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1. INTRODUCTION 

Quite a number of works are devoted to the investigation of 
the spectral character~stics of disordered systems (for example, 
alloys)/1-3/. Th~'variôus methods to calculate the averaged over 
alI the configurations alloy Green function of the system were 
developed. At the same time the efforts were made to generalize 
the coherent potential approximation. However available genera­
lizations on the cluster~ of two or more impurities are not 
quite satisfactory/1,2/. It should be noted also, that the mos; 
of results are obtained in' not very realistic. tight-bond model 2,3! 

A new approach for the investigation of the disordered system 
spectra based on using projection operator technique (see,e.g.~40 
is developed in this work. Advantages of this approach involve 
the fact that the projected (averaged) Greeri function of the 
system contains explicitly the self energy (mass operator) exp­
ressed through, the Hamiltonian of the system. 

The explicit expansion into a power series of interaction for 
the self energy, in which multiple occupancy corrections 111 are 
taken into account automatically, is obtained. The structure of 
the ser í.es obtained distincts from the cumuLant; expansion and 
does not result in false poles when this series is summed up 
partially. To avoid these false poLe s the complicated self-con­
sistent proceaure is usually used / 51 • For the tight-bond model 
the series obtained is easily summed up in single site, pair, 
etc., approximations. 

The electrons interacting by means of arbitrary potential 
with the chaotically distributed scattering centres are also 
considered with the aid of the obtained explicit expansion for 
the mass operator. In this case the closed systems of equations 
for the determination.of the spectra are obtained taking into 
account the single-center ánd pair scatterings in both the unre­
normalized and renormalized r epresentat ons,í 

2. PROJECTION FO~ISM 

We shall consider the system described by the Hamiltonian H, 
in which excitations are not interacting. Let us introduce the 
Green function for such a syst~~ ~ - ­
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1 
G( À) -- ­

À - H
 

which determines botn the spectrum and density of state of the 
excitations. 

If ,H has the random variables, as it is in the disordered 
system, then the quantities observed are determined by the Green 
function averaged over various realizati'ons of t~e random varia­
bles 

1
 
< G('\) > = P G(À) P = P .. p. ( 1)
 

À - H 

where P is the corresponding averaging operator, and p 2 = p, i.e., 
the operator P is assumed to be projection one. It is easy to 
show 161, that 

PG(À)P = (À - PHP - M(À)]-l p ; 

1
M(À) = PHQ ,QHP ; Q = 1 - P. 

À - QHQ 

We shall write the Hamiltonian H as 

H = Ho + V. 

i.e., we split it into the translationally inveraint part H o and 
the part V , describing the disorder. Taking into account that 
PH o Q = QH P = O, we obta í.n o
 

1 1

<G(À»:= ------~------. M(À) = PV ----- QVP. (2) 

À - H - <V> -, M(À) À - Ho - QVo 

It is convenient to split the Hamiltonian into H and V by theo 
introduced projection operator 

H = (P+Q)H = <H >,+ H - <H>. 

Then 

n , = < H » : V = H - < H > ,< V > = O. (3) 

Neglecting the self energy (mass operator) M(À) in (2) and using 
(3), we obtain the virtual crystal approximation 

1 
G O<G(A» "" =
 

À - < H >
 

The matrix elements of the operator < G(À) > may be obtained from 
the system of equations 

2 

s L\- <H> - M(À)'nn ('.< G(À) >'l n n " = ' , (4)ô nn 
n 1 1 1 

where, the indexes n determine the quantum numbers of selected 
representation. For example, alI averaged values in quasimomen­
tum representation are di.agonal and Eq.(4) is reduced to 

1 
G(À, g) = --- , (5) 

À- À(g) - M(À, g) 

where, ?(À'~) =,(.<G(À»lig : M(À, g) = (M(À) 199 ,.À(g) is 
the exc1tat10n spectrum 1U v1rtual crystal. We emphas1ze, that 
Eq.(2) determines the explicit expansion of the mass operator, 
which may be used to calculate M(À) in any approximation. In 
this technique there are no problems as to consideration of ki ­
nematic corrections associated with ,constrains on the summation 
indexes, as it takes place when the series in. V for the Green 
function (1) is partially summing up./ll • By using the expansion 
(2) in V the multiple occupancy corrections are taken into acco­
unt automatically. It will be seen subsequently. The expansion 
(2) in V is of the form 

1 n
M(À) = ! PVf---QV] P, (6)n= 1 À - <H> 

where Eqs.(3) are used and, therefore, QVP = VP. It should be 
noted, that the expansion (6) is of different structure as com­
pared with cumulant one, ~hich is ,unconveniént, as it has been 
emphasized already. 

3. DIAGONAL DISORDER IN THE TIGHT-BOND MODEL 

We 'shall consider a conventional problem of the tight-bond 
method, when the Hamiltonian for the site .representation is of 
the form 

H 1(' = fl ôff' + WÊÊ' ' 

where, f ( is the energy in the lattice si te e , «u- are the 
overlap integraIs between the various cells of crystal each be­
ing the random function of the lattice site. Taking the Hamilto­
nian of virtual crystal 

Hoft < H ff~ > =: < f 1> slÊ' + < Wff, > 

depending upon the difference f - l' on l y', we obtain for pertur­
bation 

V1f' = (fP. - <fê » ô1e~ + Wpp'~ - <WêP.-+' >. 

