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INTRODUCTION 

The Hamiltonian of an Ising model with a transverse field is 
usually written in the form 

x 1 Z Z 
H = - n ~ Si - -2 ~. J i j Si Sj , (1) 

1 lJ 

where S~' is the operator of spin S =1/2. The interaction Jij> 
> O (i "I j) leads to an order i.ng o f ' spin z-components if the 1 1 

transverse field i.s small enough, a < a e "" (1/2) Jo = 1/2 ~ J iJ 1• 
. J 

Unlike theconventional Ising mode I (i.e., n = O), model (1) 
ha~ a proper dynamics, i.e., spin operatQrs in the Heisenberg 
representation dependo on the time: S~(t) = exp(iHt)S~ exp(-iHt) • 
For this reaSOfr model (1) is certainly useful for studying the 
time dependence of correlation functions in systems with the 
simplest interactions of an Ising type. 

An important problem in studying the dynamics is the investi 
gatio~ of the behaviour of time correlation functions at large 
times, t -+ In real phys ical sys tems t ha t are ergod í.c , fluc(Xl. 

tuation correlations .are damped with time, and' the time corre
lation function when t -+ (Xl is factorized into a product of in
dep enden t averages. As Kubo 121 has noted, ·a mode l cons í der a t onv í 

may break the property of ergodicity so that the limiting value 
of a correlation function will be nonzero: 

aS . a B 
L i K = 11m < ôS i (t) õ S K > :I 0, (2) 

t -+ oo 

where ô Si = S~ - < S~ > and the brackets rnean statistical ave
raging over an equilibrium s t a't e , The parameter of nonergodici
ty (2) is connected with the différence of static isothermal X T 

and isolated, X K , susceptibilities (see ref. ~21 ): 

T K 
B (X ÀB X AB)' {3 = 1fT, (2a)L A B = 

where A and B are arbitrary dynamic operators. 
The study of model (1) has revealed that it possesses the 

Property of being nonergodic in the paraphase, i.e., at Te~ T.< 
< where Te is the temperature of phase transition into a(Xl , 

In reL / 3 1 state with <Siz > -I O. it has been found that in the 
random-phase approximation L xx f: ° for any wave vectors q.q 

Di",elhi1{"~H}.in, intcrJnYt 0' 1 
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In ref. 14/ it' has been shown that this inequality can be strict 
ly proved for the case q: o. However, in a general case when 
q I O, it is not clear whether the nonergodicity ~s the model 
or approximation property. On the other hand our recent studi
es /5/ of the phonon model with anharmonicity of fourth order 
in the mode-coupling approximation have demonstrated that the 
system does become nonergodic only in a phase-transition region 
at some t emper a ture, T f > T c• Since model (I) corresponds to the 
phonon model in a strong-anharmonic limit, one may expect it 
will also be nonergodic. Thus the problem of nonergodicity of 
model (1) requires a more careful consideration. 

In this paper, we studied the nonergodic behaviour of model 
(I) in the paraphase when n <Oco Using the Green-function pro
jection method/ B/ , we calculated the isothermal relaxation 
funcion in the mode-coupling approximation, obtained a closed 
set of equations for nonergodicity parameters (2) and analysed 
their temperature behaviour versus the transverse field '2. 

1. EQUATIONS FOR RELAXATION FUNCTIONS 

Let us consider the isothermal relaxation function for model 
(2) 

'" af3 ( ) _ (a f3	 f3 a f3 
"'iK t = ôS i (t) I ôS K ·)	 r d r < ôS i (t - i r) ôS K > , (3)
 

o
 

where the angular brackets denote the average over a canonical 
ensemble, and a : x,y, z. Let us introduce a space-tinle Fourier 
transíormation for function (J) according to the rlefinition: 

00 íaf3 ,a, f3 . z t af3
 
<1l iK (z ) : «ôS i' ôS K )) : ± 1 r O(r - t)e <f>iK (t)
 

-....00 

iq(R.-RK ) 
(4 ) 

1... L e 1 <I>~f3 (z)
N - q'

q 

where the coordinates Ri determine points of a three-dimensio

nal lattice.
 
