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I, Introduction

Many physical properties of trans-polyacetylene (PA) are
explained with'oonsiderab}e sucoess by the well-known Su - Schrieffer
—~ Heeger (SSH) - model /1 and its continuum versions /243/ . 4 lot
of theoretical and experimental papers has been devoted in the last
few years to clarify the existence and physical role of such highly
nonlinear defect states as solitons and polarons (for review, see
e Lo f’b ) . Recently .there is an inoreasing interest in modifi-
cations induced by effects persisting in real PA, but neglected in
the original SSH-treatment. Interchain coupling and additional long
range hopping (e,g., next-nearest neighbour hopping denoted by t2
in the following) are the simplest generalizations of the SSH-model
since they do not change the single-particle character of the model.
Whereas the ;ropertiea of the defectless, ideal dimerized state are
quite clear 7-10/ the investigations of the influence of additional
interactions on the defeot states are much more difficult. It has
been demonstrated by Maki and Baryswyl 74,9/ that an interchain
ooupling results in a confinement of solitons (8) and antisolitons
(8 ). It 1s characterized by the distance~4 §, , where §, =
= 2 at,/n,e is the so-called coherence length of the SSB—modgl.
The oonsequences of the electron-hole (e-h) symmetry breaking 1
Py, - Y T9 t2 - terms are investigated very briefly in few papers

14-16/" | one important result is the statement of Kivelson and
Wullé/ that the presence of such terms results in a nonradiative
decay of charged S, 5. pairs into neutral S, S, ones which 1is
forbidden in the SSH-model. The influence of t,~terms on the indivie
dual oharacteristics of solitons or polarons remains controversal
or has not been considergd at all hitherto.

Stafstrom and Chao 14/ pave investigated numericaly a chain 5
with 60 sites. According to these authors, the soliton level remains
in the gap center, but the shape of the S and § wave funotions
change considerably. In contrast, the wave functions of the extended
f*g;gg_ggmain almost unchanged.

Sometimes in the quantum chemistry literature this symmetry is
called .also as Pariser alternancy symmetry /11/, charge-conjuga-
tion symmetry or pseudoparity /12/ (ocomp. /13/ 3.
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In this paper we want to give some arguments that the chosen
chain length of 60 sites may possibly be too short for typical
PA-parameters. Furthermore the calculation method is not optimized
in order to get accurate ‘results for sufficiently long chains.

According to Kivelson and Wu/1%/, tne existence of t, - terms
leads to a splitting of the creation energy of opposite charged
sollitons proportional to t2 + This result is obtained by a pertur-
bational treatment of a higher order continuum model presumably
without self-consistency. Their result is understandable as a shift
of the soliton level out of the gap center by the same order of
magnitude.

From the general point of view the following questions arise?

1) Is the soliton level shift out of the gap center compatible
with a reflectionless shape?
11) What happens with the unique spin-charge relation since the
proof of Jackiw and Schrieffer 1s obtained by the use of the
electron-hole symmetry of the density of states and the exact
midgap position of a localized defect. Such questions cahnot be
treated in a rigorous manner by continuum models as has been demon-
srated by Shastry /18/ for the standard case. Finite band correc—
tions lead to artificial irrational fractional charges since the
cutoff procedures are not unique. Besides, the inspection of the
changed density of states of the approximate discrete solution
given by SSH demonstrates that the main change occurs near the band
gap due to the presence of a soliton. Nevertheless, a finite change
at the bott?m of the valence band and the top of the conduction band
is shown /1 s too. In the presence of t2—terms even at this extremal
band edges the symmetry breaking is the strongest one. Therefore
one nees for rigorous statements solutions of the discrete problem.
As a first step in this direction we obtain discrete equations
using a method developed by Shastry for the standard case.
Equations for the evaluation of the electron energy eigenvalues and
wavefunctions are derived in sec.3. In sec.4 a set of self-consis-
# tent equations is obtained where next-nearest neighbour interatomio
forces are taken into aocount, too. In sec.2 some arguments are
given for a restriction to a reduced Hamiltonian which is confined
to next-nearest neighbour effects. In sec.3 we show that the perfect
dimerized state satisfies these equations. In connection with vari-
ous continuum models derived 1n sec.3 some consequences for defect
states are discussed in sec.5.