3 



We shall consider now the diagonal disorder and take as pertur­
bation 

V -+-+ - (-+ < -+ >') 5:'-+-+ - v-+ 5:'-+-+H' - (e - (e . UHoI - . e UH' 

We assume for simplicity that the values of Vt are not correla­
ted on the various sites, i.e., 

< V1 vê'.> = .< v 1 > < v f' > = O (1 =F Ê')	 (7) 

We shall describe expansion (6) for the mass operator in the si ­
te representation by the usual diagram technique. Then for the 
second'ord~r of the perturbation theory we have the diagram (al' 
sho~ in Fig. 1, where the propagator Df virtual crystal GO(t-e]= 
= ( 

1 
) lê' is designated by a solid line but single site 

À - .<H > . 
scattering being a cross with one dotted line (it correcponds 
to Vê ). Due to conditions (7) and .< v>: = O the dotted lines 
for the various sites .are closed. The analytical expression cor­
responding to this diagram is as follows 

(2) 2 o
 
Ml('. (À) = <Vê> G (O) °lê' .
 

For the third order of the perturbation theory there is also one 
term, which is described by the diagram (b) in Fig. 1. 

1\	 /t\/ \ >	 / I \ ></ \	 < / I \ 
l \	 / J ~ 

(a) (bJ 
Fig. 1. 

(The appropriate analytical expression i~ of the forro 

(3) . 3. o 2

MIe>(À) = "<VI > (G (0)1 0Iê'·
 

For the third term of expansion (6) (the fourth order of the 
perturbation theory) we have the diagrams, shown in Fig. 2. The 
first two diagrams are the skeleton ones, the third diagram may 
be included in the bare Green function as renormalizatiQn and 
the fourth diagram describes a multiple occupancy correction 
(the line above connects the diagram parts, which correspond 
the same site). The last diagram, shown in Fig. 2, 
4 

~'.	 1< 'fi,
/ I \	 I \ / \ 

M(4) O.) = <1 1 \ ' ) + < / .'1 ,)+
/ I \ I / \ \ 

I J \ \ I , \ \ 

1)1.\	 X ~ 
I , / \ 

+<I X\) <I '> </ \>/	 1 \ \ I \ I \ 
I I \ \ I \ I , 

Fig. 2. 

is	 descri~~d by the expression
 
2 o 3 2
 

< v l > rG (O) 1 < Vl > • 

We	 should note, that alI the presented diagrams are irreducible 
(the reducible diagrams are canceled). 

It	 may be shown, tha~ the structure of the term of expansion 
for the mass operator (6) in the n-th order perturbation theory 
is	 of the following symbolic form 

(n)	 ~ I..,.. 

M1f ,(,\ ) = I cn> -. ~ <i> <j>' -. ~ <i> <j>.<It>
 
l+J=n l+J+k=n
 

T ----y	 r --,-----,
I. < í > < j > <k> <m> -... + I. < i > < j >. < k:> +
 

i+j+k+m=n -- i+j+k=n
 

r- , • r-:-----r-r 
+ I. «i><j><k><m> + <i><j><k><m» + ••• 
i+j+k+m=n' (8) 

r r-----r	 r-+ l 
+ I. <i> <j><k>.<m> + I. <i><i>.:I;.<m>.<p> + ••• 
i+j+k+m=n	 i+j+k+m+P=n­

f	 "1\ -,----r "'---r'~" 
I. < i >.< j >.<k >.<m> - I. .<i>.<j >.<k>.<m>.<p> _......

i+j+k+m=n -	 i+j+k+m+p=n 

+ ••. 1-+-;t ; <O> o; <1>=0. 
er' 

Here <n> denotes a sum of the alI averaged irreducible diag­
rams without coupling lines on top in the n-th order perturba­
tion theory (for example, the firs~ three diagrams, shown irt 
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Figo 2, corresponding to the fourth order)o For diagrams with 
more than two crosses (the vari~us sites~ a summation over in­
dexes of the sites, not coinciding with i , i', is impliedo The 
remaining terms in (8) describe the multiple occupancy correc­
tion diagrams (as the last diagram, shown in Figo 2)0 These dia­
grams are irreducible alsoo The coupling line r-I connects 'any 
two crosses of various irreducible diagrams <i> and .<j> , ma­
king these crosses corresponding to the same siteo The remaining 
(uncoup l.í.ng ) sites in.<i> andx j >. d í.s t í.nc t fromcoupling ones . 
The "symbol. < 0:.< ~ > denotes a sum of a l l the po s s i.bl,e couplings 
of two crosses:-fhe lines rTI, rrr" ooo denote the coupling of 
three, four crosses, etco for various <i> o The solid lines be­
10w denote the bare Green function 0° (i1 - i 2) binding dia­
grams < i> o The lines, coupling the even number of crosses, at­
tach negative sign for the diagram, but the lines, coupling the 
odd number of crosses, attach positive one o The definite sign 
of the diagram is determined by alI the coupling lines appearing 
in this diagramo The correction diagrams do not involve the 

, • I 

<~> ..<~>.<m> - type diagrams, in which the inner propagator 
i 

is renormalized by the diagrams being absent in V-expansion for 
the averaged Green function [< O (À) >'11~' o Taking int~ account 
the above V-mentioned we describe Mie, (À) as follows 

(o) 0-2 

M1F' (;\) = 1 <n> + ...I. _ r <í >'<j > ooo.<k > ] c 1-;;,0 
Id •...• k- 2 tt (9) 

(i+j+ ... +k=o) 

