

31 (51) as a function of 51 I8

Fig.3 Punction 5 (§=0) 1is

for the case of X = 0 8. plotted against the parameter X .



In the simple interpretation, the large squeezing of two
gidebands resonance fluorescence is connected with a strong cor-
relation between the photons of the two sidebands (they are emit-—
ted by pairs)[23—25] and fluorescence process of two sidebands
is considered as second-order nonlinear scattering. Finally,
let us discuss the normally-ardered variaﬂce of the mixture of two
fieids Ei:(t) and E;:(t) frequency filtered from fluorescence
by two Fabry-Perot analysers which have the filter frequencies

equal to

w —'-(AJL-}-Z.('L)

04

Wy, = W - . (25)

+) (+)
After the works [12,22] , the fields E(w(t) and Eoz“) can

be written as

’ -

+00 . p
(W 4 2 (2.2
t E+(t) di’ =

+? ’
E, ()= § Jt-t)e
400 7

-

S (W 2n-E )1~ ~
el.( L+ 1 Jf(“£4)E(+)(wL+1ﬂ'E.1)‘d€'f >

_? (26)
» el ’ (W -2n) (-2 4, )
SNOERIRATRSY: - EC () dt’ =
178 e
Pl - £,04 «~ ~
= (el 198 ¥ o) B -rnag ) de,
-2
(21)
o - T
where J (T = () (ar) € )
o, -T1 T
Jo = 8(T) (20) v g2

with [, , [ are the filter bandwidths aend J, (£ ) eand

JL(Et) are the Fourier transform of Jq (T) and 'Tt(t)’ res-

pectively. The in-phase ( E( () ) and out-of-phase ( Ea(t))

e ——

[ S s—

—— e

components of the mixture of E‘;:,(t) and E:t)“) can be

defined as (20)

{ @) =)
E, () = 1 [Epp () + E (1]
- I3 [
E ) = 3 [Fpp@ - Eg]

where

+) _4 o) ) E“"(t)
Eno-(t)‘ff[EM“ + B J

E:;(t): ',iz [E, ) + Esy @]
By uging the relations (19), and (21,22), one finds the normally-
ordered variance of components E{(t) and Ek(t) in the form:

¢ (AEu)l’: > = %’{(cosl'g F stnx'g.ws"g)._f_ﬂ_ﬂﬁr_zl.,

ot '+ (28)
+(5£n"§ ?sc’nzg.w‘sx’_@).iﬂiﬂgﬁl i)
Iy + I

where for simplicity two filter bandwidths are assumed to be
equal, r = =1_.

4 X ]
It is easy to see from relation (28) that in the limited

case of 'rD <L r;, r_ -rthe value <{: (Ai;.)z> coincides with
the maximum squeezing S ( 8‘-= 0) (see fig.3) and tends to the
limited value I: (AE&)% » ==1/4 for the case of large number of
atoms., In the case when I‘D ~ f;) [ the velue <: (4 E1 )X/ >
describes the squeezing of the mixture of iwo sidebands end maxi—
mum squeezing can tend to the value <: (4 Ei)a > = -1/8 when

a number of atoms is large.
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