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I. Introduotion 

Many physical properties of trans-polyacetylene (PA) are 
explained with 'oonsiderab}e sucoess by the well-known Su - 8chrieffer 
_ Heeger (8SB) _ model /1 and its continuum versions /2,3/ • A lot 

of theoretical and experimental papers has been devoted in the last 
few years to olarify the existenoe and physical role of 8uoh highly 
non1inear defect states as solitons and polarons (for rev.1ew, see 

/4-6/ . e.g. . J • Recently.there is an inoreasing interest in modifi­
cat10ns induced by effects pers1sting in real PA, but neglected in 
the original SSH-treatment. Interohain ooupling and additional long 
range hopping (e.g., next-nearest neighbour hopp1ng denoted by t 2 
in the following) are the s1mplest genera11zations of the SSH-model 
since they db not change the single-particle character of the modele 
Whereas the ~roperties of the defectless, ideal dimerized state are 
quite olear 7-10/ the investigations of the 1nfluenoe of additional 
interactions on the defeot states are much more difficult. It has 
been demonstrated by Maki and Baryswyl /4,9/ that an interchain 
ooupling resulta in a confinement of aolitons (8) and antisolitons 
(8 ). It is characterized by the distance-.4- 10 ,where !. 
• 2 at o lA0 is the so-called coherenoe length of the SS~odel. 

The oonsequenoes of the electron-hole (e-h) symmetry breaking 1) 
by, e.,., t 2 - terms are invest1gated very briefly in few papers 
/14-16 • One 1JIlportant result is the statem.ent of Kivelson and 
Wu/16/ that the presenoe of suoh terms results in a nonradiative 
deoay of charged S. S_ paira into ne~tral 50 ~ ones wh1ch 1s 
forbidden in the SS~odel. The influence of t 2-terms on the 1nd1T1~ 
dual oharaote:r;ist1os of so11tons or polarons rema1ns controversal 
or has not been cons1der7d at all hitherto. 

8tafstrom and Chao 14/ have investigated numericaly a chain , 
w1th 60 sites. Aocording to thes8 authors, the soliton level rema1ns' 
in the gap oenter, but the shape of the S and S wave tunot1ons 
ohange considerably. In contrast, the wave functions of the extended 
s;l1!!-I!main almost unchanged. 
r Somet1mes 1n the quantum ohem1stry literature th1s s1JDD1etry is 
oalled·also as Pariser alternanoy symmetry /ll/~ charge-conjuga­
tion symmetry or pseudoparity /12/ (oomp. /1)/ ). 
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In this paper we want to give some arguments that the ohosen 
chain length of 60 sites may possibly be too short for typical 
PA-parameters. Furthermore the calculation method is not opt1mized 
in order to get accurate ~esults for sufficiently long chains. 

According to Kivelson and Wu/15/, the existence of t z - terms 
leads to a splitting of the creation energy of opposite charged 
solitons proportional to t 2 • This result is obtained by a pertur­
bational treatment of a higher order continuum model presumably 
without self-oonsistency. Their result is understandable as a shift 
of the soliton leveI out of the gap center by the sarne order of 
magnitude. 

From the general point of view the following questions arise: 

i) Is the aoliton leveI shift out of the gap center compatible 
with a reflectionless shape? 
ii) What happens with the unique spin-charge relation since the 
proof of Jackiw and Schrieffer /177 is obtained by the use of the 
electron-hole symmetry of the denaity of states and the exact 
midgap position of a localized defect. Such questions canDot be 
treated in a r~gorous manner by continuum models as has been demon­

/18/arated by Shastry for the standard case. Finite band correc­
tions lead to artificial irrational fractional charges since the 
cutoff procedures are not unique. Besides, the inspection of the 
changed density of states of the approximate discrete sol~tion 

given by SSB demonstrates that the main change occurs near the band 
gap due to the presence of a soliton. Nevertheless, a finite change 
at the bott,m of the valence band and the top of the conduotion band 
is shown /1 , too. In the presence of t 2-terms even at this extremal 
band edges the symmetry breaking i5 the strongest one. Therefore 
one nees for rigorous statements solutions of the disorete problem. 