2. The Model

Following our previous paper /10/
Hamiltonian in the site representation

we start with the general

o0 2
oe - A -u
H=- % vv.st“”"“ (me‘s Cns + h.cf) + 5 LSM Ki (Uit ") ) (2.1)

where both the first terms in the r.h.s. describe the T -electrons.
It consists of contributions from arbitrary long-range hopping
processes denoted by 1. The second term in the r.h.s. arises from
long-range interatomic forces and the binding energy of 6 - elec-
trons. The hopping matrix elements are expanded .to first order

with respect to the undimerized state

than ® o= U (Unse = Un), L=2, (2.2)

Usually, the quantity t, in eq. (2.2) is denoted by tye
In order to estimate tz, A, and the influenoce of higher order
terms we use an exponential ansatz often apprlied in quantum

chemistry literature, e.g. /18‘21/, or in exactly solvable Peierls
model /22-24/ for 1=1
ol — —
tnﬂ.,v\ = to EJKP [__ t: (’Rh— Rnﬂ_) - Ro)) ) (2.3)

where al desoridbe the position of the Uh atom, From the physical
point of view such a behaviour can be expected if the long-range
hopping constants are very small. Otherwise, orthogonalization
corrections due to the nonorthogonality of molecular orbitals give
rise to an osoillating behaviour of the long-range tails of the
Wannier functions which can reault in- a markable difference from th
simple form (2,3) at large distances. Keeping in mind these consi-
derations, one can estimate the magnitude of the long-range hopping
integrals by making use of recent information (see below).

For this purpose we consider a zig- zag PA-chain with 120°--°
bond angles and a mean carbon-carbon distance R = 2a/l3 ~ 1.4 A .
In particular, the relations

tmltcxwp[-%("ﬁ‘”] y L=2n =2, (2.4)
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and

tznw\ ltnz' eJX‘P[""—‘%?—‘Z (van(h+4)+1 -’1)] ) L=2n+ld = 4,3,... ) (2.5)

are obtained from (2.3).

Equation (2.4) can be used to estimate the value of oy
from the experimentally observed dispersion of the lower -1
interban transition edge. From the eleotron loss data of Fink and
Leising for hi;bly oriented PA, we deduced in 10/ Ity | /tx0.05,
Furthermore, 1 for the whole T—T* bandwidth 4t =~ 12.8 eV
and the Peierls gap parameter Eg = Bosss UoX 1.8 eV were obtained.
Using the relation ogsy =(¥3/2) oty we get from (2.4) (in units
of eV/& )

dgsy = 0.845¢t, In(tolts) ~ B.097eV/A (2.6)

(for the value t /t,= 0.1 obtained from a bandstructure fit by
Springborg 10 ’ one has Clgsy =~ 6,2 eV/A, a considerably smaller
value), The value of eq. (2.6) is in surprisingly excellent 7gree-
ment with the estimates dssu= 7 +40 9 eV/x by other authors who
fitted, e.g., Raman experiments, whioh leads to the experimental ob-
served dimerization amplitude u, 6 =~ 0,026 or vi”=/u, = O, 0484 .
These values agree with those of Fincher et al. 726/ v ~ 0,05
being obtained by X-ray diffraction and NMR nutation data. From eq.
(2.5) we get ty/t, ~ 1.19 107> or 5.6 107 for t,/t, ~ O.l.
Therefore, long-range hopping beyond the next-nearest neighbours

can be neglected. All symmetry breaking effects are already taken
into 'aocount by t - terms and higher order terms cause only small
renormalizations. In particular, the renormalization of the tight—

binding band width (4t )
(Fesadme ~1
73 -4

we it [1+3 (%) | = 4tol1+22) (2.7)

is of the order 10-3. Analogously, the renormalization of the
elerls gap is of the same order

Eq ~ B olssu Yo (14— ta/ts). (2.8)

The linear expansion coefficients of eq. (2.2) are estimated by

X, = (t.z/f.,)‘xq = (te/ty) sy (2.9)

