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1. INTRODUCTION . *

Quite a number of works are devoted to the investigation of
the spectral characteristics of disordered systems (for example,
alloys)/1"3/. The' various methods to calculate the averaged over
all the configurations alloy Green function of the system were
developed. At the same time the efforts were made to generalize
the coherent potential approximation. However available genera-
lizations on the clusters of two or more impurities are not
quite satisfactory/l'z/.
of results are obtained in not very realistic. tight~bond model

A new approach for the investigation of the disordered system
spectra based on using projection operator technique (see,e.g.,46
is developed in this work. Advantages of this approach involve
the fact that the projected (averaged) Green function of the
system contains explicitly the self energy (mass operator) exp-
ressed through the Hamiltonian of the system.

The explicit expansion into a power series of interaction for
the self energy, in which multiple occupancy corrections 71/ are
taken into account automatically, is obtained. The structure of
the series obtained distincts from the c¢umulant expansion and
does not result in false poles when this series is summed up
partially. To avoid these false poles the complicated self-con-
sistent procedure is usually used /% . For the tight-bond model
the series obtained is easily summed up in single site, pair,
etc., approximations.

The electrons interacting by means of arbitrary potential
with the chaotically distributed scattering centres are also
considered with the aid of the obtained explicit expansion for
the mass operator. In this case the closed systems of equations
for the determination.of the spectra are obtained taking into
account the single-center and pair scatterings in both the unre-
normalized and renormalized representations. '

2. PROJECTION FORMALISM

We shall consider the system described by the Hamiltonian H,
in which excitations are not interacting. Let us introduce the
Green function for such a system *
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It should be noted also, that the mos;23
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G(A) = _"'1_“""9

A-H
which determines both the spectrum and density of state of the
excitations.

If H has the random variables, as it is in the disordered
system, then the quantities observed are determined by the Green
function averaged over various realizations of the random varia-
bles

1
<G(A)> = PGAWP = P+—-—P,
(X) > V) P/\_HP (1

where P is the corresponding averaging operator, and P2==P, i.e.,
the operator P is assumed to be projection one. It is easy to
show 78/, that

PGP = A - PHP - M(M) ] !P;

1
M(A) = PHQ :QHP ; Q=1-P.
A — QHQ
We shall write the Hamiltonian H as
H =H + V,

(o]

i.e., we split it into the translationally inveraint part H, and
the part V , describing the disorder. Taking into account that
PH,Q = QH,P = 0, we obtain

1
A - Hy - <V> - M())

1
: M(A) = PV—————— QVP. (2)

<G(A) >i=

It is convenient to split the Hamiltonian into H, and V by the
introduced projection operator

H = (P + Q)H =<H>+H - <H>,
Then
Hy= <H>; V=H - <H> <V >-= 0. (3)

Neglecting the self energy (mass operator) M(a) in (2) and using
(3), we obtain the virtual crystal approximation

<G> =~ G® = — .

The matrix elements of the operator <G(A)> may be obtained from
the system of equations

2

nzl [A=<H> - M(A)]nnl[',< G(A) >4]n1n' = S’ » (4)
where, the indexes n determine the quantum numbers of selected
representation. For example, all averaged values in quasimomen-
tum representation are diagonal and Eq.(4) is reduced to
1

G() B) = -~ — , (5)

A- M) - M(A, 8)
where, G(,,8) =1 <GV >1gz , M(X, €) = (M(A) 133 , A(B) is
the excitation spectrum 1n virtual crystal. We emphasize, that
Eq.(2) determines the explicit expansion of the mass operator,
which may be used to calculate M(A) in any approximation. In
this technique there are no problems as to consideration of ki-
nematic corrections associated with constrains on the summation
indexes, as it takes place when the series in. V for the Green
function (1) is partially summing up./!” . By using the expansion
(2) in V the multiple occupancy corrections are taken into acco-
unt automatically. It will be seen subsequently. The expansion
(2) in V is of the form

00 1
M(A) = = PVI— Qvi' p,
n=1 A—-<H> (6)

where Egs.(3) are used and, therefore, QVP = VP, It should be
noted, that the expansion (6) is of different structure as com—
pared with cumulant one, which is unconvenient, as it has been
emphasized already.