Here,f. <i> <j > 000 <k>:lc denotes any couplings in the diagram 
~-i~~<k>~ (accounting a sign) o For these diagrams the num­
ber of the factors and the number of the correction diagrams in 
the n-th order as well is determined by a condition i+j+ooo+k=n 
(for example, at n=4 i=j =2 we have one corr ect í on diagram ­
- <~><1? , ioeo, the last diagram shown in Figo 2)0 

So, the self energy involves the correction terms describing 
the mJ.lltiple occupancy corrections besides the irreducible dia­
grams <n> (the first term in Eq(9))0 These kinematic corrections 
are obtained here by means of direct calculation automatically 
,nd they have the structure being appropriate for the partial 
~ummation of the series (6) as will be seen belowo Let us sum, 
for example, alI the'single site nonrenormalized graphso It is 
easily seen from (9), that in this approximation the mass ope­
rator 

(o)
M...... (A) ~ M...... (;\) 

0=2 ( 10)H' H' 

has a forro as shown in Figo 30 

6 

M...... (À) /" / 1\ >+ 
H' [</Á,? "/ 

~ 

I \ ., ,
I I ~ 

11 '" :1 ~I~ ~ , , I t \ / 11\ ) ( / \ ) -<, \')</ \) 5, ,'> </ I ,'> 
"I I \ " , \ I \ (l \ i I ~ I I ~ I j 

t ~ 
, I' /1\«, 1\><'1 <>­ f , , 

I I \ I J \ 

fi ~ ~ 
<' ''> <I \ ')(I \ ') O......+ I \ I \ 1\ +, .. 1H' 

I \, \ I \ 

Figo 30 

Summing these graphs we obtain 

Mlf,(À) = 1.<t 1 > - <t 1>0°(0) <t 1> + <t 1>00(0) .<t 1>:00(0).<t 1>.­

(11 ).< t 1 > 
l o ... = ----­- ooo tt- «u-

I + Oo (O) < t 1 > 

Here, < t 1 > is averaged ti -matrix, .describing single site 
scattering (Figo 4)'0 

1\ ~
 ~ / \ + I 1\ +ti ~ r= ,.l+
/ ~ '. .~ i 

I,
Figo 40 

7 I
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The result, given by Eq.(II), ia the known averaged t-matrix 
approximation for the mass operator /1.2f. For two-component dis­
ordered alloy A-B with the concentration of the component A be­
ing equal to c 

cV (1- c)v BA 
.< t 1 > == + -------- V i == (i - .« >; <e > == < e > 

1 - V:A G °(O) 1 - vB G °(O) 
f 

i == A, B. 

Substituting this expression for <t1 > in (11) we obt~in the 
averaged t-matrix approximation for th~ mass operator in the ca­
se of disordered alloy. 

It is easy to sum alI the single site graphs in Eq.(IO) (see 
(8)) taking into account the graphs renormalizing the inner pro­
pagators 0°(0) • In this single site approximation in Eqs.(9) 
and (10) the graphs, given in Fig. 5, are summed. The correspon­

f\ ~\ X 
M44(À)==tl <, ,> + / 1i ~+< /X'')+

H' { <, / \' / / « "­
I . \ / 1 \ I I \ \ t·~ 

~ tp.ft ~ 
/ \ / \ 

"':"""</''')</''')
/ \ I \ </" \> </ ,'> 

I \ 1 ~ I I \ \ L ~ 

f )\ ~ ~ 
/ \ / \ I , X \ 

104 4 
H~- (I ,> <I f\ \> < 17<1,"-// ,'>- ...)l: ... 

L \ /1 \\ I \, \ J \
 
F1.:g. 5.
 

ding analytic expression is .of the form -_ _ - <t >
1

Mlt,(À) == {<t 1 > - <t 1 >O~(O) <t 1> + ••• loft~ == . . - O""~(I2) 
( 1 + G~(O).< t 1 > H 

Here, .<t 1 > is determined by a sum of the graphs given in Fip,.6, 

where the double line ===:.denotes the function G~(O) , Le., 'the 

Creen, function of the system [< ,\ _ 
1 

H >] lê ,in which a l I the 

scattering processes are taken i~to account besides the scatte­
ring on'the fixed site l . 

The expression (12) for M(À) corresponds to coherent poten­
tial approximation / 1- 3 / • In the case of two-component disordered 

8 

)(1\ 11\ 
.< t 1 > </ \> + </1\7+ </ /I, ",>+ 

I I ') / I \ \ J ••/ \ 
A I~< / \> + </ : ': + ( < v f > == O) 

I \ { ~ 

Fig. 6. 

alloys A-B considered fbove this expression may be written more 
usual as \ 

có. 
M(,\) == ; ó. == E' - (B ; 0(0) == [ < 0(,\) > ] 4 ..... 

1 - (ó. - M(,\)) G (O) A U 

We shall conaider now pair diagrams (which describe pair-defects 
scattering) as well as single ones for alI the orders of expan­
sion in V . Firstly, we take into account the unrenormalized dia­
grams only, i.e., the diagrams involving the functions OO(ll- 12) 
as the inner propagator. Then in order to take into account alI 
the single and pair diagrams in (10), the unrenormalized single 
and pair graphs are to sum in a I I <n>,<i> ,<j> 000 from (8). It 
is easily seen, that the sum of these graphs involving in<n>, 
for alI the orders of expansion (6) gives the result 

00(1.2)........ ............ ....