, Using the projection method proposed iniBI for Green func

tions we obtain in the second order the following exact repre

sentation for Fourier components of function (4):
 

-X!:f3--- ~ -!L -____ (5)<f>.~f3 (z) 
q af3 af3 

~	 6_ /x
a B afJ	 q q 

z - a q / X q - ;:~t?i]J/6(13 ;-aap-/X OJr-;-M _(z )/6a.fi 
q q q q q' q 

where, analogously to (4) spatial Fourier components of the 
isothermal susceptibility 

2 

X af3 == cp ,a{3 (t = O), (6 )ik I.k 

the relaxational kernel 

{3 ""f3 
M ~k ( Z ) == « S ia 'I S k »	 (7) 

and equilibrium correlation functions
 
, afJ . a ' f3
 

== (IS I Sk ),a i k i	 (8) 

a{3 . a . f3 
tJ. fk :::: (S i I S k ) 1 (9) 

af3 :~a:, /3
b iK == (IS i I Sk )1	 ( 10) 

are introduced. 
The lower indices of the brackets denote projections accor

ding to the rules 

a fJ a f3 a'f3 '~'{3 -l'a 8 
«Ai I Bit» 2 = «Ai I B k» 1 - «Ai IS f » 1r«S IS » 11~m«Sm I B k » 1 ( ] ] ) 

a, B af3 a {3 a, f3 a {3. -1 a, B 
«Ai I Bk »1 ==«A i I B k » - «Ai 1ôS~»((ôS lôs »lrm«ôSml B ) (12)k 

and an analogous rule (12) for (A a I B (3) 1 • Here and in the fol
lowing sunnnation over repeated lattice indices is assu!"1ed. 

Let us remark that the correlation functions in (6), (8-10) 
a-re connected wi th the frequency moments of t he spe~,trum'<1> "(ú») 

of the relaxation function<l>(w±iO) == cIl'(ú»±i<l>"(w) by the 
general relation 

d m d n ~ 
. m a I( . n fJ» r d'ú) m+ nIm <I> ~ {3 «ú i,(I ---ôS. (tt) --I) --8S (t 2 _ =< 

í-(ú k ( 13)m 1 n k t--t TTdt 1 dt 2 1 2 -00 

Furthermore, the relaxation function is related to the isolated 
ar Kubo dynamical susceptibility X-K(z) by the relation 

a{3 _ af3 1K _ af3 
Z <t> ik (z) - r X ik (z ) X ik ' (J 4) 

where x~f is the isothermal static susceptibility (6). 
Let us now consider equation (5). From the equation of mo

tion S~ = i rH ,S ~ 1 we ob t a i.n with the definition H~== I. s., s~ : 
1 1	 1 E 1L z, 

s~ = ~i~sr, S~ = OS.z_ H.ZS?t, s~ == - aSr, (15a-c)1 1 1 1 1 1 1 

"os x n .... Z z .'" z ; 2 ,x ,., y S 11 
I i = H i S i - (H i) Si - n H i 'i'	 (16a) 

; II	 3 



- ... .. -=m

s~Y = - n2 S~ _ ( H .z) 2 S ~ + n H~ S ~ , (16b)
1 1 1 1 1 1 

SC'Z 2 Z '"' Z x 
í = - O Si + O H i Si ' ( 16c) 

which represent generalized currents S; and forces ~.~ of our 
problem. 

At first let us.note some ~seful strong relations which may 
be obtained from < S~ > = O, .< Si">" =0 and f r om the simple connec
tion (15c) between the spin components S Y and S Z • In the para
phase the thermodynamical average of (15) and (16) yields 

Y .'"' Z S x<H.
1

Z S~
1

> O , <H i i> = O, <Si> = O, 

(17a-d) 
0.< H'!' S ~ > 

1, 1 < Hf Hf S~ > + O<H~S; >. 