3. DIAGONAL DISORDER IN THE TIGHT-BOND MODEL

We shall consider a conventional problem of the tight-bond
method, when the Hamiltonian for the site representation is of
the form

H 75> = o + Wi

o
where, ¢f is the energy in the lattice site £ , W{7’ are the
overlap integrals between the various cells of crystal each be-
ing the random function of the lattice site. Taking the Hamilto-
nian of virtual crystal

Hoé?’ = <HEZ_" > = <€E>6EE’+ <Wg'?'>

dependiﬁg upon the difference 7 - ?’only; we obtain for pertur-
bation

Vi = (ef ~ <ef >) 8 + Wi - <Wip >. .



We shall consider now the diagonal disorder and take as pertur-
bation

Vig= (e = <ep >8R

- Vi %
We assume for simplicity that the values of Vv are not correla-
ted on the various sites, i.e.,
SVPVE- > = <VE><vp> =0 (¢ # 9 N

We shall describe expansion (6) for the mass operator in the si-
te representation by the usual diagram technique. Then for the

second order of the perturbation theory we have the diagram (a),
shown in Fig. 1, where the propagator of virtual crystal Gol-1"=

= () 7 is designated by a solid line but single site
A- <H> i . .
scattering being a cross with one dotted line (it correcponds

to vy ). Due to conditions (7) and <V> = O the dotted lines
for the various sites .are closed. The analytical expression cor-
responding to this diagram is as follows

(®)

2 [}
M§@<(A) = <v3 > G @)8@@

For the third order of the perturbation theory there is also one
term, which 1is described by the diagram (b) in Fig. 1.

o VN
</

.
+

}
<// : \\>

\
\
)
\ / | \

(a) (b)
Fig. 1.

, The appropriate analytical expression is of the form

3) . 3 o 2
M—N:,_(A) = 4_<v-L,>[G 01 aﬁ,-

For the third term of expansion (6) (the fourth order of the
perturbation theory) we have the diagrams, shown in Fig. 2. The
first two diagrams are the skeleton ones, the third diagram may
be included in the bare Green function as renormalization and
the fourth diagram describes a multiple occupancy correction
(the line above connects the diagram parts, which correspond
the same site). The last diagram, shown in Fig. 2,

4
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is described by the expression

<v§ >[GOWH3<V;>.

We should note, that all the presented diagrams are irreducible
(the reducible diagrams are canceled).

It may be shown, that the structure of the term of expansion
for the mass operator (6) in the n-th order perturbation theory
is of the following symbolic form

(n) — | Be——
MW‘('\) =[<n> - % <i><j> - 3 <Ki><j><k> -
. i+ j=n - i+j+k=n — T
M T
- _2 <1><j><k><m> —-,,, + I <i><j><k> 4+
i+j+k+m=n — itj+k=np —————
) R J— R N |

+ 3

+ A < >) +
A . .] m ce

o .
<i><j> < ><m> + 3 <i><j><k><m><p> +...

i+j+k+m+p=n

+ 3

i+j+k+m=n

]
- s <i><j><k><m> >3 i><i> <k><mo <n
- 1> <j><k>. ~ <i><j><k>< -
i+j+k+m=n i+j+kim+p=n 1> <k><m><p> —..~
+eeala, 0 <0> = 0: <1> =0,
i

Here <n> denotes a sum of the all averaged irreducible diag-
rams without coupling lines on top in the n-th order perturba-
tion theory (for example, the first three diagrams, shown in
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Fig. 2, corresponding to the fourth order). For diagrams with
more than two crosses (the various sitesq,a Eummation over in-
dexes of the sites, not coinciding with ¢ , ¢”, is implied. The
remaining terms in (8) describe the multiple occupancy correc-
tion diagrams (as the last diagram, shown in Fig. 2). These dia-
grams are irreducible also. The coupling line ¥ connects ‘any
two crosses of various irreducible diagrams <i> and <j> , ma-
king these crosses corresponding to the same site. The remaining
(uncoupling) sites in<i> and <j>. distinct from coupling ones.
The "symbol <1}Z§I> denotes a sum of all the possible couplings
of two crosses. The linesF ¥ ',rTj‘ﬂ... denote the coupling of
three, four crosses, etc. for various <13 . The solid lines be-
low denote the bare Green function G°(f; - 22) binding dia-
grams <i> . The lines, coupling the even number of crosses, at-
tach negative sign for the diagram, but the lines, coupling the
odd number of crosses, attach positive one. The definite sign

of the diagram is determined by all the coupling lines appearing
iq'this diagraq. The correction diagrams do not involve the

: . . . . ’
<1><)><k><m> - type diagrams, in which the inner propagator

is renormalized by the diagrams being absent in V-expansion for
the averaged Green function [<(}(A)>1i% . Taking into account
the above V-mentioned we describe Mé (M) as follows

n—2

(n
M- -~ A = [ <3 i -
M,( ) { <n> +iJ.J§.k=2 KI><ji> .. <k> ]c}zz" (9)

(i+j+...+k=n)

Here,{ <i> <j>...<k>], denotes any couplings in the diagram
<1><5] L<k>. (accountlng a sign). For these diagrams the num-
ber of the factors and the number of the correction diagrams in
the n-th order as well is determined by a condition i+j+...+k=n
(for example, at n=4 i=j=2 we have one correction diagram -

- <Zz;;gg , i.e., the last diagram shown in Fig. 2).