I <n>H~ == <t1>8H~ + <t2H~ >. (13) 

n== 2 

Here, I(1.2) denotes the summation over the unrenormalized sing­
le and pair graphs, t1 is the single site scattering matrix 
(Fig. 4), t 2 is'the irreducible part of the two site scattering 
matrix t2 (Fig. 7), which is obtained by substracting of the 

l12~ U + &Tffi+,1 c , ~ ":- > +... 

Fig. 7. 

first term from t2 (the first diagram on Fig. 7). F~r the part 
(i,j) sites, being at a distance R =f- j, t 2 may be described as 
follows 

9 



ij i ° i : j ° it 2 =t 1o (R)t 1+ (R)t 1 +t 10 

+ til O o ( R ) t j1 .ao ( R) t i1 + t j1 O°(R) t ~ O°(R) ti + ... 
(14) 

where, til is t he scattering tt -matrix for the site i. So, for 

the pa(r~i~i,j;ijt\ may be written as the matrix 

t 2 ~ t ~i IM)' (I5 ) 

in which the diagonal terms are determined by even in GO(R) 
terms of analytic expression (14), but the off-diagonal ones be­
ing odd' in GO (R) terrns of (14). 

The reducible part of < t 2 > provides rio contribution into 
(13), as it is canceled with the appropriate diagrams due to the 
operator Q in expression (6), that results in the diagrams given 
in expression (8) (see, for example, Fig.2). As to the correc­
tion (coupled) diagrams (8) (arising also due to projection ope­
rator Q in (6)) those diagrams having one or two coupling lines 
are to sum over al~ the orders of perturbation theory. In consi­
dered unrenormalized representation a l I < n > (having no more 
than 2 crosses) are coupled. 

In order to obtain, for example, the averaged t~matrix appro­
ximation for impurity pair scattering /1.2/ corresponding to in­
dependent scattering by each pair those diagrams for the mass 
operator from mentioned a~ove are to take into account, in which 
the number of sites (crosses) are fixed by the values of pair 
sites for which the matrix element M ij L\) is calculated. It is 
eas i.Iy seen, that the sum of .such d i agrams gives the fo Ll.owíng 
result 

~ 0,2) - (n) ° ~ 
Mij(À) = M(R) = 2 M ij =.<t 1 + t 2> - <t 1 + t 2>(0 (O) + P2(R))x­

n 

x< t 1 + (16)t 2> + <t 1+t 2>(00(0) + P 2(R)).<t 1 + t 2>(Go(0)+P2(R)) x 

_ -_-~~~l?__~__x <t 1 + t 2 > - .••
 
I + (Go(O) + P 2(R)) <t 1 + t 2 >
 

-M (n) .•••
Here, ij denotes the d í.agrams wi.th f í.xed s i.te numbers (i,j), 
t 2 is thematrix Cl5),P2(R) denotes thematrix 

O oo( R))
~ 

P2 (.R) ( G o(R) O • 

Sq, expression (16) for M is the matrix (2x2) with diagonal ma­
trix elements (even in P2 (R)) and wi th off-diagonal ones (odd 

10 

~ 

in P2 (R) ). Expression (16) follows from (8), taking of the 
mentioned fact, that 'reduc í.bLe diagrams in t 2 are canceled. 
For disordered binary alloy expression (16) is transformed into 
the known forro 

ct 1 + c 2t
 

M(R) = 2
 

° ~ 21 + [O (O) + P 2 (R)]Cc ti + c t 2) 

Here, t 2 (15) may be described as 
2 ~ 

t 1 P2 (R) 
t 2 = ....
 

l-ttP2 ( R )
 

being in the same agreement with respect to both the diagonal 
and off-diagonal matrix elements, as in (16). 

In the case of pair defects we shall generalize now the cohe­
rent potential approximation (12). For this purpose the inner 
propagators involved in the graphs summed in (16) are to be re­
normalized by adding the same graphs from (8) (having the same 
fixed outer sites) but with <n> stringed on the inner propaga­
tors. It results in the fact, that the diagrams describing pair 
scattering are renormalized by using instead of the propagator 
0° the full .propagator, in which the scattering by considered 
pair i~ excluded. In the matrix representation the result for 
disordered alloy may be described as follows!~1 

'2([") 
M(R) 

1+r"2(r') 

C 2,2(f'tÍ )r

'2(r') c,(reÍ) + 

n
'
 

1 - -rr eÍ )r ~ 

~ 
r (reÍ )
 

1 - r eÍ tJ..
 

The secorid-order matrjx r' is determined analogously to the ex­
pression for 0:(0) in the single site self-consistent approxima­
tion ! 1, 51 

< 0(,\) >'r' = r' = r d + r;,
 
1 + MOd < O (,\) >
 

where, <o(À» ,M(À) are the second-order matrix too, rd',r; 
are the diagonal and off-diagonal parts of r', respectivelYI 

11 
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The consideration carried out is easily generalized on the clus­

ters comprising the arbitrary numbers of the impurity centers.
 