As a .first step .Ln this direction we obtain discrete equations 
using a method developed by Shastry /18/ for the standard case. 
Equations for the evaluation of the electron energy. eigenvalues and 
wavefunctions are derived in sec.J. In sec.4 a set of self-consis­

'tent equations is obtained where next-nearest neighbour interatomio 
forces are taken into aocount, too. In sec.2 some arguments are 
g1ven for a restriction to a reduced Hamiltonian which i6 confined 
to 'next-nearest neighbou~ effects. In sec.) we show that the perfect 
dime;ized state satisfies these equations. In conn~otion with v~ri­
ous continuum models derived in seo.) some consequences for defeot 
states are discussed in seo.5. 
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2. The Model 

Fol10wing our previous paper /10/ we start with the general 
Bamiltonian in the site representation 

_ -+- .., cO 2­

H =: - ~ ~ t"+l " (c n+L S Cn 5 + h.c_) + 'I ~ ~ll UnH. - U") (2.1) 
.."" \1,\ • " L::" } 

where both the first terms in t~ r.h.s. describe the rr -electrons. 
It oonsista of contributions from arbitrary long-range hopping 
processes uenoted by 1. The aecond term in the r.h.s. arises from 
lODg-r$Dge interatomic forces and the binding energy of ~- elec­
trons. The hopping matrix elements are expanded.to first order 
with respect to the undimerized state 

tl'1+l,Yl ~ t l - OI. L l U"H - U n ) I l = 1.2., .... (2.2) 

Usually, the quantit;r til in eq,. (2.2) is denoted by to. 
In order to estimate t 2, ol.~ and the influenoe of higher order 

terms we use an exponential ansatz often app'l Led in quantum 
chemistry literature, e.g. /18-21/, or in exactly solvable Peierls 
model /22-24/ for 1 =1 

(2.))t n H , \'\ ~ to eJ)(f [- ~: (IRn - R:~LI - Ro )) 

where -Rl desoribe the position of the l t'n atom, From the physical 
point of view such a behaviour can be expected if the long-range 
hopping constants are very small. Otherwise, orthogonalization 
oorrections due to the nonorthogonality of molecular orbitals give 
r1se to an osoillating behaviour of the long-range tails of the 
Wannier functions which can reault in· a markable difference from the 
simple form (2.)) at large distances. Keeping in mind these consi- • 
derations, one can estimate the magnitude of the long-range hopping 
integraIs by making use of recent l.nformation (see below). 

For th1s purpose we consider a ~ig- zag PA-ohain with 1200_ 
? 

bond angles and a mean carbon-carbon distance R = 2a1f3 ~ 1.4 Ã • o 
In particular, the relations 

t2.VI!t o~ etKp (- o.~:o \n fT -,,) ] l=2.\'1 = 2)4, ... ) (2.4) 
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and 

ta.I'\+'\ /t o ~ et!C"f>l-o.~~o (~'3Yj(~+1)"1 -1)]) l= 2n+-1 = -1 1 '3) ,.. I (2.5) 

are obta1ned from (2.3). 
Equat10n (2.4) can be used to e stimáte the val ue of eJ.." 

from the exper1mentally observed d1spers1on of the lower 11- 'ir. 
1nterban, trans1tion edge. From the eleotron 10ss data of F1Dk and 
Le1s1ng 25/ for hifl~ orientec:L PA, we deduced 1n /10/ It2 1 /to':l;:.O. 05. 
Furthermore, 1n /19 for the whole 'ii-1I*' bandwidth 4t -::::::. 12.8 eV o 
and the Pe1erls gap parameter E,.= 8d-uJ! Uo~ 1.8 eV were obtained. 
US1ng the relation o.SSH =(fiI2)olH /4/ we get from (2.4) (in units 
of aV/Á) 

o(SSH ":: o.s ws: .. LrI (t o /t 2. ) :::::-- 8. 091e V/Á	 (2.6) 

(for the value t2/to~ 0.1 obtained from a bandstructure f1t by
 
Springborg /10/ , one has Ol.SSH ~ 6.2 eV!'Â, a conslderably smaller
 
value). The value of eq. (2.6) ls 1n surpris1ngly excellent ,sree­

ment w1th the estimates et.ss.~ ~ 7 ••• 9 eV/A by other authors 4/ who
 
fitted,e.g.,Raman experiments, whloh leads to the exper1mental ob­

served dimeDization amp11tude u ;::::. 0.026A o r y~OI=(jl.4o ~ 0.0481
 

. o	 /26/ (ol o
These values agree wlth those of Fincher et aI. . YH ~ 0.05A
 
being obta1ned by X-ray d1ffraotion and NMR nutat10n data. From eq.
 