So, the self energy involves the correction terms describing
the mpltiple occupancy corrections besides the irreducible dia-
grams <n> (the first term in Eq(9)). These kinematic corrections
are obtained here by means of direct calculation automatically
}nd they have the structure being appropriate for the partial
summation of the series (6) as will be seen below. Let us sum,
for example, all the'single site nonrenormalized graphs. It is
easily seen from (9), that in this approximation the mass ope-
rator

s (n)
M—)-o’ (I\) = 2 Moo ()\)
et n=g LU (10)

has a form as shown in Fig. 3.
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Fig. 3.
Sdmming these graphs we obtain

M-ﬁ,()\) =<t > =<t ,;>G%0) <t;> + <t;>G°(0) <t;>G°0)<ty > -

<ty > ' (1)
.8??; .

oo Baa, =
43 1+ G°(O)<t, >

Here, <t > is averaged t;-matrix, describing single site
scattering (Fig. 4).

A

L+ /N 4+ /N +
P LN N ‘

Fig. 4. !



The result, given by Eq.(11), is the known averaged t-matrix
approximation for the mass operator/l'zf. For two-component dis-
ordered alloy A-B with the concentration of the component A be-
ing equal to ¢

ev , (l-c)vy
1 - v,G°(0)

N vi=€i —<e>; <e> = <£E>

1-v,G°(0
567 i = A, B.

Substituting this expression for <t, > in (11) we obtain the
averaged t-matrix approximation for the mass operator in the ca-
se of disordered alloy.

It is easy to sum all the single site graphs in Eq.(10) (see
(8)) taking into account the graphs renormalizing the inner pro-
pagators G°(0) . In this single site approximation in Egs.(9)
and (10) the graphs, given in Fig. 5, are summed. The correspon-

A X
MEEl(A) =i <//\\> + <// ‘\\> + (/ //\\\>+
a : | ) /7 N\ e
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Fig. 5.

ding analytic expression is of the form

<t >

1
82 (12
1+G(0)<t, > N’( )

Here,.<;1 > is determined by a sum of the graphs given in Fig.6,

h{/lﬁ*,(h) = {<t1 > - <t1>G’(0) <t >+ }Sﬂf'=

where the double line ——= denotes the function G7%0) , i.e., the

1 . .
Green, function of the system [<A-— q >137 » in which all the

scattering processes are taken into account besides the scatte-
ring on'the fixed site

The expression (12) for M(\) corresponds to coherent poten-
tial approximation 1-8/ 1n the case of two—component disordered

8
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alloys A-B considered labove this expression may be written more
usual as \

M) =

cA
— s A=¢, —¢e_ ; G(O) = G .
1 -(A - M) G(0) ‘A" B 0 = [<GQ)>] i

We shall consider now pair diagrams (which describe pair-defects
scattering) as well as single ones for all the orders of expan-—
sion in vV . Firstly, we take into account the unrenormalized dia-
grams only, i.e., the diagrams involving the functions Go(fl_fe)
as the inner propagator. Then in order to take into account all
the single and pair diagrams in (10), the unrenormalized single
and pair graphs are to sum in all <n>,<i> ,<j> ... from (8). It
is easily seen, that the sum of these graphs involving in <n>,
for all the orders of expansion (6) gives the result

;(1'2)< > - T oo
he n>", = <t1>5e .+ <t22E' >. (]3)

1,2 . . .
Here, 312 denotes the summation over the unrenormalized sing-
le and pair graphs, t; is the single site scattering matrix

(Fig. 4), tp is the irreducible part of the two site scattering
matrix tp (Fig. 7), which is obtained by substracting of the

Fig. 7.

f%rst term from tp (the first diagram on Fig. 7). For the part
(i,j) sites, being at a distance R =i-J,t, may be described as
follows

. 9




ty = t; G (R)y + t1G (R)t) +

. . . . . . (14)
+ t5G2(R)YGO(RILY + tIGO(R)t{GO(R)E{ +

where, tﬁ is the scattering tl—matrix for the site i. So, for
the part (i,j) tp may be written as the matrix

ii ij
te by

tg = TS (15)

in which the diagonal terms are determined by even in G°(R)
terms of analytic expression (14), but the off-diagonal ones be-
ing odd in G°(R) terms of (14).