4. ELECTRON SPECTRUH IN ARBITRARY STOCHASTIC POTENTIAL 

We consider the model in wnich electrons, interacting with
 
the random field of N i impurity centres, are described by the
 lHamiltonian 

-+ 2 N·	 NiP 1	 .... f' 
H =·Ho+ H~; HO= -~; H ~== L cPE L cP(?- rE)' (17)

2m E == 1 E= 1
 

Here,p and m are the momentum and mass of the electron, respec­

tively, cP (1 - rE) is the interaction energy of the electron be-'
 
ing in r -point wi th the impuri ty center E (r E is the radius­

vector of impurity center E ). The seI f energy for electrons we
 
shall calculate in self representation of HO. The eigenvalues
 
and eigenfunctions of HO are
 

-+2	 -+-+
i k r ° k -+	 e

(.,.==-~, !k>= ., (h=l), 
k 2m	 VÕ-' 

where,O is the volume of the system under consideration. In 
this rep+esentation the matrix element of interaction is of the 

.form 

H-:. _ L (,I.,) () 1 -i(k-k~);n 
kk-:- E '+'E 1tlt';	 cPE kk~==-e cP kk ~l. 

. -+ -+ ~ -+ ·0 (I8)cP-+-+ == fe-1(k-k )r,l.,(-+)d-+
kk' '+'	 r r. 

Here, cPtlt ~ is the	 matrix element of the scattering center po­
tential being in the origin of coordinates. Integration in r is 
carried out over the whole space, as it is assumed for simplici­
ty, that the pot.ent í.a L cP has a finite range of ac t í.on , 

In this case we determine impurity centers configuration ave­
raging P of the quantity A , which depends on the impurity coor­

'dinates, as follows 

-+ d1 
. dr l N i -+ -+
 

PA <A>== I ... f --- ... -~A(rlpo••• rN.)'

n a {1 n	 1 (19) '1' 

i.e., the correlation in the Rcattering centers positions is J,simply neglected.
 
It is easy to obtain the average value of the interaction
 

Hamiltonian
 

12 

N. 
~ H ~ ~,I.,	 1< H > = ltlt = c '+'kk c' = n 

As is seen from Eq , (18) cPkk == I cP(1)d1 does not depend on k . 
Splitting as before the Hamiltonian of the system (17) on H = o 
= < H > and V =;H -	 < H > we see, that < H ~ > shifts the energy 
LeveLs of the electron (~ by c ~ cP kk which is finite at fini te 
impurity centers concentration and does not depend on k . It is 
convenient for us to exclude this constant shift by changing ze­
ro energy, leveI and assuming, that H ~kk = O. 

Taking into account that <H'tt1t~ > =0 now, we consider the 
expansion for M(,\, k) in H ~Itlt 1 • It is easily shown by means of 
Eqs.(6), (18), (19), that the first term of the expansion of 
M( A, J{) is equal to 

1	 1 -+-+ -+-+
L < H-';", H~ -+ > ==2~ < L exp[-i(k-k 

l
)( r r )] >X

k kK l A - (!; k lk n k H E- E1 
1 k l	 l l 

1 N. 1	 (20) 
x cP-+.,. cP -+	 -+ == _1_ L cP-+ -+ --- cP -+ -+ 

kk l A _.(~ k lk 0 2 k kk l A _ (~ k lkk l	 1 k l 

It is seen, that this term of the expansion for M(A,k)is nonva­
nishing only, f rE= rE (as cP kk = O), i.e., it describes elec­í 

l 
tron scattering by each impurity center independently. Eq.(20) 
may be compared with the diagram (a), shown in Fig. 8 which ver­

/~.......
 
,., "	 /~, 

". \ "­/ "	 I ., 
, (	 " 
k 1 k \k kl ~ ').k 

~ k 
l 

k 2 

(a)	 (b) 
Fig. 8. 

1tex corresponds to	 -O cP ltlt 1 (t.he momentum k passes to k 1 ) • 

The bare propagator 1-+ is shown by a solid li~e with the
A - (o k 

vector k l and single impuri€y scattering being a dotted line 
with a cross. To obtain the analytic expression by means of such 
a diagram we should make also the summation with respect to alI 
the inner momenta (k l ~ k) and impurity centers positions as 
well. -+ 

The different terms of expansion (6) for M(A, k) will be al ­
so nonzero provided that no less than 2 impurity. coordinate~ 
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I
 

I
 

·1coincide. So, the third-order term in H' is proportional t.O c' M(n)(A,k) = <n>kk.	 (23)Iand shown in Fig. 8 as the diagram (b). The fourth-order term 
is shown in Fig. 9. These diagrams correspond to the following I Here, as in Eq.(9), <n>1{.1{ denotes-+a sum of a l I the irreduci­
analytic expression	 i

l 
I 

ble diagrams with the other momenta'k in the n-th order pertur­
/x....... .,," bation theory. Tqese diagrams may be presented in the same form.......	 i
 

"/ /\, / . as the diagrams of section 3 (for example, as the graphs, shown 
M(4)(À, k)= / I \ "- l/X, '\. in Fig. 2). But in this case the value (<p )kk1 corresponds to 

.J I I \ \. . + + !	 

1li / " 'i{k I ( \ \ k k (( \ \ l one crossed dotted line, the val~e À _ (~ corresponds to the 
k k k 3 

k k 2 k 1 ~ :
1 2 1	 ,solid line and a summation is performed oJer alI the inner mo­

menta and alI the scatterers as well (see (20». After averagingI t(a)	 (b) these diagrams acquire a form of the diagrams shown in Figs. 8, 
9. Averaging results in cIosing of the dotted lines which cor­.J 
respond to the different sites and in the defini te relations 
between the inner momenta· (see Fig. 9). At the transition (22) 

/~ /1..,\	 ;'\ A 
I \/ \	 I \ I \ the diagrams being analogous to the correction ones in (8) (with+ I 1\ \ I \ ( \ k	 coupled crosses) provide no contribution now, as it was elucida­

kt c\ ,k k ( l « • ted for the diagram (d) in Fig. 9. 
k +	 k k k 3 Therefore, calculating the mass operatork t · k 2 k2-k 1	 1 

(o)	 (d) M(>\, k) ~ < n >-+-+ 
n = 2 k k	 (24)Fig. 9. 