/29/

According to the papers of Harrison /21,28/ and Weber N an
exponential behaviour is expected for the interatomic forces 1in
semiconductors, too . However, due to the zig-zag geometry of the
PA-chain and the strong anisotropic dependence of the & -bonding
the interatomic forces are expected to vanish even faster than the
electron hopping integrals with increasing distances. Therefore, we
restriot ourselves to the nextnearest mneighbour interaction K2 and
Kl>> KZ. The reduced Hamiltonian is rewritten with high acocuracy
as

H= Ho +Ht (2.10)

Ho= = (- eide s e o (2.11)

b (T = Vi #Vi)) (Ciszs Civs + h-c.)] )

2
s viE o+ 14‘;:. ‘.{: (Viea *Vi) (2.12)

= A
H Lot 2y,

where dimensionless notation is introduced:

k3
ks - &y = 2.13)
v, = to(U.M'U‘\) ) X;‘r‘t‘,-\@ ) (
and oLz
= =T = =4 .
T =t t, , &= ld R S (2.14)

3. The Electronic Eigenvalue Equations

In order to derive discrete equations for the electron energies
and wave functions 1t is convenient to impose periodic boundary
oonditions

c-m\-NECm ) \AMQ-NE\AM ) 4é\N\£—N) (3-1)
where N 1is the number of sites of the chain being under considera-
tion. Introduoing Fermion eigenstates for a given lattice configu-
ration 1} or 1v11 by

V> = = Yo (m) Ceml0> (3.2)
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where 0> denotes the vacuum state. The difference equations are
obtained in the adlabatic 1limit from

Hal YD = Enl V> . (3.3)

by using eq. (2.10..214, 3.1...32 ) the anticommutation relations
for the c, and cI operators, the completeness of cm+ {0> 4in the
Fock space and Cy ! 0> = 0, respectively.

We obtain
Ep Yu(m) =

= (vm_4_4)*r,,(m-4) + (V=M Yulm +1) + G0
+ (A (Vmea +V) ~T] Yu(m+2) +
+ [&(Vm-4 +V\m-‘2.)"r] Y,A(M—Z)

The amplitudes obey orthoncrmality and completeness relations
* X .
g\'\r’“ () Wyt (m) = B E}; Y (D) Yuli) = &5 (3.5)

It 18 convenient to remove a rapidly varying phase factor from the
amplitudes and to introduce a’ two component (spinor- ) notation.
For our purpose we do not take the usual left- and right-goiﬂg
waves (e«gey U,v in the notation of 3 ) but use an odd and even
site representation

aw = (=0 Wulan) b= () Ya(za-a) (3.6)

Wn = Van ) @n = “Van-a .7

In this notation eq. (3.4) can be rewritten as

Ep On ~ Onaa [t + ot (Cna = w“\] — Om-a [T+ d‘(a"_w"‘“‘ﬂ =

= - _bn av\
bass (4= 6n) = bn {4+ 3) .8)

and
b = B [T+ (Bn = O] = bnoa [T 0 (0o - wn-a)] =

(3.9)

= On-4 (A= hnoa) —'Q"‘("_G“)

f For the comparison of various continuum limits which may be obtalned
from eq. (3.8),...(3.9) with the corresponding approximations used in
the literature, one has to substitute the relations connecting the
different site representations in the 4, A - notation of Gamme

~iko 1KY
e

ikx(A*_*A_\’ ) bnz—e (A;_"'A-)) (3010)

an = ¢

and expand the shifted amplitudes and gap functions in a '\'aylor
series keeping only low order derivations. Thereby, it is assumed
that any by, c,and %@, are slowly varying funoctions in dependence
on the lattice point n. Ip the lowest order of y = a/{ (where
f~f, is a characteristic length f§.= 7a) the two—gap funotions
Ww and v become identical. Keeping first order derivatives
only for the Fermi amplitudes and neglecting first order derivatives
of thg gap functions due to the weak coupling regime, we get from
eq. (3.8 , 3.9 ) the usual continuum result with the trivial effect
of t, that the soliton level is shifted to €.,,c=2T measuring it
occurs at the.new position of the chemical potential. Thus in this
approximation the soliton levels remain at the gap center and thelir
wave function (for sufficiently long chain Ne>> 2f) obey the usual
alternative a,b character y lees aec¥ 0 5 =10 or vice versa.
Nontrivial problems arise in the next order since eq. (3.8, 3.9)
cannot be decupled. Similar problems occur in keeping finite K =
values (see 3.10) in a finite band continuum approximation, as it
has been proposed by T. Gammel /3%/ (gee 3.1%) even in the first
order due to a connecting term ~ 2it, a gin2kasdAy (9% .
Thus, in the second order expansion in the continuum 1limit eq.
(3.8-9) has the form