The reducible part of <ty> provides mo contribution into
(13), as it is canceled with the appropriate diagrams due to the
operator Q in expression (6), that results in the diagrams given
in expression (8) (see, for example, Fig.2). As to the correc—
tion (coupled) diagrams (8) (arising also due to projection ope-—
rator Q in (6)) those diagrams having one or two coupling lines
are to sum over all the orders of perturbation theory. In consi-
dered unrenormalized representation all <n> (having no more
than 2 crosses) are coupled.

In order to obtain, for example, the averaged t-matrix appro-
ximation for impurity pair scattering /1:2/ corresponding to in-
dependent scattering by each pair those diagrams for the mass
operator from mentioned above are to take into account, in which
the number of sites (crosses) are fixed by the values of pair
sites for which the matrix element Mij(x) is calculated. It is
easily seen, that the sum of such diagrams gives the following
result

(1.2) -
N

M;; (A) = M(R) = % jj =Sty ty> = <ty t,>(G0) + By (R)x-—

X<y ty> 4 <Eat,> (GO0) + Py(R) <t + ty>(GO0) + P, (R)) x (16)

<t, +ty >
- ‘= 1 2
x<t1+ t2> e =

1+ (G%0) + Py (R) <ty +t, >

n) . . : . .
Here,Mij denotes the diagrams with fixed site numbers (i,]),
ts is the matrix (15), Pz(ﬁ) denotes the matrix

. 0 G%R)
Py (R) = (G"(ﬁ) 0 )

So, expression (16) for M is the matrix (2x2) with diagonal ma-
trix elements (even in Pz(ﬁ)) and with off-diagonal ones (odd

10
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in P, (R) ). Expression (16) follows from (8), taking of the
mentioned fact, that reducible diagrams in tg are canceled.
For disordered binary alloy expression (16) is transformed into
the known form

2
ct1+ c t2

M(ﬁ) = [ 2 2
1+1G%0) + P, (R)](cty + ¢ ty)
Here, t, (15) may be described as
2 —»
t; P, (R)
et T
~t,P, (R)

being in the same agreement with respect to both the diagonal
and off-diagonal matrix elements, as in (16).

In the case of pair defects we shall generalize now the cohe—
rent potential approximation (12). For this purpose the inner
propagators involved in the graphs summed in (16) are to be re-—
normalized by adding the same graphs from (8) (having the same
fixed outer sites) but with <n> stringed on the inner propaga-
tors. It results in the fact, that the diagrams describing pair
scattering are renormalized by using instead of the propagator
G° the full propagator, in which the scattering by considered
pair is excluded. In the matrix representation the result for
disordered alloy may be described as follows '3/

5 7o (')
M(R) = ——M8M
1+ F'rz(r’)

LA ) o

rg(C7) = cr(Dg) +
1-r(Dg)IT7

\
(r{) = ———Jé————.
1 -TdA
The second-order matrix I'* is determined analogously to the ex—
pression for G.(0) in the single site self-consistent approxima~
tion /157
<GX) >
r - \) -
1+ M) <G >

r“=ry+ I/,

where, <G(A) > , M()\) are the second-order matrix too, r{.ry
are the diagonal and off-diagonal parts of I'’, respectivelyy

11



The consideration carried out is easily generalized on the clus-
ters comprising the arbitrary numbers of the impurity centers.

4, ELECTRON SPECTRUM IN ARBITRARY STOCHASTIC POTENTIAL

We consider the model in which electrons, interacting with

the random field of N; impurity centres, are described by the ‘F

Hamiltonian f

g

H ='H0 H’; HO= — H’= 2 - _ .
’ 2m z=1¢z eiw o an

Here,p and m are the momentum and mass of the electron, respec-
t1ve1y, é (T - rg) is the interaction energy of the electron be-
ing in T ~point with the impurity center ¢ (?p is the radius-
vector of impurity center f ). The self energy for electrons we
shall calculate in self representation of H©°, The eigenvalues
and eigenfunctions of H° are

o K2 > o ikT
€ = y k> = e, (h =1),
E oom NG

where, Q@ 1is the volume of the system under consideration. In
this representation the matrix element of interaction is of the
. form

1 ~i(k-k)Tp
¢ ST

—i(R-E)T, > . (18)
Suu = fe HRED T 2y 4T,

=%(¢£)K—ﬁ'. (QSE)KT{’; =

Here, 93t - is the matrix element of the scattering center po-
tential being in the origin of coordinates. Integration inT is
carried out over the whole space, as it is assumed for simplici-
ty, that the potential ¢ has a finite range of action.