Employing the identities 

(( i A I B)) = (A 1 B) + Z (( A IB)) • (18a) 

(( À\ 13)) = (i Â I B) + Z (A IB) + Z 2 (( AI B )) , (18b) 

(iAIB)= <[A, B1>., (18c) 

and taking into aCGount (15c), we find 

ya . za za . a y . a ·Z a z 
<I> = (1 / O )( X + Z <I> ) , <I> = (-1 / n)( X + Z '<lJ ), a =. X. Z (1 9 ) 

<I> yy =. ( z /0 2 ) ( X zz + Z <I> ZZ) (20) 

as well as 

x
X~: = (O/S) Ôik S == < Si>" (21) 

· ya = X ay = O a = x , z , (22)X ik ik ' 

This means that alI relaxation functions involving the spin com
ponent sy may be expressed by the other relaxation functions 
<D af3 with a, /3 = x , z , and therefore, they contain no additio
nal information about the dynamics of the system. In the follow
in8 we concentrate on the calculation of the relaxation func
tions <I> xx and '<I> ZZ. 

Due to the symmetry of the Hamiltonian with respect to the 
uní t aty transformation of the coordinate system y -+ -y, Z -+ -z 
(x unchanged) alI equilibrium correlation functions involving 
products of an odd number or spin components sy or SZ are equal. 
to zero in the p-araphase. Taking this into account, it is eas::f 
to show that the odd frequency moments of the spectrum(S;\ôS~)c 

4 

_:;;". 

and vanish for a,(3 = X, z and the continued frac(Sia j s'r)
tion expansion (5) simplifies to 

Xc:f3 
q;r:..(3 (z) q 

a,(3 X, z , 
q - -----;:;;73~/~~~--- (23) 

q X q 
z - ----~--,-.-- _ 

z + Ma /3 (z)/f!.a{3
q q 

The correlati~n functions f!.~.(3 in (23) are given by
1K 

ó.x x '"' z z y y
 
ik <H i Si> o i k - J ik < S k Si>
 

(0 - 1 '"' z ~ Z S x Hy S y ô 
(24) 

<.H i H i i > + < i i > ik J ik < S ~ S ~ >, 

ó.Z Z AXZ = AZX
ik OSÔ i k , Ll í k °ik = O, (25) 

where the second equation in (24), which is more suitable for 
further approximations, has been obtained from (17d). In the 

X aR theory established in the following the susceptibilities 
and the equilibrium correlation functions appearing in (24), 
(25) are considered as given input quantities playing the role 
of initail condi~ions. 

2. NODE-COUPLING APPROXlMATION 

Let us now turn to the calculation of the relaxation kernel 
Maf3(Z) in the mode-coupling app r ox i.rna t i on , From (7), (11), (12) 
we find explicitly (suppressing site índices) 

Ma {1 = ((8"a I S" {3)) 1 - ((S" a IS13))1 r(( Sa IS(3) 1 1-'« s a I S" (3)) 1 • (26) 

Now o ne can i.n~..ert express íons (15) and (16) for the curren t s 
~a and forces Sa into (26), and then the higher-order force-for
ce, force-current, force-spin, and current-spin correlation 
functions may be factorized. This has been done in our previous 
work 171 • Another possibility that we will use in the given pa
per is to eliminate at first the current from (26) employing 
the identities (18a)5 (18b) and(SatoSf3):::.o (fora,{3 :::x,z), 
which yields 

1\1 a /3 = (( S'a ISp)) 1 + [ ( ~a I ô S (3 )( Xa (3 )- 1_ ((~ a loS (3 )) ( <p a f3 )- 11 

(27).
[(xaf3)-~ (<fla.Br 1][ ( X a,B r 1(ôSQ j '8(3) _(<!la(3)-1(ôS Q I ~{3))1 

and after that we have only to factorize higher-order force
force and force-spin correlation functions in (27). To illustra~ 
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te the procedure, let us startOwith the simple case of calcula
tion	 of the relaxation kernel M zz 

M zz 2 Z '" Z x I Z '" Z x z~ 
a « - a Si + H i S i I -.a S k + Hk Sk » 2ik 

(28) 
a 2 J o J « S Z s S'~ IS Z s S x » Z Z lE km e 1 m k 2' 

As it is easy to see from (27), the terms - Sf are projected out 
of (28). Expression (28) contains only one type of higher-order 
correlation function of an even number of spin fluctuations, the 
factorization of which y~elds with (17b) 

x>.<ôS;(t -ir)ôS\t -ir)ôS z ôS k "" <ôS%'(t -ir)ôS z 
><oS~(t-OiT)ÔSxk> + 

L' 1 m L m 1 

Z x' X Z	 (29)
+ <o Soe (t - i r) oS k > < o Si (t - i r) os m > . 