QE‘ + l&[(co-@)"‘f(w‘*-ﬁ‘)nd“ TV O = (3.11)

= 2yb A=) *+ 77\116‘ —(w+&)b
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15+ 2af(co-3) - y(w-3))}b - bTY'b =

—-2yo (A=) aytal (@ m-2ywlan, (3.12)

where
£ = €. -2T R E))

and cdolX) = WX} 45 the gap in the zeroeth order. The first
order finite band continuum model equations read after the
addition of the tz-band terms

L0
S EICTL o) N
where |
%A= Q(E,m“2*a(wszku+ic«sxw2v\a*’ax)) ) (3.15 )
B =~ A0 (coska +iasinkosdx) (3.16 )
'§3= 21,65 ( Sinka + iocoska £dx) (3.17 )

where /?) %;, g; are the Faull matrices and the wavenumber k is
counted from the Fermi value Kg=T/2a . The trivial ocontinuum limit,
mentioned above, is obtained from (3.14-3,17) by setting k = O. Note
that eqe (3.14 - 3.17) becomes wrong in the vicinity of K= Xg, i.e.
far from the gap due to the sinka~term in (3.17) which results even
in the absence c¢f the ta—-terms to fast oscillations in contradictiocn
“with the assumed soft x-dependence of the amplitudes A. and A-,
This is in our opinion an indicajion agalnst attempts to desoribe in
a rigorous manner finite band effeocts in the continuum model. Thus,
we have to return to the discrete problem again.
YAt the end of this section we note that for the dimerized state
eqs (3.8-3.9) can easily be solved by

T

==

Gy = (*A)"‘O\K m(QiKV\) ) (3.18)
by = (A by exp (i 120-MK),
and
L= Wnz=V, (3.19)

which leads to the eigenvalues

-
£y = EK/{.Q:Z{-—"ECOSZ‘M rVFSW\IKO\*COSzV\O\ 1’ (3.20)

in agreement with the result of the diagonalization of the general
Hamiltonian obtained in our previous paper . In eqe. (3.18-320)
K 1is counted from the band center as in 1 » i.e. the gap occurs
at X =Kg ,

4, The Self-Consistenocy Conditions
I
The total energy of the Hamiltonlan (2,10-2.14) is

= A LA VIR (4.1)
E{:ot _ém‘s“{vm 3 wa/\} + 2__8‘«% Vi +ZYL§(VM¥4 ¥ w\) ,

where the sum index M runs over all occupied eigenstate values.
Eq. (4.1) 1is considered as an energy functional; its minimization
with respect to the V.. results in the self-consistency equations
for the two-gap functions co. and ©. introduced in (3.7). In the
case of closed ringss the additional condition

2 Ve =0, (4.2)

must be taken into account /18/ .
From egqs. (4.1) and (3.2~ 4 ) one odtains

- - —a\"A
V.\ + 81.‘(841""282,4) (Vs-yq '\'Vs-;\) =

= (" +23;“)-A[ A - MZSOLK‘Y,: (wu.ﬂ‘thw;\ yC.C)+

*® & (403)
+ o { Y () Y (m+2) + c.c)+a(Valmen) \YMKW\—'&Hc.c.‘)]]



The long-range interatomic forces result in (4‘3) in a system

of N coupled self-oonsistent equations. For the homogeneous case

(@ = & = oonst.) (see 3.1) it can easily be shown from (4.3) that
¥, cancels out in the eyuations of self-consistenoy. Thus, the_gap

does not depend on KZ' similarly as it is independent of t2 1 o

Contrary to the inhomogeneous case, we get a system of nontrivially

coupled equations. The correot magnitude of ¥, 1is not known at pre-

sent; it is difficult to determine ¥, by comparison with some

experiments analogously as it has been done by its electronic counter-

part t2 in - 1 . However, due to the anisotropy of the ©  bonds
¥;" can be expected 321/3:”<<4 of even higher order than t,/t K1 .