(2.5)	 we get tJ/t ~ 1.19 10-3 or 5.6 10-J for ~ 0.1. o t 2/t o
 
Therefore, long-range hopp1ng beyond the next-nearest ne1ghbours
 
can be neglected. AlI symmetry breaking eff~ots are already taken
 
into ~ocount by t 2 - terms and higher order terms cause only small
 
renorma11zat1ons. In particular, the renorma11zat1on of the tlght­

bindlng band w1dth (4t )
 

o	 f'3W1c+'WI+1~ --1 

f3 --1 (2.7)w:: Ltt [1 + ~ (ta..... ) ] ~ ltt o (1+ tto 
3

) 
o 

WI:~ to 

18 of the order 10-J. Analogously, the renormallzat1on of the 
'peierla gap 15 of the same order 

(2.8)E~ ~ 8 olss~ w, (1- t 3 / t o ) ' 

The l1near expans10n coeffic1ents of eq. (2.2) are est1mated by 

O(t. ~ (tl./to )OC1 =: (t,ltó)O(sSij	 (2.9) 
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According to the papers of Harrlson /27,28/ and Weber /29/ , an 
exponential behav10ur 1s expected for the lnteratomic forces 1n 
semlconduotors, toa • However, due to the zlg-zag geometry of the 
PA-chain and the strong an1sotroplc dependence of the ~ -bond1ng 
the interatom1c forces are expected to vanish even faster than the 
electron hopp1n.g 1ntegrals with lncreasing distanoes. Therefore, we 
restriot ourselves to the nextnearest nelghbour interact10n K2 and 
K1» K The reduced Ham11ton1an 15 rewritten w1th hlgh accuracy

2• 
as 

\-\ = HQ.L + \-h~t	 (2.10) 

.He.l: -L. ((~-Vi)(Ci4-:'$ Ci.s + h.c.) T (2.11)
i .s 

+ t 1:' -	 o..tViH +Vj)) (c:..:.s Ci.!o + h.C.))) 

7­

H = 1. '" '2. + ~2. t= (Vi+'\ +Vi)	 (2.12)
l~t 2.x, IÇ. Vi 

I 

where	 dimens10nless notatlon 1s 1ntroduced: 
2.-	 (2.13)cl..~ :: ~ V. =: d.." (Ui.", - Ui) 

I to	 'li" = K"to 

and	 2­
ol..I\ 

T tz. I to elo = cl..z./ol,,::::.. r ) ~z.: \.\z.t	 (2.14)o 

J. The Electronic Eigenvalue Equations 

In order to derive discrete equations for the e1ectron energ1e~
 

and wave funct10ns 1t 15 convenlent to impose per1od1c boundary
 

oond1tions
 

Cm+N	 (J.l )~ c.; ) V, ..... +N == \J..."., ) ~ ~m~ N)	 ., . 

where N is the number of sites of the cha1n being under oons1dera­


tion. Introduoing Fermion e1genstates for a g1ven lattice conf1gu­

~at1on tu1) or \v11 by
 

I '\' > == L "'fIA ~ W1) c~ IO:> , (J.2 )
 
,.,. WI 
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where 10» denotes the vaouum state. The differenoe equations are 
obtained in the adiabatio limit from 

(J.J)Hü\Y,..> = E..JA \"Y,....:> I 

b1' using eq. (2.10.•.2.14, J.1. .. 3.2) the antioommutation relations 
for the oi and 0r operators, the oompleteness of o~ lo> in the 
Fook spaoe ~d 0m I O> • O, respeotivel1'. 

We obtain 

f}A "r,... (m) =
 

:c (V _,, - -1 ) "'t',u ( m - I\ ) + (VW\-1)Y,ulVYI+'1)+

m (J.4) 

+ ( d.. ( VWl +... + V ~ ) - T] 'r,u ("' +z) + 

+ [d.(V'M-'" +VV'fO-'2.)-L"] 'Y}A(~-2.) 

The amplitudes obe1' orthonormalit1' and oompleteness relations 

L. "t'""-- (WI) "'1',...' \W1) F,,,," }A' 2:. Y;li) 'Y}-\\~) bi,~ (J.5)
M fJ' 

It i8 oonvenient to remove a rapidly var1'ing phase faotor. from the 
ampl~tudes and to introduoe a' two oomponent (spinor- ) notat~on. 