(4) ...	 we may classify diagrams into single-, two-impurity ones, etc.,1 ~ M (A,	 k) --4 ...... [N i + N i (N i - 1) 8 k k +	 as in section 3. Summing alI the single-impurity diaerams, then
1 3O k

1 
k

2 
k

3 two-impurity ones, etc., w~ may obtain expansion for M(À, k) over 
1 the impurity c.oncentration c'.. 

+ N. (N. - 1) õ-e ,» ... ... - N . ô...... 1cP...... ------ X 
1 1 k + k 2 • k 1+ k 3 1 k k 2 k k 1 À _ f ~ , (2])	 Let us sum, for example, single-impurity diagrams (with one 

•	 k 1 cross) over alI ·the orders of the perturbat{on theory. It is 
1 1 easily seen, that the result will be as follows x cP'" ... ----- cP ...... ------ cP ~ ...

, k 1k 2 À _ f ~ k 2 k 3 À _ f ~ K 3 k • 
k 2 k 3 1 -+ 

The first term of this expression (corresponding to the diagram G(À, k) ~---~-----' M(À k ) c't-+-+ = L «T )-+-+ > 
k k f. f. k k À - -M(,\,k)' ,(1(a) in	 Fig. 9) describes independent single si'te scatterings and 

<p-+ -+ cp -+ -+,is proportional to the impurity centers concentration c'. The se­ 1 kk 1 k 1k
cond and the third terms (2.1) (the diagrams (b) and (c) in Fig.9) t kk' <p -+ -+, +. -- L -~---~-- +	 (25)

kk O 1{ 1 À _ (~correspond to pair-impurity scattering being proportional to c' • 
<p-+-+ <p-+	 -+ cp -: 1-+",The last term in (2]) (the diagram (d», as easily seen, is pro­	 kk k k 

+ _1_ 1 1k2 2k
pnrtional to c'/O anti is vanishing at thermodynamics transi­	 ~ -~~-~------- + ..• 

0 2 k (À - (~ )(À -'(~ )tion	 1k2 k 1 k 2N. ,lim _1_ c • (22) Here, t is the scattering operator for single center situated0-+00 O 
in the	 origin of coordinates. It is assosiated with the scatte­N.-+oo • 

1 ring operator Te for the centre situated in the point te by the 
Subsequently (22) will be assumed to be realized. We should note, , l relation 17 I -+ -+ -+ 
that the reducible diagram, .occuring in the fourth order, is can­ 1 -i(k-k')re~ 
celed. It may be realized similarly, that for alI the orders of ( Te)k'k' = -ri" e t kk' . (26 ) 
expansion in H' ·the mass opera t or is of the form 

14	 -.;, 
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The operator Te satisfies the equation / 7 1 

1 1 1 
Te = ri> e(1 + - Te); - = - (27)

dO dO À - a, 

As it is seen from Eqs.(26), (27) the operator is determined 
by the following integral equation 

1 
t~ ~, = rI>~~, + !.. I rI>~~,--t .... ~,·

kk kk n k kk 1 d? (28)
1 

k 1k'k 1 

1 1 1 - = ( ) = ---. 
d o À H ~~ À ° i! - ° k k - €"k 
If the'potential ri> is local, as in section 3 for the diagonal 
disorder, then for disordered alloy it is of the form 

rI>(~) = t\vB(;); ~v,rl>kk' = (29) 

where, v is the volume of the crystal unit cell. For such a ca­
se it is easily seen from Eqs.(25), (28), that 

-+ ~ ~
 

-ik( rf - re')
 
, 'c~ . ° ~ ~ 1 e
 c t~~,= <t 1> z: , G (rn-r ) = -,I (30)o , 
, k k 1 _ 0° (O) l. l. N k 

À - 'k° 

It agrees with the result of sec~ion 3 of this work (N is 
the number of cryst~l sites). 

The diagram technique allows one to obtain also the renorma­
lized'single-impurityapproximation, if to sum also the diagrams 
of the type (b) on Fig. 9 besides diagrams with one cross (their 
sum is c'tkk ). Summing the mentioned diagrams over all the 
orders, we obtain 

M(A, k} = c' t ki! =I «Te)kk>e 
rI>~~ rI>-+~, 

kk k- 1 1k 
t ~~ = ,I..~ .... + !..- I

k k' 'fi k k' +n k ° ­( 1 À - (~ - c'tk k 
k 1 t 1 (3]) 

ep~~ ep~ ~,.... ep ....
1 kk 1 k k+ ----.. I 1k 2 2k _
 

+ •••
 
n 2 ."..... (À ° ,- )( À ° ,- )
UI li 1 k 2 - e -+k - c t k k - (k - c t....k k 

1 1 1 2 2 2 
.- ~ 1 -i(i!-i!')-;e ­

( T o )~ ~ = "'i"r e t ~ ~ • 
l. kk' U kk' 

50, we have the closed system of equations 
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G (À, k) = 1 
: , 

À -, €~ (32)- c'ti!i!li 

t~ ~, = ri> ~~ + 1 I ri> G( ~ - .k k k k ' n ~~ À k ) t ~ ~ .,.. k k '1 k k'·
k 1 1 

