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Twenty six yeas ago N.N.Bogolubov formulated his, fundamen
tal for the theory of macroscopic system, principIe - the so
called idea of quasi-aveFages / 1/ . The formulation of this prin
cipIe was based on investigation in the theory of superfluidi
ty and superconductivity which resulted in the construction of 
microscopic theories of these physical phenomena / 2 - 5/ , 

The general situation for these macroscopic systems is a de
generation of vacuum states, therefore ~o define this state uni
quely, one must take away the degeneration, that is one has to 
break the symmetry using one of possible ways,for instance,int
roducing into the Hamiltonian an infinitesimal source /1,6/, 

The subsequent development of statistical mechanics and quan
tum field theory showed an extreme fruitfulness of the concept 
of quasi-averages and the related notion af spontaneous symmet
ry breaking. 

The main idea of the concept of quasi-averages is the nonunl
queness of choosing spaces of states for macroscopic systems. 
This nonuniqueness has stimulated a nomber of works on the prob
lem of nonequivalent repres~ntations of operator algebras 171 

which has led to working out powerful algebraic methods 18·101 

in the theory of systems with spontaneously broken symmetry. 
The fact that the symmety of a Hamiltonian may be different 

from that of a vacuum has been clearly understood first in the 
theory of condensed matter, and then strongly influenced quan
tum field theory and elementary particle physics. This influ
ence has been emphasized by Weinbeq~ in his Nobel lecture 111/. 

It is just the notion of symmetry breakdown which has yiel 
ded the fundamental basis for constructing the unified theory 
of electromagnetic and weak interactions. 

Formulating the concept of quasi-averages B080lubov/6/has 
proved the so-called theorem on liq 2- s i ngul a r i t i e s .According to 
this theorem,if the continuous symmetry of a system is broken, 
elementary excitations appear having an energy that goes to ze
ro in the long-wave limi t q .... O. In other words, gapless exci ta
tions appear, photons being examples. Analogous results have 
been obtained in quantum field theory by Goldstone /12/ and 
Higgs /131 . 

The Bogolubov concept of quasi-averages is the main concept 
in the contemporary theory of phase transitions. Several trends 
based on the Bogolubov approach may be mentioned in statistical 
mechanics. Arnong them the method of variational inequalities 
and the method of approximating Hamiltonians have been found to 
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111 

be very successful 114,151. These methods let to d0Eine in the 
thermodynamic limit asymptotically exact thermodynamic potenti 
aIs, correlation functions and Green functions for various mo
deI systems in the theory of superconductivi t y / 14 / , magne
tism 116/ , radiation /171 , etc. The exis tence of a long-range or
der in statistical systems of one and two dimensions has also 
been examined i·f8.i9/. Consistent use of the concept of quasi
averages has let to develop a microscopic approach for descri 
bing heter?phase states in the systems with sYmffietry break
downs /20-22/. 

The concept of quasi-averages has found a wide application
 
in the theory of nuclei and of nuclear matter /23/.
 

In the literature one ~sually discusses different technical 
tricks connected with the procedure of quasi-averaging, while 
the ideological aspect of this concept remains often unclear. 
In the present paper we analyse the principal meaning of the 
Bogolubov concept of quasi-averages which is a clue for solvinf, 
the problem of nonuniqueness of states in the case of degenerate 
macroscopic systems. Our main thesis is as follows. The Bogolu
bov concept of quasi-averages shows the way to choose a space 
of states corresponding to a particular thermodynamic phase. 
For clearness the consideration will be given with the help of 
the Ising modelo We shall also present a short reviews of essen
t ial methods of quasi-'averaging, i. e., the rnethod of infini te
simal sources /1,6/, the method of nonequivalent commutation re
lations/24 , 2 5 / , the method of boundary conditions for Green 
functions 126/. Finally we shall illustrate the ideas of quasi
averaging applying them to a system with heterophase sta
tes /20-227. 

Consjder now the Ising model with the N-particle Hamiltonian 

H N == -:	 .L. Jij (J t(J j , ( I ) 
1, J I 

in which J ij == J ji ::: O and (J ~ is the z-component of the Pauli 
operator connected,with the ta~tice site i. The Hamiltonian 
(1) is invariant wi.th respect to the group Z2 and is defined 
on the space of states 

N 2
 
J{N == ~ C 1 • (2)
 

i = 1
 

The vectors of this space are direct prpducts of spin functions 
1 O 

t/J i+ == ( O ) and t/J i-- == ( 1 ). He shall use the following obvious 

notation for the vectors of space (2). The vector with alI spins 
up will,be written as 

NN 
t/J+ e t/J. == t t 1	 (3)

i==1 1+ 1 2 N 

Correspondingly, the vector wi t h a I I spins down will have the 
form 

N 2 N 
e l/J _ (4)t/J~ i . ~ 

i == 1 

Let us stress that in this notation the row of arrows do~s not 
necessarily mean a linear chain but it is simply one of possib
le enumerations of sites in an arbitrary lattice. In addition 
to vectors (3) and (4) one can construct an example of the vec
tor with disoriented spins 

ljJ r~ = 1 ~ 1 ... ~ .	 (5) 

AlI vectors (3)-(5) are translationally invariant. 
An elementary e~citation in the Ising model is the overturn 

of spin,This overturn is usually calle~ the spin flip. Therefo
re, the corresponding excitation may be called the f1ippon. 