For our purpose we do not take the usual left- and right-going 
waves (e.g., u,v in the notation of 131 ) but use an odd and even 
site representation 

VI 
I by\ ':: (--\) 

VI 

't',M~2.V\-,,) ) (J.6)~Y\ :a (- ..1) '1',M\'l.Vl) 

L.J", =- - V2,VI-1I'--'V\ s V'2.VI (J.7) 

I" 

In th1s notat10n eq~ (J.4) oan be rewritten as 

E-Jt OVl - OVl+-'I [T" + cl..(c.JV\+"I - c..J",)] - 0",--'1 [1:' + c:J.. (w", - <:,.)V\- ... )1 

(-1- c..JVI ) - b", t-1 + 'C:;V\)= b Vl+o1 (J.8) 

6 

and 

E,M OVl - b",+" [r i- CIo. (C3W'\ - c...:l Vl )1 - 'oY'l-'" [r + o. tC::;"_", - W 
VI -,, )1= 

(3.9) 
':O CA",- ... (" - w",,_... ) - aV, l" - WV\ ) 

For the oomparison of various continuum limits whioh may be obtained 
from eq. (J.8) ••.• (J.9) with the oorresponding approximations used in 
the literature, one has to substitute the relations oonneoting ~he 

different site representations in the A~ A__ notation of Gamme(JOI 

-i\<.Oo j\()( 
ik'IC ) b.,=-e. e (A+-A_)) (J.10) 

a VI = e t A+ + A- ) 

and expand the sh1ftedamplitu~es and gap funotions in a 1aylor 
series keeping only low order derivations. Thereb1', it is assumed 
that a n , b"ICJ~and ~"' are slowl1' varying funotions in dependenoe 
on the iattioe point n. In the lowest order of l' • ai! (.here 
l ..., ro is a oharaoteristio 1 ength t o ~ 7a) the two-gap funotions 

c.3", and W", beoome identioal. Keeping first order derivatives 
only for the Fermi amplitudes and negleoting first order derivatives 
of th~ gap funotions due to the weak coupling regime, we get from 
eq. (3.8 , 3.9 ) the usual continuum result with the trivial effeot 
of t that the soliton .level is shifted to ~Loc=2r measuring it 

2 
occurs at the.new position of the chemical potential. Thus in this 
approximation the soliton levels remain at the gap centar and their 
wave function (for suffioientl1' long chain Na» 2j) obe1' the usual 
al ternative a, b charactor 111, i. e. al.o ,,+ O ,b( = O or vice versa. 
Nontrivial problems arise in the next order sinc; eq. (J.8 , 3.9 ) 
canno t be decupled. Similar problems occur in keeping finite K­

values (see 3.10) in a finite band continuum approximation, as it 
has been proposed by T. Gammel IJOI (aee J.l~) even in the first 
order due to a connecting term ~ 2i. t 2 a ain2ka*êl Â~ I é) x • 

Thus, in the second order expansion in the oontinuum 11mit eq. 
(J.8-9) has the form ) 

~ E... 2-d.. ~ (~ - G) - l' ( (,.)\ +- W\)1\ 0..'- I.t L '<,1... 0.. (J.ll) 

, 1 \\ ) 
2'{ b~"-c,.:j) +- ~'i 'o - \W+~ b ) 

7 
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re: + ~d.[(w - c:;) - '( ((..;)'-(:3'))) b - 4r '('bl! = 

, 2.. \I - 2 ')
=-2"(o.t-\-(...)) +2'( C\ -\t.O+(,.:)- '-(t.:> a 1 (J.12) 

where 

"" E. = EM -2-c	 (J.IJ) 

.1 
and ~otx) ~ ~o(~) is the gap in the zeroeth arder. The first
 
order finite band continuum model equat10ns /30/ read after the
 
addition of the t 2-band terms
 

( A (x) \ 
r-; f f:>.+tY-) \	 (J.14 ) 

= (B. + %J \ :_ \l') JB~ \ ts: (J<) ) 

where 

A AB-\ =	 '1 (E fI\ ;- 2 t 2. ( cos 2. k o. + \ C>\ s ~V\ 1 \t,. o il d l( ) ) (J.15 ) 

52. =	 - G-r. 6. ,.'><) \c..os.\<.o. + \O\siV\\<o.. -k";)x) (J.16 ) 