1 

allowing to calculate the electron spectrum for the arbitrary 
potential ri> (r) in renormalized single-impurity approximation. 
If to takeapproximation (29) for the potential, we obtain from 
Eqs.(31), (32) 

-ik(;e-;e') 
cf),. e 

M(À, k) = ~G(O) G(;e-;e') L I ° ~ '. (33)
N k À - fi! - M(À, k) 

~his is the so-called aPlroximation of the modified propagator 
for diagonal disorder 13 • 

Let us consider now the mass operator M(À, k)" accounting 
the quadratic with respect to impurity concentration terroso In 
this case single- and two-crossed graphs are to be taken into 
account (two-crossed diagrams (b) and (c) are shown in Fig. 9). 
As is easily seen from Eqs.(20), (21), (23), (24) and (8)the 
mass ope~ator in this approximation may be described in the forro 

~ 1.
M(À, k) ::: < I (T o )~~ > + -'.< I [ T o -e L kk 21 e*m t m 

(34)1 1 - 'I'» - T - Tn - T - T -Tn] ~~ >. 
L m L dO m m dO L k k 

Here, Tem is the two-center scattering operator for the points 
~ ~ 

re andr m • It may be expressed by means of the operator Te as 
follows!71 

.1 1 1 1 1,1 _
T a =,Tn + T + Tn --,T + T -To + To -T -Tn + T -'In -T +.••• 

t m L m L d ? m m dO L L dO m dO L m dO L dO m 
(35) 

The diagram representation of Tem'-Te- Tm is shown in Fig. 7. 
As the mass operator in~olves only the irreducible part of the 
pair-defect T-matrix (as it follows f tom the diagram analysis 
given above), we subtracted out of Tem the terros describing 
single-impuri ty scattering (T e and T m') and the reducible par t' 
of (35) as well corresponding to the first diagram in Fig. 7. 
The opeartor Tem satisfies the equation 171 

1 
Tem = (ri> e+ rl>m)(l + ()Tem ). (36)

d 

The matrix element (T em )kk' may be given in the form 
1 -i( k-k')-;

(To )~~,=-T~~,(r)e e ,(37)
t m k k n k k 

-;, 17 



• \ ° 

where, r = r m - r e is the distance between two scattering cen­
ters, T kk' (r) is the scat t e r i.ng operãtor on two centers one 
of which is in the origin pf coordinates and the second ORe be­
i~g in point r . According to (36), T~~,(r) satisfies the equa­
t10n 

T-.-., (r) cI>-.-.,(;) + !..- I cI>kk (;) d~ ; ); kk kk o r, 1
T k1k ,C

k 1 
- i (k-k ')-; (38)

~k' (f) = (1 + e ) cP kk ' . 

5ubstituting Eqs.(26), (37) into (34) and taking into account~ 

that for any pair of impurities (e , m) the ensemble averaging 
gives the equal results, we obtain 

N. N.(N i-l) -. -+ 
_._1 tM(À, k) + _1 r dr T kk (r)kk o 2!02 ° 

(39)
N i(Ni 1) Ni(N i - 1) 1 -
----t-.-. - t ...~ t ......O kk 0 2 kk dO kk 

t 

The integral over r in (39) comes from < T kk (r) > , which is 
calculated with the aid of procedure (19). It should be noted 
that the singularity occurring in the second term of (39) at the 
thermodynamic limiting transition (22) is canceled with the 
third -t erm of (39). 50, Eq', (39) gives the mass operator up to 
the terms being proportional to c,2 and scattering operators 
involved are determined by Eqs.(28) and (38). 

For the local potential (29) Eq.(34) may be described in the 
form (taking into account (30» 

... ' /). 2 /).. '2 1M(À. k) = c ---- + Q... - c ( ) __ 
o k o o

l-~ao 1- ~ao ~ -(k 

... -. 
i k r e , 1 . e (40)aF = 0- I

N ... À - (2k k 

Here, the quantity 

.. N, (N-. l' - 1) 
k =Q 

2! 
1 < [ °T em - T e - T m1kk >°• 

for the local potential is of the known form, which corresponds 
to the "two-body problem" /'3/ 
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1·t ... 
Aee rf +(Ae)2

~ 
Q ... = c 2 

~ ---------- (41 ) 
k o o 2

1 - ~ao e:10 l-(A e) 

AO ~ 

E 1 -, ~a~ 

where, the summation is performed over ail the lattice sites. 
5ubstituting Eq.(41) into (40) and taking into account that 

-.-. 
i k r e~ 1 

~ Ao e 0+ AO= -- x ------o f 'o
 
1 - ~ao À -- (t


o 
e "* o 

we rewrite expression for M( À, kO) in the case of local potenti ­
a L as follows /3.8/ .........
 

i k r e 
(A e) 3 e + (AF)2 

c~ o ~M(À, k) --0-[ 1 - cA + C k -------oO-2-~1.o 
l-~ao e=lo l-(Ae) 

Here, the first term describes isolated-impurity scattering and 
the rest ones give the pair scattering. 