In this case we determine impurity centers configuration ave-
raging P of the quantity A , which depends on the impurity coor-
dinates, as follows

>

> dry
PA = <A> = [...[ —L ioAG ) '
n Q Q Q 1o » Nl . (19) kl
i.e:, the correlation in the scattering centers positions is n
i

simply neglected.
It is easy to obtain the average value of the interaction
Hamiltonian

12

<H’> = H"
H"> H g

As is seen from Eq.(18) b {$(T)d¥ does not depend on R .
Splitting as before the Hamlltonlan of the system (17) on H,

= <H> and V=H-<H > we see, that <H’> shifts the energy
}evel% of the electron s% by ¢’¢ % which is finite at finite
impurity centers concentration and does not depend on k. It is
convenient for us to exclude this constant shift by changing ze-
ro energy, level and assuming, that H7g3 = O.

Taklng into account that <H’pp- > =0 now, we consider the
expansion for M(A, k) in Hpp, . It is easily shown by means of
Eqs (6), (18), (19), that the first term of the expansion of
M(XA, B) is equal to

1 1
3 <H3 H5 > >===3 <32 exp[—l(k K )(Ty -t >
v, BBy VTl Uk %%, e, X7 Z)] *
1

1 N, 1 (20)

X b >3 =1 3 4,5, - > o
KR, ) R ¢k1k 2 3 ¢ Ey Y _ .39 ¢k1k g
1 1 ky

It is seen, that thlS term of the expan31on for M(A, k)ls nonva-
nishing only, if rB rE (as (ﬁa» = 0), i.e., it describes elec-

tron scattering by each 1mpurity center independently. Eq. (20)
may be compared with the diagram (a), shown in Fig. 8 which ver-—

/,’X\\ /’%\\
< |

(a) | (b)
Fig. 8.

tex corresponds to -f%-¢ RE, (the momentum k passes to K 1)

The bare propagator - is shown by a solid line with the

. €0k 4

vector k and single impurity scattering belng a dotted line
with a cross. To obtain the analytic expression by means of such
a dlagram we should make also the summation with respect to all
the inner momenta (k1 # K) and impurity centers positions as
well.

The different terms of expansion (6) for M(A, k) will be al-
so nonzero provided that no less than 2 impurity‘coordinate§

N 13
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coincide. So, the third-order term in H’ is proportional to c’
and shown in Fig. 8 as the diagram (b). The fourth-order term
is shown in Pig. 9. These diagrams correspond to the following
analytic expression

' AN
’//}(k\ O
o, H-, 7, \\\\ .+ N b +
Kz L\ K kp o \ Lk
k, ky, kg k) kg Ky
(a) (b)

(N N\ [\ [\
o0 AN O
ke [\ X ke % _ » K
k; ky k + kg- ¥, K, K kg
(c) _ (d)
) Fizg. 9.
(4) - 1
M (A, k)=9—4_. _’2_’ [Ni*‘Ni(Ni"DS}?lﬁ’aJr
kK, K, 1
NGO - D8, kpt, ~ NS, 1R, T (21)
ky
1 1
X ¢—> P —— I — ¢ > .
kiko X~ ¢S kokg A — €S [N
kz kg

The first term of this expression (corresponding to the diagram
(a) in Fig. 9) describes independent single site scatterings and
is proportional to the impurity centers concentration ¢’. The se-
cond and the third terms (21) (the diagrams (b) and (c¢) in Fig.9)
correspond to pair-impurity scattering being proportional to c¢’.
The last term in (21) (the diagram (d)), as easily seen, is pro-
pbrtional to c¢’/Q and is vanishing at thermodynamics transi-
tion

1i i .

ann——__ = c’, (22)

N>
1

Subsequently (22) will be assumed to be realized. We should note,
that the reducible diagram, occuring in the fourth order, is can-
celed. It may be realized similarly, that for all the orders of
expansion in H’the mass operator is of the form