B = .l -to &.3 ( Silrl \<.0. ~ \ (). cos \<(). '"dx) ) (3.17 ) 
3 

"A A
where -1,C5"2.,6"3 are the Pauli matrices and the wavenumber k is
 
oounted from the Ferroi value K~ -=1\ 12.0.. • The trivia.l oontinuum limit,
 
mentioned above, 1s obtained from (J.14-J.17) by setting k c O. Note
 
that eq. (J.14 - 3.17) become s wrong in the vicinity of K~ \(~, i.e.
 
far from the gap due to the sinka-term in (3.17) which results even
 
in the absence af the t to fast osoillat1ons in contrad1ction
2-terms 

(,W1th the as suiaed soft x-dependence of the amplitudes Â+ and A-. 
This 15 in our opinion an indioation against attempts to desoribe in 
a rigorous manner finite band effeots in the oontinuum modelo Thus, ~\r. 

we have to return to the dtscrete problem again. 
~At the end af this saction we note that for the dimerlzed state 

eq. (J.8-3.9) can easily be solved by J 

'" G\~::	 l-I\) o.~ eJt::"pl2..i'r<.V"\)) (J.18) 

b~ :" \ - J\f b I( e.kp (. i \ 2.V\ - 1'1) \\) 1 

and 

(3.19)
C-:) '" =: W'" -= V ) 

which 1eads to the eigenva1ues 

E..\( = E\(I to :::: 2 {- r cosZka .!:' ~ V1..S\If\'l. \<.0.. + <:-os?. v..;:' 1 (3.20) 
~ 

in agreement wlth the reau1t of the diagona1ization of the general 
Hamiltonian obtalned in our previous paperlllOI • In.eq. (3.18-~20) 
~is counted from the band center as in 11 , i.e. the gap occurs 
~ \\=kF~ 

4. T.he Se1f-Consistenoy Conditions 
r 

The total energy of the Hamiltonian (2.10-2.14) i5 

(4.1)E =: I. ép. {VV\<1 ) VWl ",",, } + -1.. ~ V::" +.1.. ~ (. VW\>r-\ -t-V"",)'­
h t }l.G.oc.c. 2. '8'\ Vn 2 ~1. W\ )
 

where the sum lndex ~ runs over alI .occupied eigenstate vaIues. 
Eq• (4.1) ia considered as an energy functlonal; its minimization 
with respect to the v~ results in the self-consistency equations 
for the two-gap functions ~~ and ~~ introduced in (J.7). In the 
case	 of cIosed ringa, the.add1t1onal condltion 

~ VVV\ = O	 (4..2)
WI 

must	 be taken into aocount 1181 • 
From eqs. (4.1) and (J.2- 4 ) one obtains 

Vi + '8~~\ ~~-\+2~~'\f/\Yi+" 1oVi-"):::'
 

= (~;" + 2. ~~"r-\ [À - L l \y; l'M~")"'YI"~~) ;. c.c.) +
 
/JIl&Oc.c:. 

(4.3) 
+ d.{''t'; ''N\) '\"",\"""+2) +- C.C.)+cl{"Y:~'M+J\)'Y",l'ffl-J\)+C..t.)J] 
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tThe long-range interatomic foroes result in (4.J) in a system
 
of H coupled self-oonsistent equations. For the homogeneous case
 
(w • c::; = oonst.) (see J.l) it can eaaily be ,shown from (4.J) that
 ! 
~~ cancels out in the e~uations of self-consistenoy. ThU8, the gap 

does not depend on K2, similarly as it 1s independent of t 1). "I
2 

Contrary to the inhomogeneous oase, we get a 8Tstem of nontrivial17 
coupled equations. The oorreot magnitude of ~~ i8 not known at pre­ I~' 
sent; it is diffioult to determine ~~ by comparison with some ) 

experiments analogously as it has been done bT its eleotronic counter­ t~ 
part t 2 in ,/10/ • Bowever, due to the anisotropy of the er -bonda I 

'li2.-~ can be expeoted '8;"/'8: 11« -1 of even higher order than t 2/ t « 1 • o J 
Therefore, we drop ~;1 in (4.J9) for the sake of simplioit1 and 

Ithe self-oonsistency condltlons in terms of a and b read na.	 I 

t.:) '" = ~ ~ i\ + L ~ ('0:+-\ QVl -c.c) + cÁ. ( ()~ QMo\ -\.DVI b:~" -\- c.c..))1) 
I MC.ou.	 (4.4) 