Therefore, we drop ¥, ' in (4.39) for the sake of simplioity and

the self-oonsistency conditions in terms of a and b read now

st e, .
PR T U —

G v o e T

. - -
Qn=\gi}\+§u‘£‘(b:*,\ 0n+C.C.) +0L(0v.0nu -\-b“b“m ‘\'C.C.n})

(4.4)
— * - e+ Dusn oo +c.c.“
=wi{- ow b, t+c.C DL(QV‘O\V\ A Vi4A On

Wy, 8‘ A+;§ou‘!( v On ) ) . Ca.5) )
I
§
‘The Lagrange multiplier A  arises from (4.2) as é
Ni2 »
A=N"S S {[aflon=bnia) +cc) - i
T e (4.6) ;

LOL[Q:(OW\\-A +Qn-")+2b‘:\ bvn-/\ * C-C-]\ :

The inspection of the r.h.s. of eq. (4.3) and (4.4) shows that the
electron-hole symmetry breaking term enters into the self-consisten-
cy equations in a different form than usually. Due to the 0" % and
b'b terms, the gap functions depend even for 0\;;‘0, b“?:O( or vice
versa) on the ocoupation number of the soliton level in sharp oontrast
to the standard situation. Therefore, the creation energy of different »
(ocoupied) defects can be expected to depend on this quantum number

geven without taking the Coulomb interaction into account.

[

Such a behaviour follows immediately from the symmetry oconserved
by the dimerization, i.e. the gap is purely optical in this case.
Only odd numbered long-range terms are expected to contribute to
the gap (oomp. [10] s but their influence seems to be negligibly
small{ for (3 3).
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Aocording to Stafstrom and Chao /31,32/ for open chains a
slightly different formalism should be applied, i.e. the elastic ,
energy of (2.14) is replaced by

2
Etl = gg(“m—umta_c\,

where C 1is determined from the condition that when w, =0

for all my, H gives the ground state energy of an undistorted chain.
The above mentioned calculation scheme oan be generaliged im order
to include in a Hartree - Fock approximation some features of the
electron—~ eleotron — interaction (see e.g. 732533/ for the tight-
binding case).

5., Discussion

The eleotronio eigenvalue equations (3.6-3.9) oan be solved
by an iteration procedure. Starting from a reasonable initial
approximation for the gap functions ww and can s the linear system
(3.8 = 9) can be solved by diagonalization of a large but necessary
finite matrix. From the obtained solution for the wave function
new gap functions are calculated from the self-oonsistency equations.
This prooedure has to be continued until convergency is reached. The
convergency of such a prooedure was demonstrated by Stafstrom /24/
for a chain of 100 or 150 sites (although without t2-terms). In the
present case one has to consider in our opinion somewhat longer
chaing with 200 .,. 250 sites in order to avoid possible artificial
finite chain effects (see below) or to change the parameter set
resulting in 'il < T7a. From the general point of view the present
problem 1s characterized by two characteristic lengths{~{, =~ T7a
and f.[t./tt\%-140a . Furthermore, from a preliminary analysis of
the approximate eq. (3.14 = 17) we get that a weak confinement of
soliton and antisoliton would occur if their reflectionless shape
is required « On the other hand it is likely that odd nuybe ed
chains ought to contaln always a topological deféct (compare 35 .
Neglecting tz-terms in it has been shown that there exists
always an exaot midgap solution at B » 0. The proof which is given
in 14 cannot be extended to Hamiltonians oontaining e — h symmetry
breaking tz—terms.(We ;ention, e.g+.y the simple case of a 3-sitf)
p§ob1g! where eq. (3.4) 18 solved analytically with the result