14

v v a wrr —

M™ O, B) = <n >3 . (23)

k k

Here, as in Eq.(9), <n>g3z denotes a sum of all the irreduci-
ble diagrams with the other momenta 'k in the n-th order pertur-
bation theory. These diagrams may be presented in the same form
as the diagrams of section 3 (for example, as the graphs, shown
in Fig. 2). But in this case the valuef¢ )KE,; corresponds to

one crossed dotted line, the value )} — ¢o corresponds to the

solid line and a summation is performed o&er all the inner mo-
menta and all the scatterers as well (see (20)). After averaging
these diagrams acquire a form of the diagrams shown in Figs. 8,
9. Averaging results in closing of the dotted lines which cor-
respond to the different sites and in the definite relations
between the inner momenta- (see Fig. 9). At the transition (22)
the diagrams being analogous to the correction ones in (8) (with
coupled crosses) provide no contribution now, as it was elucida-
ted for the diagram (d) in Fig. 9.

Therefore, calculating the mass operator

M(AK) = £ <n >a,
n=2 kk (24)

we may classify diagrams into single—, two-impurity ones, etc.,
as in section 3. Summing all the single-impurity diagrams, then
two—-impurity ones, etc., we may obtain expansion for M(A,E) over
the impurity concentration c’

Let us sum, for example, single-impurity diagrams (with one
cross) over all the orders of the perturbation theory. It is
easily seen, that the result will be as follows

-> 1 >
G(A, k) = 4 M(,\,, k) =c’t2>=3 <(T )—)—) >
A - €2 —M(A,K) Kk ¢ kk
1 $it, PRk
togs = PP+ ry KZ = + (25)
1 A - 6;’:1
! PR, PR R, PR
+— . 3 12 20 + e
O k k, (A -ep VA —e3 )
Here, t 1is the scattering operator for single center situated

in the origin of coordinates. It is assosiated with the scatte-
. . . . -
ring operator T, for the centre situated in the point r; by the
relation ’ 5 5
1 —i(k—~k’)rz
(TE)§'§'= —d-e tEgs . . (26)

15
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The operator T, satisfies the equation’/7/
1 1

. 1 .
TE = ¢E(1 + 'd—O—-TE), dO = N _H . (27)

As it is seen from Eqs.(26), (27) the operator t is determined
by the following integral equation

1 1
to >, = qb—y-», + — ¢—,—», to> >,
kk Kk o §f, UKk d%l kyk (28)
1 1 1
ag A -~ H, 1t X —ep

If the potential ¢ is local, as in section 3 for the diagonal
disorder, then for disordered alloy it is of the form

#(F) = AvS(T); b7 = AV, (29)

where, v is the volume of the crystal unit cell. For such a ca-
se it is easily seen from Eqs.(25), (28), that

_1;(;2 "_;E')

c ;‘l;'l;;= <t1> =

CA . o, Ind
G (re—rz,)=

oA s o
1 - G°(0) z

1
E A - &3 ) (30)
k

It agrees with the result of section 3 of this work (N is
the number of crystal sites).

The diagram technique allows one to obtain also the renorma-
lized ‘single-impurity approximation, if to sum also the diagrams
of the type (b) on Fig. 9 besides diagrams with one cross (their
sum is ¢t} ). Summing the mentioned diagrams over all the
orders, we obtain

M(A k) = e’t

P 2> b >,
E_,_’ - ¢_’_’ + 1 2 kkl klk
Kk’ kk’ qQ o = +
’ LS €. - c’tﬁlgl
1 an
. SRS AT S
+1 s 172 "2 .
0% %, W-e3 —c't - - U
SRRy R iy
1 -i(k-kOrp ~
(T, ), = e t .
R @ [i%

S0, we have the closed system of equations
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GO, k) = 1

(32)
T 1 'z 2Nt L
>3, = > = > > >
kk’ ¢kk' + Q —lz ¢k_l; G(A, kl)cklk"
allowing to gglculate the electron spectrum for the arbitrary
potential ¢(r) in renormalized single-impurity approximation.

If to take -approximation (29) for the potential, we obtain from
Eqs. (31), (32)

> >

—ik(re—rz;)
> A > > 1 e
M, R) = —%2 ; G(Fp—-1,)=— 3 .
e v R L T S T S R

This is the so-called agproximation of the modified propagator
for diagonal disorder’/3’, .