<:1", ~ 'lll-l\"E l(Q~ o., +c. c.) - d. ~ Q~ Q,,-. +b"" 'o~ +c.c.))l
M~ot(.	 J . (4.5) 

The Lagrange multlp11er À arises from (4.2) as 

"'/z.
i\=N-"~ ~ {(()~('oVl-'oV\+-I\)+c.·c·1 

W:II ""'Ç)c.c.. (4.6) 

s; d..[Q~ <. o.Vl+-'\ + OVl-") + 2. 6: '0\'\+11 -\- c.c.] \ 

The inspection of the r.h.s. of eq. (4.J) and (4.4) shows that the
 
eleotron-hole symmetry breaklng term enters into the self-consiaten­

cy equatlons in a dlfferent form than usually. Due to the ~. ~ and
 

bit b terma, the gap funotl~ns depend evan for o.-==- O) 'o +0 ( or vioe 
1.(. I., 

versa) on the ocoupation number of the soliton level in sharp oontrast 
to the standard sltuatlon. T,herefore, the creation energy of different 
(oooupied) defects 'can be expected to depend on this quantum number 

,even without taking the Coulomb interaction into account. 

~(í)such-=~ehaViOUr follows 1mmediately from the symmetry oonserved 
by t~e dimerlzatlon, 1.e. the gap is purely opt1cal in this Oase•.
 
Only odd numbered lQng-range terms are expected to contrlbute to
 
the gap (oomp. (lOJ), but thelr lnfluence seems to be negligibly ~.)smalH [o» L~ 3). 'I 

! 

Aooordlng to Stafstrom and Chao /Jl,J2/ for open chains a 
sli~tly different formalism should be applied, i.e. the elastic 
energy of (2.14) i8 replaoed by 

~ 1
 
Ef.\ -= i" ~ (\AW\ - Uw\H - C) J
 

where C i8 determined from the condition that when Um = O 
for all m, B gives the ground state energy of an undistorted ohain. 
The above mentioned calculation Bcheme oan be generallzed ln order 
to inolUde in a Hartree - Fock approximation some features of the 
electron- eleotron - interaction (see e.g. /J2,JJ/ for the tight­
binding case). 

5. Discussion 

The eleotronio eigenvalue equations (J.6-J.9) oan be solved 
bT an iteration procedüxe. Starting from a reasonable initial 
approx1.llation for the gap functions c.,) '" and C3... , the linear s;rstem 
('.8 - 9) oan be solved bT diagonalization of a large but necessary 
finite matrix. From the obtained solution for the wave function 
ne. gap functions are calculated from the self-oonsistency equations. 
This prooedure has to be continued untl1 convergency is reached•. Tb.e 
convergency of Buoh a prooedure was demonstrated by Stafstróm /24/ 
for a chain of 100 or 150 sites (although without In thet 2-terma). 
present case one has to consider in our opinion somewhat longer 
chains with 200 ••• 250 sites in order to avoid poasible artificial 
finite chain effects (see belo.) or to change the parameter set 
resul ting in 'to < Te; From the general point of view the present 
problem Ls chara.cterized by two charaoteristic lengths ~ ~ to ~ 7a 
and t.l t.It1.) ~ l40a • Furthermore, from a prel:iJninary analysis of 
the approxtmate eq. (J.14 - 17) we get that a weak confinement of 
soliton and antisoliton would occur if thelr reflectionles8 shape 
1s required '/J4/ • On the other hand "it is l1kel! that odd n~~e7ed 
chains ought to oontain always a topological defect (compare 5 ). 
leglecting t in /14/ it has been Bhown that there exista2-terms 
alw~B an exaot midgap solution at E • O. The proof which is given 
in /14/ cannot beextended to SBmiltonians oontaining e - h s,mmetr1 
break1ng t 2- t erms. We mention" e.g., the aimple case of a J-sit~) 

P;obl!! where eq. (J.4) is solved analytically with the result 
1	 In oontrast to olosed rings, for open chains the charge tr~~fer 

between end sites it usu.aJ.ly forbiddelJ., i~e. TN,1=OJoomp eq.(2) /14/.
The corresponding determinant of eq. ~J.4) becomea pentadiagonal
(trid1agonal in the TB approx~ation) in the general case. 
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E~) = - :2. ! ~ 2.~~ + t1.'/lt (:5.1) 

to'> t2. > t:z..E
t~)