Correlation function of an odd number of spin fluctuations are 
neglected. The pair correlation functions can be expressed by 
the	 fluctuation dissipation theorem in terms of the spectrum of 
the	 relaxation function, e.g., 

z	 z, 00 dú) -iú)t f3w zz
< Se (t) S > = r ---.- e ú) n (ú) ) e Im '<I> em (ú»),	 (30)

m	 -;00 TT 

where n C,» =(e (3ú) - 1 )-1 • 'Within this appr ox imat i on scheme, 
the calculation of thê curren~ relaxation'~er~~l is straightfor
ward, and the final result reads 

z z \ 2 CÍT7' ,zz xx '. zx xz
MO k (ZJ = a Jo O , JII(<I>o <1>0 k' '+' '(1)0k' cJ) o, ],

1 ir, 
J km r.m 1· L im	 

(31 ) 

where for abbreviation of further fàrmulae the syrnbolic notation 

m[<i>a 1,8 1 ~a2f32 ••• cJ) a n6 n 

1 oo dú)1 ••• dÚ)n ú) 1 n(ú) 1) ••• Ú)n n«v n ) 
-- r -------~ ---~--- x (32) 

TT n _.1>0 ú) 1 +. ~ . + ú) 2 - Zo (ú) 1 + ú) 2 + ... iLln) n (ú) 1 + ••. ú) n) o 

,-x I ffia'1/3 1( ú) 1 ) ••• -rm 'I'
ffi a n f3 n ( ú)n')m 'I' • 

ZZ has been introduced. Thus, according to (31) the kernel M is 
given by the relaxation functions <I> xx ,<I>zz ,cJ) xz and cJ) zx , 
which,reflects the coupling of the spin component SZ to the com
poneht SX. In the classic limit the nondiagonal relaxation func

x Zx°tions ~xz , <l>zx vanish since, e.g .., <l>zx _ = T<SzoSx > and the 
correlation function <SzôSx>is zero due to the symmetry of the 
Hamiltonian (cf. discussion above (23)). 

6 

Analogous calculation of the relaxation kernel Mxx is 
straightforward but lengthy, and we quote only the final result 

" .. 
M ~ox	 = « S~ I S~ »2 = 

lJ 1 J 

ee «nHf Sf - HfHysr- aH~ S1\ n Hjs j- Hj HjSj - nH~ S~»2= 
\fi 2 zz "'z "'z Z '" Z "'z Z 

F'$ mia	 (<I>ij «8H i 1 ôH j)) + « ss i 1 oH j)) «OHi I ss j» + 

+	 cJ)[{(CôH~ôHr)) + «ôS~l ôH~ ))«ôH~lôSr))l + ?«ôH~lôHj)) x
 

'" Z '" Z 2 xx x '"Z '" Z x
 
x ( ({ sHi IôH j » (S + cJ) ij ) + 2« sSi I sH j ))(( sHi loS j )) 

(33) 
- 2aS«ôHtlôH;))((ôS~loHo~)) + «(ôH~lôS~))l + 

+ 2a S[ «oH ~ Iss ~)) + (CoS~ IoH ~ ))« oH ~ IôH ~ ))1 
1	 J 1 J I J 

- n2((ôHiZlôH~))cJ)~J+ «oS~loHJ ))«ôH z 
i lôS~)) + 

+ cJ)rt«ôH~ IôH~ 11 + «ôSrl ôH~))«ôH~ \ ôsj ))11, 

"a a 
~..zhe r e ôH i = f 0JiP. ôSe • 

Let us note that the relatively simple form of M zz (31) and 
MXX (33) is due to the fact that alI higher-order correlation 
functions appearing in the second term of the rhs of (27) depend 
on an odd number of spin fluctuations, and therefore, this term 
vanishes owing to the applied factorization approximation. On 
the contrary, starting from (26) and inserting Sf (15) and S~ 
(16) into (26) as was done in/7 ! , we obtain within the same 
factoriz2tion approximation, a nonvanishing contribution from 
the seconâ term of the rhs of (26). For a special example dis
cussed below the difference between both procedures has been 
found to be small. In general, t h e procedure, 'when only force
force and force-spin correlation functions are factorized, might 
be expected to be better than the additional factorization of 
force-current and current-spin corrélation functions. 