To obtain renormalized representation for the mass operator, 
allowing for both the single- and two-defect scatterings, we sum 
in (24) besides two-crossed diagrams, summed in (39), also alI 
diagrams, resulting in the renormalization of the inner propaga­
tors aO. It is easily seen that as a result of such a procedu­
re we obtain 

N,(N. -1) [Q - 1­
M (À, k) c 't...... + 1 1 < em

kk 2! Te "d Tm 

(42) 
- 1- - 1 - 1 - .- 1 - 1 ­

- T -To To...:....-T - To - T - To - T ] ,...... >. 
m d L L d md L m d L d m kk 

Here, 

- 1 -i (k-k );e ­
(T ) ..... , = -e t ......, TQem Tekk n kk Tem m 

- i(k-k');e - ... ... -. -. . 1 I (43)( T )...... , -.!. e T kk,(r ) • (r = °rm - r e), dem k k n À -H ' 

where, Tk k' Cf) is determined by Eq , (38), in which a sUbstitu­
tion is needed 
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1 1 ~ 
T~~ (; ') ~k'(;); ~ --+ -, = O C\, k). (44)
k k' d~ d~ I'
 

k k
 

The last two terms in (42) are due to the fact, that T~ invol­
ves now the second_diagram of Fig. 7 and therefore t is toí 

be extracted from Q~m • Taking into account Eq.(43) we may re­
write expression (42) as 

~ _ N.(N.-1) ~_ ~ 
M (À, k) = c' t ~ ~ + 1 1 f d r T ~ ~ ( r) ­

kk 2! 0.2 kk 

N i	 (N i - 1) (45)
N	 (N. - 1) - O (À k) t ~it ~~ ­ i 1 -.-~,tik ' kkkn 

Ni(Ni-l) 
L t~~, O(À, k')t~,~,O(À, k') t~,~-os-- i' kk k k k k 

50, to determine the electron spectrum we have the closed system 
comprising the equation 

O(À, k) = 
1	 

(46)
À-(~ -M(À,k)
 

k
 

Eq.(45), Eq.(32), where O(À, k1 ) is determined by Eq.(46), and · 
Eq.(38) with the substitution (44). 

For the local potential (29) (disordered alloy) 
i k;~ 

A2 
A~ e '+N. (N. -1) - _ c2 __I1_ L ~
 

Q- - .1 1 <[Qo L~> - 1 AO 0/
 
~k - 2! l m k k - Ll o lT' o 1 - A2
 

~
 

1 i ir"e ~ 
O	 = - L e O (À, k); ~ O~. 

~ k	 A~ = 1-110N	 0 

c'tkk is determined by Eq.(33) and 

~ ~ i k;~
 
....- O (À, k) = L A ~ e
 
1 - 110 0 ~
 

where, r involves the term with r ~ = o. Subs t i.tu t i.ng these 
8 1 expressions into (42) we obtain for the local potential / 3

• • 

..	 3 i k?~ 4 

~ cl1 2 A~e + A~
 
M(À, k) = (I - cA - cA + c L ) •
 

o O· 2
 
1 - 11 0 0 ~ 1 - A ~
*o 

'The consideration carried out in ~his section is directly gene­
ralized to the impurity çomplexes consisting from the greater 
number of impurities. 
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Jlocb B.!ll. 
K TeopHH HeynopRA04eHH~x CHcTeM. CneKTP~ KBa3H4aCTH~ 

El]-86-845 

Pa3BHT HOB~H MeTOA B~4HCfieHHR cneKTPOB HeynOPRA04eHH~X CHCTeM,OCHOBaHH~H 
Ha i!lOpManH3Me npoeK~HOHHOro onepaTopa, B KOTOpOM aBTOMaTH4eCKH Y4HT~Ba~TCR 
nonpaaKH Ha MHoroKpaTHoe aanonHeHHe yanoa. nony4eH RBH~H BHA PRAa no aaa­
HMOAeHCTBH~ AnR MaCCOBOrO onepaTopa ycpeAHeHHOH no KOH!IIHrypa~HRM illYHK~HH 
rPHHa. noKa3aHo, 4TO 3TOT PRA /OTnH4H~H OT KyMyfiRHTHOro/ nerKO CYMMHPYeTCR 
B KfiaCTepHOM npH6nH~eHHH. nony4eH~ 3aMKHYT~e CHCTeM~ ypaaHeHHH AfiR onpeAe­
neHHR CneKTpa 3fieKTPOHOB, B3aHMOAeHCTBY~HX nocpeACTBOM npOH3BOfibHOro no­
TeH~Hana c xaoTH4ecKH pacnpeAeneHH~MH nPHMeCH~MH ~eHTpaMH, c Y4eToM pacceR­
HHR Ha H30fiHPOBaHH~X ~eHTpax H Ha napax nPHMeCeH. 

Pa6oTa a~nonHeHa a fla6opaTOPHH TeopeTH4eCKOH !IIH3HKH OHRH. 

CoofillleRHe Ofi1.eJlHHeiUioro IUICTIIT)'TI liJI.CpliWX HCCneAOBIIUiii. Jlylilla 1986 

Los' V.F. 
On the Theory of Disordered Systems. Spectra 
of Quasi-Particles 

E17-86-84S 

New method for the disordered systems spectra calculation based on the 
projection operator technique, in which multiple-occupancy corrections 
are taken into account automatically, is developed. The explicit expansion 
in power of interaction for the self-energy of the configurationally ave­
raged Green function is obtained. It is shown that this expansion (distinct 
from cumulant one) can be easily summed up in the cluster approximation. 
For the electrons which interact by means of arbitrary potential with the 
chaotically distributed scattering centres the closed systems of equations 
for the electror spectrum are obtained for the single centres and pairs of 
impurities scattering. 

The investigation has been performed at the Laboratory of Theoretical 
Physics, JINR. 
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