-1:2. ~ t2. to '> -to (5.2)o 

Henoe, the	 midgap state is shifted by AE = 3/2 ~2 out of the gapo 
c~nter. Similar effects are expected f-or other odd-numbered finit'e 
chains, e.g. for a ~- site chain the midgap 1eve1 1ies approximate1y 

near 

~ 2... 
tS) 2t",3	 (5.3)E "-'-- + 0("[2.) ~ ~ t-t.3 "" 3" tz. . 
~ -~~ +2 t1.l~ )
 

t1.,lo t ~11.·
 

Comparing e-qs.' (5.3) and (5.2) sugg-ests that th~ sing1e soliton 
1eve1 is shifted from E ; O to a value proportiona1 to the symmetry 
breaking term t However, its position is not universal as in the2• 
simple tight-binding case anu different from the chemical potential 
of the infinite chain !J' ::: 2t 2• This is in our opinion a strong 
indication that exact midgap posit1on is not reached at 1east for 
fini~e ohains. T,he question arises what happens if the chain 1ength 

tends to infinity~ 

~rom a perturbational treatment of eq. (3.11 •• : 3.12) energy 
"-'	 2.shifts é. LOC. I:><.. r Y can be obtained. The correct evaluation of the 

other terms is difficul t since the difference c.:J - ~ has to be found 
in agreement with the self-consistency oonditions (4.4 ••• 4.6). The 
above mentioned number rep10duces the first term of the perturbation 
result of Kivelson and Wu 12/ according to: 

E" - E- + = t r~ ( ÔO \2. + O. 8 .( Uh.. t 0)2. + ... ]
S 5.	 2.l3 2t:oJ ) 

,
where U denotes the Hubbard-interaction not oonsidered here. 
Furthermore trom the asymmetry of the oorrections containing terms 
with d..~ r different energy shifts for solitons (5) and antisoli ­

tons (S), i.e. 

~ ~LOe. =*= O ) bl.oc. ........ "[1_ O) o r IoLoe. -i: O) QLOC. ........ O} )
r~ 

Summarizing, the energy level of topological defects is possib1y 
somewhat shifted out of the gap center due to symmetry breaking terms. 
The shape of the defect is presumab1y only approximately of the 
tanh-form, 1.e. it is not reflectionless in a rigorous sense. In our 
opinion, it means to be very interesting to clarify.the influence 
of t 2 - terms on other pnysical properties of the soliton. The deri ­
ved equations (J.8 - 3.9) yield to be reasonable starting points to 
attack questions of such kinds.;j 

~ 
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Ilpe xcrrep u.n., Xaitllcp 3. E\7-86-85\ 
):(ncJ<peTHb1e ypnnnemtu AJIJI Acl}JcKTon B nni\epJlCOIICIOIX 
CHCTeMax nõnnsn conaaepuxoc-ra "2" C napyureunoü 
3JleKTpoH-gblpOtlHOH cHMMeTpHeH 

ITpH HCnOJlb90BaHHH MeTOAa, npeAJlO~~HHOro maCTPH/18/, BWBO­
AHTCH nacxpe-rasre ypaBHe,HHH AJlH onpenerrenaa 3J1eJ<TpoHHhIX C06CT­
BeHHblX COCTOHHHH KaK H YCJ10BHH canocor-nacoaamra gJlH CttIX-nogot5­
HOH MOAeJlH /ytlHTb1BaH AaJIbHOAeHCTBHe npo~eCCOB nepeCKoKa H Me~­
aToMHblX cunl , 06cy~a1OTCH B03Mo~Hble nO~JleACTBHH AJlfi COJlHTOHO­
nogo6H~IX Ae~eKTOB. 

Pa60Ta BblnonHeHa B fla6opaTopHH TeOpeTHQeCKOH ~H3HKH OHHH. 

Iípenpanr 06'beAHHeHHoro HHCTHTYTa anepasrx HCCJIeAosaHHH. ny6Ha '1986 

DrechsIer S.L., Heiner E. EI7-86-851 
Discrete Equations for Defects in Peierls 
Systems -near ConunensurabiIity "2" with Broken 
EIectron-Hole Symmetry 

FoIIowing a method proposed by Shastry/18/, a discrete sys­
tem of eIectron eigenvaIue equations and seIf-eonsisteney con­
ditions for the gap parameter are derived for a SSH-like model 
being extended by Iong-range hopping and Ione-range interato­
mie forces. possible consequences for defects as soliton-like 
states are discussed. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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