Equations (23), (31)-(33) together wit~ the strong relations 
(19)" (20) represent a closed set of integral equations for a 
self-consistent calculation of the relaxation functions <l>a/3 • 
Integrations have to be performed both over the frequency and 
wave vector and the integraIs may be calculated only with a 
great numerical effort. To simplify further calculations, we 
neglect the dispersion of the relaxation kernels (31) and (34), 
i.e., we use the local approximation: M~! = M~f3 0ik' Further
more alI spin correlation functions app~aring ~n these kernels 
are also approximated by their local values, i.e. for example 
<S·f(t)Sf> .,. ,<S~(t)Sf > 0iE . Within this approximation we get 
from (31) and (33) 

7 



m~t == f3 J~ (L z z )2 [U 2 / J ~ + 2 ( 8 2 + L xx )], (41 ) 
M .z. Z (z) == n 2 J 2 m[ <lJ ~ ~ '$ ~ ~ ], J 22 == L J ~ o (34)

11 2 11 11 f i r 
wher e L xx == L ff and L zz == L~r. In (41) we have further cons i 

MXX (z ) == J 2 mrn2 {(1)~.z )2 + (<1> ~r)2 _ (<1> ~r )2 dered the strong relations (}9), (20) tha t yield LY Z == LZY == LYY == o.ii 2 11 11 11 
(35) A remaining crucial point is the calculation of thermodynamic 

_ ('<1> ~ ~ ) 2 I + 2J 22 ( <Il .z. Z ) 2 (S 2 + '<1> ~~) 1• equilibrium functions X and A... In the framework of the present11 11 11 

paper we adopt results of the random-phase approximation derived 
The solution of the obtained set of equations e.g. by iteration in a previous work/ 3 / . Rere we briefly list the quantities of 
remains a still difficult due to the necessity to calculate the III interest 
remaining frequency integraIs. An analytical calculation is pos

S (1/2) tanh (O /2T).sible in the classic limito (42) 

XX 
== (1/T) (1/4 - S 2).Xq (43) 

3. NONERGODIC BERAVIOUR QF TRE MODEL 
i q(R -R ) 

X:'Z 
== 1/(0/8 - Jq ). Jq == (1/N) L e 

i j 
J i j • 

The set of equations obtained in the previous section allows q i j (44 ) 
us to investigate the nonergodic behaviour of the model if we 
take into account the connection af nonergadicity parameters (2) Analogously as in m~: ,the spin correlation functions appea
with isothermal relaxation functions: ring in ~fk are approximated by their diagonal parts, which 

results ina13 af3
L ij == T lim ( - z <1>ij (z )}, (36) 

z-+ i a ~ ~x == 8 J~ /40. (45) 
Then, using eq. (23), we obtain for the spatial Fburier represen
tation of nonergodicity parameters the following equation: Inserting equations (40)-(45) into (37) (neglecting the disper

sion of m~{3 ), we finally get the following set af equationsa (:3 a{3 al3 2 al3 aS-1
 
L - == T X - [1 + (~- ) / X -- m - 1 (37) for the Ideal nonergodicity constants L == L i i ==(1/N) ~ L q
q q- q q q ,
 

q
 

where • 8 21/4 
L x x == a{3m __ == (46 )lim r-ZM~{3 (z)]

q q 1 + (T8/40)2/(l/4 _S2)(L z Z )2 (02/J~+ 28 22L X X 
)Z'" io 

represents the power of the nonergodicity pole of the kernel 
M(z). From (30) one can see that the existence of a constant 