Let us consider now the mass operator M(A, k). , accounting
the quadratic with respect to impurity concentration terms. In
this case single—~ and two-crossed graphs are to be taken into
account (two—crossed diagrams (b) and (c) are shown in Fig. 9).
As is easily seen from Eqs.(20), (21), (23), (24) and (8) the

mass operator in this approximation may be described in the form

e 1 v

M = > —_— -

(A, k) <% (Tzz> + Y '<z§m[T“m
' 1 1 (34)
"'TZ —-Tm—Tg—do Tm—Tm—»——C_lo TZ]KK>'

Here, Ty, is the two-center scattering operator for the points
rg andtp . It may be expressed by means of the operator Ty as
follows/7/

= . 1 1 1 1., 1 .
sz—-Tz+Tm+T + TmFT +T, —T —-—TE+Tm————'I —T +...

1
Q—d_(;Tm 4 £ 'qo m 4o q0 Zdo m"

As the mass operator inwolves only the irreducible part of the
pair-defect T-matrix (as it follows f¥om the diagram analysis

‘given above), we subtracted out of Ty, the terms describing

single~-impurity scattering (Tp and T,') and the reducible part’
of (35) as well corresponding to the first diagram in Fig. 7.
The opeartor Ty, satisfies the equation’/7/

1
sz = (¢g+ qu)(l + EB—TQm ). (36)

The matrix element (T ¢y, )i’ may be given in the form
~i(k-K")7¥)

1
(Tondzp-= 7 Tpzdo)e ‘ 37
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where, T =Ty~ fy 1is the distance between two scattering cen-—
> . - .

ters, T g3 (1) is the scattering operator on two centers one

of which is in the origin of coordinates and the second ome be-

ing in point T . According to (36), T (7) satisfies the equa-

tion Kk
> T = > T 1 > M 1 > > T
Tap. (1) = Do, (r) + o p3 %kl(r)FThk'(r)'
. —i(k-k%)r (38)
Dr- (1) = (1 + e YL

Substituting Eqs.(26), (37) into (34) and taking into account,
that for any pair of impurities (¢, m) the ensemble averaging
gives the equal results, we obtain

. N N(N —]-) > -»>
MOLER) = Ly o+ L rat Ty () -
Q 21Q
(39)
- Ni(Nl _1)t""— NI(NI -V t>> 1 te-
kk 2 Kk 0 kk °
Q Q di

The integral over T in (39) comes from < T (f) > , which is
calculated with the aid of procedure (19). It should be noted
that the singularity occurring in the second term of (39) at the
thermodynamic limiting transition (22) is canceled with the
third term of (39). So, Eq.(39) gives the mass operator up to
the terms being proportional to c¢’2? and scattering operators
involved are determined by Eqs.(28) and (38).

For the local potential (29) Eq.(34) may be described in the
form (taking into account (30))

M(X K) = e A-—-+Qi—02( A )2 L __;
1-AGS 1- AG? X -eq
iKr
fo o Ly e " (40)
) N3 y_.o
k 4

Here, the quantity

Q ~Ni(Ni~1)

>
P =

21 :<[.T€m-TE - Tolgg > ;

for the local potential is_of the known form, which corresponds .
to the "two-body problem" /3/ '
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a%e L 4 (a9)?
s A ¢ 4
QE=C —————-—0— 2 5 2 9 (41)
1-AG, (40 1 -(4y)
A - B g°.
£ 1o ace

where, the summation is performed over all the lattice sites.
Substituting Eq. (41) into (40) and taking into account that

ikr
A — x ! - = I Aje L. A7,
1 - AG, A - ep 4o ‘
we rewrite expression for M(A,E) in the case of local potenti-
al as follows’38/ TN
ikryg
. oA (AP’ e +(A)?
ML, k) = ————[1 -cAl+c = 53 1.
1-AG, £ 4o 1 - (A

Here, the first term describes isolated-impurity scattering and
the rest ones give the pair scattering.

To obtain renormalized representation for the mass operator,
allowing for both the single- and two-defect scatterings, we sum
in (24) besides two—crossed diagrams, summed in (39), also all
diagrams, resulting in the renormalization of the inner propaga-
tors G®. It is easily seen that as a result of such a procedu-
re we obtain