1 In contrast to closed rings, for open chains the charge tr?ngfer
between end sites it usually forbidden, i.e. t,,=ooomp eq.(2) /14/.
The corresponding determinant of eq. 25.4) becomes pentadiagonal
(tridiagonal in the TB approximation) in the general casee.

s
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3 %, T LT
E. =_ftﬂ2to+t1/q ) (5.1)

@ T T.> 1, >t
) t? 270 (5.2)

Hence, the midgap state is shifted by AE, = 3/2 t, out of the gap
center. Similar effects are expected for other odd-numbered finite
chains, e.g. for a 5~ site chain the midgap level lies approximately

near

) 2t

° 7 tusg_fm\

tin tav

+ O (tl) = ~4|3 ~ ?3_' tz. . (5.3)

wip

Comparing eqs. (5.3) and (5.2) suggests that the single soliton
level is shifted from E = O to a value proportional to the symmetry
bréaking term t,. However, its position is not universal as in the
simple tight-binding case and different from the chemical potentlal
of the infinite chain m = 2t2. This is in our opinion a strong
indication that exact midgap position 1s not reached at least for
finite chains. The question arises what happens if the chain length
tends to infinity?

From a perturbational treatment of eq. (3411 eeo 3.12) energy
shifts ELﬁ'°c t‘Yz can be obtained. The correct evaluation of the
other terms is difficult since the difference O -t has to be found
in agreement with the self-consistency conditions (4.4 ..o 4.6). The
above mentioned number rep;oduces the first term of the perturbation
result of Kivelson and Wu 12/ according to:

er- £ = 38 v o8 (Verf ]

'

where U denotes the Hubbard-interaction not considered here.
Furthermore from the asymmetry of the corrections containing terms
with &~ T different energy shifts for solitons (8) ard antisoli-

tons (8), 1.e.

* 1 ~ L8
{ Ouoc #0, broc~T -0} or {bm*o,om T*> 0} |

can not be excluded.

12

Tt At

Summarizing, the energy level of topological defects is possibly
somewhat shifted out of the gap center due to symmetry breaking terms.
The shape of the defect is presumably only approximately of the
tanh~form, l.e. it is not reflectionless in a rigorous sense. In our
opinion, it means to be very interesting to clarify the influence
of t2 - terms on other physical properties of the soliton. The deri-
ved equations (3.8 = 3.9) yield to be reasonable starting points to
attack questions of such kinds.
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Opekcnep W.JI., Xattuep 3. E17-86-851
IuckpeTHsie ypanuemst ana gedekron B naifepiconcrix

cucreMax BOnHSH coirsMepuMocTH ''2" ¢ napyweuuoit
IIEKTPOK~ABIPOUHOI cUMMeTpHeit

llpu ucronbsoBaHUM MeTOHa, MPeRTIOKEHHOIrO maCTpu/lS/, BblBO—
AATCA HUCKPETHhe ypaBHeHHU LJIA ONnpepesleHHA 3JIEKTPOHHhX cobcT—
BEHHBIX COCTOAHMH KaK M YCJIIOBMA CAaMOELOrfaCoBaHMA MJIf ClIX-nogo6-
HOMt MoflenH /yuuThBas manbHOZEHCTBHE npoueccoB nepeckoka M Mex-—
aToMHbiX cuin/. OGCYRXANTCA BO3IMOXKHBIE MOCHEACTBHA OJIA COJIHTOHO-

nofo6Hex nedexTos.

Pabora BrmonHena B JlaGopaTopuM TeopeTHYeckoH ¢uauku OUSIH.

[penpunt OGbeNHHEHHOr0 MHCTHTYTA ANEPHBIX HCCIEAOBaHHU. ,llyﬁiia'1986

Drechsler S.L., Heiner E. E17-86-851
Discrete Equations for Defects in Peierls
Systems near Commensurability "2" with Broken

Electron~Hole Symmetry

Following a method proposed by Shastry/’B/, a discrete sys-
tem of electron eigenvalue equations and self-consistency con-
ditions for the gap parameter are derived for a SSH-like model
being extended by long-range hopping and long-range interato-
mic forces. Possible consequences for defects as soliton-like
states are discussed.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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