ZZ ( , [( -1 (A -1] ~ L == T / J a N) ~ ~ a + 1 - Jq / J a ) . - Li 1 + 1 - J q / J a )L :f O requires a singularity ~ 8(w ) in the spectrum <1>"(w), i. e., 
q 

a{3 a{3
Im <I>ik (w) == rr{3L i k 8(w) + reg. terms (38) ::::,(T/Jo)[F(~o) - F(~ 1)]' J 

o 
== L

j 
J .. 1J J q= a (47) 

wí t h T~e power m~f3 of the pole of the relaxation kernel M~{3 (z ) is 
obtained by insertion of (38) into the mode-coupling approxima

~o 0/8J -1tion of Ma~(z). Taking into account the definition (32), we a 
f ' 
~nd generally 

~ L xx L Z Z J 2 / S2 T J~1 

q 

1: o + 2 a • 
lim { ... z ~Tl[cI>a1{31<1>a2{32 ••• <I>an{3n ]1 == {3Lat{31La2f32 ••• La n f3 n • (39) 
z'" ia J, and for the calculation of the q-integrals in (42) a simple cu
By using (39) one gets from (34) and (35) bic lattice (lattice constant a) and nearest neighbour interac

tions are assumed, i. e., J q == (Jo /3) L CDS (qa a) . The q-integrals 
m Z Z == {302 J2 LXX L Z Z a(40)ii 2 • are as usual approximated by ..
8· 
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--'-~--1 
L 

1 2[ f'.. + 1 - J(Õ + 1) 2 - 1 1 - F (f'..) ,
 
N q t1. + 1 -Jq/Jo
 

defining the function F(f'..). 
Let us now turn to analysing the set of equations (46), (47). 

There exists always a trivial solution L x x = L z z = O, In the 
hígh-temperature limit the nontrivíal solutions are governed by 

z z 2 2 2 xx-1 
LXX ee- 0/4)[ 1 + l/64(L ) (n /J + 2L )1	 (48)

2 

z Z	 2 2 xx 
L = (1/4) ( 1 - n / J 2 L ). (49) 

Numerical calculation shqws that for small values of n < n~ 
LZ Z two nontrivial solutíons with positive LXX and existo This 

means that in this region the system behaves like in the limit 
of the conventional Ising model n ~ O. Since for that Isíng mo
de l the magnetízatíon i s a constant of mot í.on , we have L z.z = 1/4 
and from (48) we find 1.. x x =1/8. The dependence of LXX on n as 
T = 00 is shown in Fig. I. As one can see, there are two so l u-: 
tions, coinciding when n = n~ and disappearing when n > n~ 
Thus, at n > n~ the set of equations has no solutions and the 
model is ergodic. However, at n < nO i t is nonergodic likee 
the usual Ising modelo 

Consider finite temperatures. In Fig. 2 the result is shown 
o f a numerical solution of e qs . (46), (47) by iteration. As one 
can see, the solutions LXX and L Z Z appear discontinuously at a 

temperature T f > Te when 
n < n e • Note t ha t a pha0.12 ,..,.~.-----
se transition temperature 
Te is determined by'the 
divergence of the iso
thermal susceptibility 
X ;: ° (44 )'. The depen0.08 
dence of Te and Tf onT=oo 
the magnitude of transX / verse field n i s shown>i-l / in Fig. 3. At n =,=n~:::>/( 0.04.__ / "" O,OS J ° the temperature
 

/ T f tends to infini t y ,
 
/' 

/ 
and for n ~ 0.3 J ° '
 I/,., .\

/'" 
/'" 

----I	 Fig.1. Dependence of the t
" 

nonergodicity parametero 0.04 0.08	 li 
L xx on the magnitude of 
the transverse field for 

º/d2	 T = 
10 

0.2 

X 
X 
-.J 

0.05 

I \. ......~ ----	 0.01 

0.11 \0.1 

O.4~ 

N 
N 
....J 

0.3 

0.01 

0.05 

0.2 

0.2 0.4	 O.Q 0.8 

kT/Jo 
Fig.2. Temperature dependence of the nonergodicity parameters
 
LXX and LZZ for various values of the transverse field n/J '
 o 
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Fig.3. Dependence of the0.5 ,	 phase-transition tempera
I 

tiure T e and the t.emperatnc
1\ re of onset of the noner
'\ godic behaviour Tf on theI, 

transverse field.o./-. i\ 
i \ within a numerical error 

lower than one peTcent,i \~Tf 
it coincides with Te' AIl 

I
. \

\
0.3 calculations were perfor

o 
-, med for a simQle cubic
 

..........
 