R - N. (N, -1) - - -
M\, k) = ¢’ tao L _ 1 -
A, k) = e’ Tan 4 - <(Q, T, =T,
(42)
- 1z m 1l 15 o1l =13 N
—TmETZ_TZFTm_d—TE - Tm?TQFTm]*kk >
Here,
-~ 1 —i(E—ﬁﬁ?g - - ~ ~ ~
(T - g %% Y= Tem ~ Te - T
~ ' 1 —i(k—k')l’e ~ > i > 1 1 (43)
(Tew i = 5 © TgaAr), (r=rp-rp)i 5= 0y

where, T P& (f) is determined by Eq.(38), in which a substitu-
tion is needed
19



e ~ > 1 1 -
Tiw () = W (08 e = b S e
k k

The last two terms in (42) are due to the fact, that Ty invol-
ves now the second_diagram of Fig. 7 and therefore it is to
be extracted from Q¢ . Taking into account Eq.(43) we may re-
write expression (42) as

( -» ~ Ni(Ni_l) > o~ -
ML, k) = ¢’tps + ————u [dr To>(r) -
kk 2!92 kk
N oD NN Vs o bt “
Q kk Qz k k ’ kk
N. (N, -1) > 5
i i = N P
—~——Qs %’ 12 GO k) ﬁ,E,G(A,k )t

So, to determine the electron spectrum we have the closed system
comprising the equation

R 1
G()\7 k = 5" 46
) }\—c% - M(A, k) (46)

Eq. (45), Eq.(32), where G(A, ﬁl) is determined by Eq.(46), and
Eq.(38) with the substitution (44).
For the local potential (29) (disordered allgz)

ikrz A2
B N. (N, -1) B Aye +
Q—>= ! <[Q ]-v-»> =02— A 2 B 22
k 21 {m &k 1 -AG, ¢4, 1 - a%
i_};_r' S A
Gz=l—2e U ann, 0 Ay = ——— Gy,
N 1 -AG,

c’fiﬁ is determined by Eq.(33) and

R ikr
L G B -3 Ape L
1~ aq, ;

where, % involves the term with T y = O. Substituting these

expressions into (42) we obtain for the local potentia1/3£/.
. 3 11??2 4

. Aze + Az
M), k) = ———————(1 -~ cA -cA +e 3 ).

1 - AG, £ #o 1_A§
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The consideration carried out in this section is directly gene-

ralized to the impurity complexes con51st1ng from the greater
number of impurities.
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Nlocs B.9, E17-86-845
K teopun HeynopsgoueHHsx cucTem. CnexTpw KBa3nyacTuy

Pa3suT HOBHA METOA BWUMCIIEHWA CNEKTPOB HeyNOPAROYEHHBIX CUCTEM, O0CHOBAHHbIN
Ha ¢opManuMaMe NPOEKYNOHHOIO ONepaTopa, B KOTOPOM aBTOMATMHUECKM YUMTHBAOTCH
NONpaBKn HAa MHOrOKPaTHoe 3anonHenuwe yanos. llonyueH ABHWII BuA pRAa no B3a-
MMOAQEHCTBUD ANA MAaCCOBOrO OfnepaTopa YCpPeAHEHHOH Mo KOHOMIypaynaM Oy HKuum
MpuHa. Mokaaano, 4TO 2TOT pAA /OTAMUHWG OT KYMYAAHTHOTO/ NErxko CymmupyeTcsa
B KnacTepHoM npubnuwenun. MoNyueHw 3aMmKHyTHE CUCTeMW YPaBHEHWH ANA onpepe-
leHMA CNeKTpa 3NeKTPOHOB, B3AWMOAEHCTBYIOWMX NOCPEACTBOM NMPOU3BONLHOIrO NO-
TEHUMaNa c XaoTUYeCKH pacnpefeneHHWMN NPUMECHHMU UEHTPaMM, C yYeTOM paccen-
HUA HA M3OMMPOBAHHLIX UEHTPAxX M HA Napax nNpPuMecei.

Pabota swnonHena B NlaGopaTopuu TeopeTuueckoi ¢uanku OHAW.

Coobuierie OFbemntenHOro MHCTHTYTa ANCpHBIX HCCnenoBami. Jlybua 1986

Los' V.F. E17-86-845
On the Theory of Disordered Systems. Spectra
of Quasi-Particles

New method for the disordered systems spectra calculation based on the
projection operator technique, in which multiple-occupancy corrections
are taken into account automatically, is developed. The explicit expansion
in power of interaction for the self-energy of the confiqurationally ave-
raged Green function is obtained. It is shown that this expansion (distinct
from cumulant one) can be easily summed up in the cluster approximation.
For the electrons which interact by means of arbitrary potential with the
chaotically distributed scattering centres the closed systems of equations
for the electror spectrum are obtained for the single centres and pairs of
impurities scattering.

The investigation has been performed at the Laboratory of Theoretical
Physics, JINR.
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