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The Boltzmann equation is an integro-differential equation
and, usually, does not allow an exact treatment /Y . A number
of solvable models is very limited and most interesting of them
are based on rather drastic assumptions about the form of the
collision operator (as, for example, the Claro and Wannier mo-
del’® ).

On the other hand, transport phenomena are usually described
by the Boltzmann equation. As a rule, the so-called relaxation
time approximation is used. However, this approximation, while
intuitively a very useful concept, has to be handled with ca-
re/V . From this point of view the solvable cases of the Boltz-
mann equation will play a role of guideposts when a detailed
study of a more complex phenomenon is performed.

The purpose of this paper is to pay attention teo the relaxa-
tion of phonons scattered by isotopic impurities (or by vacan-—
cies) in a crystal of cubic symmetry that can serve as an exam—
ple of the exactly solvable case of the Boltzmann phonon equa-
tion.

The object under consideration is a phonon gas in dn elastic
continuum of cubic symmetry. Consequently, the Dhonons are, equi-

valent to sound wave quanta of frequency w(k i) |k| c(k 1,
with sound velocity, Qk j), depending, in general, on tne wa-
ve-vector direction given by the versor (unit vector) k = k/|k|
Three acoustic phonon branches appear, so j = 1,2,3.

In a very pure (chemically and structurally) and large sample
at helium temperature the isotope impurities can play the role
of main scatterers. Samples fulfilling the above conditions ha-
ve recently been used in experiments bn ballistic propagation
of phonons/3/. It seems then quite reasonable to consider the
model in which phonons in their relaxation process are scatte-
red only by isotopic impurities (by differences in mass onlyy

Let us disturb the phonon system so that both homogeneity
and cubic symmetries remain unchanged. The phonon distribution
functions, N(E,j; t) , will relax according to the Boltzmann pho-
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W is the transition probability, and for a sample with ran-
domly distributed isotopic atoms it can be written as’/8/
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where é is the polarization vector. Here

g= 2 fi(l_ Mi/M)’
i

where f; is a fraction of unit cells with the mass M; and M is
the averaged mass of unit cell, M= 3,f M.,

Since energy is conserved in the scattering process (1),
then w(, j) = (X% j°) =w and thus the long—wave phonon can be
labelled by its frequency w, wave_direction % and branch j to
which it belongs, i.e., {k ,J} K, w,jl

The coefficient of N(k j; t) in the right-hand side of equa-
tion (1) is tradltlonally called the reciprocal of the relaxa-
tion time:
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Here vo= V/N is the volume of a unit cell,Aand the integral
should be performed over the SOlld angle Q(k) in the wave-vec-
tor space under the constraint w(k, j) =

At this stage, usually the anlsotropy in (3) is neglected
by taking for the productlé(ﬁ j)- e(k’,J 3 its approximate
value equal to 1/y3, i.e., to the cosine of the angle between
random directions 147,

However, for elastic continuum of cubic symmetry no such
approximation is needed because using only the symmetry argu-
ment one can show that the relaxation time is both direction-—
and branch—lndependent/S/. Indeed, the right-hand side of equa-
tion (3) contains the matrix expression

1 5. 83, ca 3, 2B
Fg = 3 —— [ da(k)e (k" i)e% (k506 Bk, i),
[

which for the case of cubic symmetry is simply proportional to
the unit matrix F.8 =38 053, where cp is the Debye velocity
defined by

=y
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Here the normalization condition.of the polarization vector is
taken into account in the form |8(Xk, j)| = 1 . As a result, we
have got one relaxation time common for all directions and

branches j, given by
2
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T = —Feetor’ = M a). (4)
Using the same symmetry argument one can get that the remaining
part of the collision operator in (1) is nothing but an avera-
ged value of the phonon distribution function:

<Nw; t)> = %Jz %f dQ(k)( PN, &, j; 0. (5)

. \
So, the cubic symmetry allows us to rewrite the Boltzmann
equation (1) in the following simple form

(-;T + HoIN(, K, i ) = Xe) <N(w: t)>. (6)

The same result can be found for an isotropic elastic medium.
We should also stress here the analogy between the Boltzmann
phonon equation (6) and the Lorentz model describing a gds of
low density’/7/

Averaging equation (6) according to the definition (5) one
immediately can see that <N(w; t)> 1s constant in time

<N(w; t)> = <N(w;t =0 > = N(w). (7

The fact that the averaged number of phonons with frequency
is conserved simplifies the Boltzmann phonon equation essen-—
tially. Instead of the integro-differential equation (1) we
have got a simple integral eqaution of the first order the so-
lution of which has the form

5 —t/r (@) _
N(w, k, j; t) = [N(w, k,j,t—O)—N(w)]e + N(w). (8)
This result justifies the traditional approximation/4j/ igno-

ring the direction and branch-dependence in equation (2).

The conclusion is that the disturbed phonon distribution
function relaxes towards its average value N with the rela-
xation time exactly the same as in the so-called relaxation-—
time approximation. In other words, the relaxation-time appro-
ximation serves as an exact solution of the Boltzmann phonon
equation (1) for elastic continuum of cubic symmetry. All the
above results are, of course, also valid for an isotropic ela-
stic medium. .

We should emphasize, however, that for the systems of lower
symmetry (hexagonal, tetragonal, etc.) the relaxation time,
contrary to (3), is direction- and branch-dependent’8’, which
preserves an integro-differential character of equation (1)
and therefore the phonon relaxation will be more complex.
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Penakcanua $OHOHOB HA H3OTONMHUECKHX MPUMECSHX!

TOYHQpemaeMasa Mojesb

Hafineno TouyHOe pemeHHe ypaBHEHHsa BONbIMAaHAa, OIHCHIBANIMETO
penaxkcanmp akyCcTHYeCKHX (OHOHOB Ha 'H30TONMHMECKHX NpuMecax
/unu Ha BakaWcusk/, Ansa ciuyuas yﬂpyréﬁ cpenpl KyOHueCKod cuM—
MEeTDHH.

Pabora BmmonxHeHa B JlaGopaTopun Teoperuueckoi téusuku OUAH.
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The exact solution of the Boltzfhann equation descrihing -
relaxation of agoustic phonons on isotopic impurities ‘(or.
on vacancies) is presented for the ca$e of elastic continuum °
of cubic symmetry.

The, investigation has been performed at the Laboratory of
Theorétical Physics, JINR. "
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