~ 

<,	 lattice with nearest neighI 

.Y
 bour interactions where.~ 

J~= J~ /6.
 
Thus, the nonergodic
 

1(:	 behaviour for local longi
tudinal and transverse 
correlation functions ari 

0.2 

O,, ses in the phase transi
tion region at temperatu
res Te < T. < T f and values 
of the transverse field 
n ~ < n < O e • The. tempera

I I ture region of nonergodio	 0.2 0.4 0.6 city increases when O de
c r ea s e s , and at {1 < n ~ 

the mode1 is nonergodic atP-/Jo 
any temppratures. 

Note that at T = T r two solutions o f eqs. (46) and (47) can 
appear, where L 1 (T r ) = and L1(T) < L T < TL 2(Tf)	 2(T)at r
However, we were able to obtain the lower ~olution only in a 
specia1 case of T = 00 (see Fig. 1). At fini te temperatures i tis 
not stable with respect to iteration, which agrees with results 
of the general investigation of this problem in paper/8 I. 

4. DISCUSSION 
( 

Having calculated the local nonergodicity parameters (2) 
L~f == (l/N) 2. la~ (a = x, z) for the Ising mode 1 wi, th a transverse 

- q 

field (1) Je arrive a t the following conclusions: i) There 
ex s t s a lower cr í t ca l value of the transverse field n~ "" O. 05Jí í	 o 
such that for n < ng the model correlation functions are noner í J 

god i c (L~r f: O ) a t any temperatures in the paraphase (T'c< T < "") , l 
like in the standard Ising model (O = O is to be put in (I)); 
ii) For n~ <O < De ("" 0.5<\) the nonergodicity constants Li1a 
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are discontinuous at a temperature T = Tj > Te; iii) The tem
perature interval of nonergodicity 'rf - Te ... O when O ... n c • Con
sequently, a large enough value of the transverse field n re
sults in the ergodic behaviour of correlation functións in the 
model (1), i.e., L~f = O in (2). 

These results were established by calculating the isothermal 
relaxation function (3) in the mode-coupling approximation (29) 
as well as static susceptibilities and equilibrium correlation 
functions (23) in the random-phase approximation. The latter 
approximation does not correctly take into account the longitu
dinal spin fluctuations as T ... Te (see, e.g. (31 ). As a result, 
when n ... O, a wrong asymptotic follows for the constant LZâ : 

T 41'L zz	 1~ 2. X~ -- F ( -_o - 1) 2.
N q q J o r, 4 

•	 • ()' Z Z ( Z )2 Is i nc e the general r e l a t í.on 2 g i.ve s L ii s: < (5 Si> .s: I ,4. Note, 
however, that breaking of the sum role for the longitudinal sus
ceptibility in the random-phase approximation as well as viola
tion of the dynamical scaling in the mode-coupling approximation 
occur only in a criticaI region, when 1' ... Te' whereas the noner
godic behaviour we have obtained sets in outside the critical 
region and is not directly related to critical singularities at 
the phase transition in model (1). Therefore, we suppose that 
the accepted approximations being appropriately amended would 
only produce quantitative corrections to n~ and T f , with no 
change in the qualitative pattern of the nonergodicity origin 
in model (l). 

Of certain interest would be the comparison of the obtained 
results with rigorous calculations 'of the static susceptibility 
for exactly solvable models. In ref. /9! the isothermal suscep
t Lb i l i.ty xij-"=o has been c?mputed for some two-dimensional lat 
tices, and in ref. /10/ the corresponding expressions have been 
derived for the isolated susceptibility. Comparison of theSe 
susceptibilities shows that for a honeycombed lattice their dif
ference equals zero ~ and L ~x= o = O , whereas for a s quare lat 
tice it is nonzero, and LX!_o I O , which testifies the depen
dence of nonergodicity of qthe system on the topo~ogy of a latti 
c e . Howevér , these results, like the ones of refJ41 for LX~_ , 
are not sufficient for their comparison with our computatio~~oof 
local constants L == (1/N)', ~ L Cf since L q= o gives a negligible 

contribution (about l/N qto L). 
It is also interesting to note that the results found in this 

paper are in qualitative agreement with the results of studies 
of the nonergodic behaviour in ref./ 5 1 for the ~4 model which 
like model (1), belongs to the Ising class of universality. This 
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mod~1 of a structural phase transition dispIays the nonergodic 
behaviour for a strong enough anharmonicity, when it, Iike model 
(1), describes an order-disorder transition. And the temperature 
behaviopr of the nonergodicity local parameter is in it of the 
same shape as shown in Fig. 2. As has been established in ref /5/, 
the nonergod~c behaviour originates from the localization of 
order parameter fluctuations, and therefore, I ike in the cp 4 mo
deI, the nonergodic behaviour in model (1) can be related to the 
cIusters of short range order arising above the phase transition 
temperature. 

The authors express their deep gratitude to Dr. J.Schreiber 
for numerous discussions. 
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AKceHoo B.n •• 606eT M.• nnaKHAa H.M. E17-86-841 
He3proAH4ecKoe nooeAeHHO D MOAenu ~SHHra 

c nonepe4H~M nOneM 

B npH6nH*eHHH B3aHMOAOHeTDY~HX MOA HCCIlCAoeaHo He3prOAH4ecKoe noaeAeHHe 
MOAenH ~3HHra c nonopO~HWM nonaM OTHOCHTOIlbHo opeMeHH~X KoppenR~HoHH~X ,$YHK
llHH npOAOI1bHblX H nonopSIoIHblX 1<0MnOHCHT CmtH8. üoxeaaxo , 4TO HMeeTcR HHlIlHee 
l<pHTH4ecKoe 3H84eHHe OOIlH4HHIIl nononevaorc nOJ1R O - n~. r axoe , "ITO npl1 n .< n ~ 
CHcTeMa He3proAH4H8 npH 'n05blX TBMnepBTypax nOAoGHo 06W4HO~ MOAenH ~3HHra. 

npH O~ <n < Oe / Oe - DCp)(HCe t<pHTl14ec «oe SHa4eHHe, npl1 KOTOPOM I1C4eSaeT 
$a30DblH nepexoA D MOAenH/ H03proAH4eCI(Oe nooeAeHHe nORBnReTCR npH TeMnepa
rype Te> Te - TCMnepaTYPw $8soDoro nepexona . Paaxoc r s Te - T " O npa n .. 0c 0 
H Te - T c .. DO npH n .. O~ • 

Pa60Ta B~nOIlHeHB D na60paTOPHH TeopeTH4ecKoH $H3HKH O~R~. 

Ilpenpanr OfueAHHclOfOrO KHcmTyTB QACPUblX HccnenoBaHuH. ,Uy6Ha 1986 

Aksenov V.L.• Bobeth M.• Plakida N.M.	 E17-86-841 
Nonergodic Behaviour in the Transverse Ising Mode1 

lhe mode-coupl ing approximatlon l s app1 ied to study the nonergodic beha
viour of an Ising model wlth a transverse field In terms of time correla
tion functions of spin longitudinal and transverse components. A lower cri 
ticai value is found for the transverse fleld n _ O~ such that for n' < O~ 
the system Is nonergodlc at any temperatures. llke the conventlonal lilng I 

mode l .	 cr l l l\-Ihen O~ < n ,< Oe (n, Is an upper t ce value at whlch there Is 
no phase transltion In the model). the system gets nonergodlc at a tempera
ture Te larger than the phase transltion temperature T c ' The dlfference 
Te - Tc .. O • when n .. 0e t and Te'" Te """, when fi .. n~ 

The Investlgàtlon has been performed at the Laboratory of Theoretlcal
 
Ph"ys l cs , J INR.
 

Prepr.ntaf tho lolnt instituto for ~uclear Reac:arch. Dubna 1986 