As is evident, G flippon excitation above I/J~is desc r i be d 
by the function . 

t/J ~ (i) == t 1 .,. 1 l t ... 1.	 (6 ) 

In t~e same manne~ one can cons~ruct many-Flippon functions 
l1J~ (i 1'" in) . Flippon exci tations abovc l/J ~ a nd l/J~ c an be a1so 
considered using the same procedure. 

Fl í ppon excitations ab ov e the ordc r ed ve c t or s r/J~ and!/J~ mean 
the appearance of disordered clusters witl1 fnverse spins, and 
flippod excitations above the disordered vector 0~ lead to the 
f orma t ion of ordered c1usters. As is ohvious, any two functions 
o f s pa ce (2) can be transformed to e ac ': other by a sequence of 
flip~on excitations. 

Let U~; now clarify the. question which of functions of space 
(2) pre t end s to the role of the vacuurn vec tor. The Lat ter i s by 
definition a function from which one is able to construct ~ll 

other functions by means of flippon excitations with a nonnega
tive energy. If we denote a vacuum by ,O>, a one-flippon func
tion by I i> and mauy-r f l i ppon functions by I i 1'" i >, the flip

.	 n 
pon energy should be def1ned as 

((i) =- <iiHNli> -<OIHN:O>,	 (7) 

analogousi y, the energy of an n r-f Lí ppon excitation 1S 

((i 1 ... i n) == <i 1'" in \ H NI i 1'" in> - < OIH N IO> .	 (8) 

The set of quantities (8) is the collective spectrum of the 
considered system. 

Choos i ng as a vacuum either t/JN or t/JN for the flippon energy 
above an ordered state we get + 

e+ (i) == e _(i) == J , J == ..!. L J ij (9)
 
N lj
 

2 3 



I\f 

As far as the flippon energy (9) is positive, the vectors ~~ 
and ~ ~ are vacuum ones. N 

If we choose as iO> the vec tor ~ O ,then fl ippon energies wi 11 
be nonpositive. Therefore we shall call ~~ the pseudovacuum. 
Generally speaking, in the Ising model with a finite N any func
tion of'space (2) can serve as a pseudovacuum. 

. l~en calculating thermodynamic functions (potentials, avera-' 
ge values, Green functions, etc.) one has to take traces'over 
a basis in a chosen space.The system with a finite N has only 
one unitary irreducible basis. Such a system has oniy one ther
modynamic state and no phase transitions.-The order parameter 
of t he: Ising model (1), that is the average spin, is zero due 
to the Z2-symmetry of the system: 

-H N /8 -HN /® 
<a ~ >N= Tr'a~' e / Tr e = ° (8., N < DO) , 

J{N J{N 

where ® is the temperature in energy units. 
In the ~ase of an infinite system (N ~ (0) the situation ~s 

not so trivial. Let us introdüce the definition 

~ ... (i 1 ... in) = lim ~ NO 1'" in) . ( 10) 

As far as the nu~b;r of flippons can go to infinity we are able 
to cons t ruc t different countab l.e, bases: 1~+(i1... in)1, 

lt/J _ (i 1 ••. i I}) 1 and I~o (i 1'" i n) each of which generates the 
co r re spond i ng separable Hilbert space: J{ +, J{ __ or J{ O' 

In this way in the thermodynamic limit we have a set of spa
ces, but not only one as for finite system. Three of spaces, 
that is J{+, J{ _ and J{o' have t r ans La t i ona l l y invariant pseudova
cua , Besides these spaces there ex i st an infini te number of 
other spaces with translationally noninvariant pseudovacua. It 
may be stressed that all spaces mentioned are mutually ortho
gonal. 

When there are several spaces, one can choose, for averaging, 
different possible bases defining the corresponding traces. 
For instance, for the energy one may get 

-H N/® . -H N /8
E a (8) = lim Tr HNe / N Tre, (1 I )' 

N ~ 00 }{a J{a 

where a= + ,- ,0. 
Consider the properties of spaces J{+, J{ _ and J{o' The space J{+ 

is Z2-nonsymmetric. If when constructing the basis ~+(i1... in) 
according to eq. (10) t he maximal n < 00 while N ~ , then00 

<a ~>+ = 1 at all temperatures. And í f n < N/2, then at zero
 
1 • z 1 ,wh ere <... >+ i. s t h e ave r ag i"hng wi. t
temperature aga i n <ai> += 

traces "over the space J{+. However, in the latter case (n < N/2) 
the rise of temperature excites flippons, and the average spin 
becomes less than unity: <a~ > :< 1 at 8 > O. 

1 + 

4 

The vacuum t/J _ is also Z2-noninvariant but is invariant wi th 
respect to the group of translations over the lattice. If const
ructing basis (10) we take n < DO, then <a ~ > =-1 and í f n<N/2, 
then < a ~ > > -I. 1 

1 - 

The pseudovacuum ~O is invariant with respect to the group 
of translations as well as to the group Z2' Therefore <u~>JP =0 

• • 1 
at all temperatures. It ~s poss~ble to say that the space O 
corresponds to disordered states as opposed to toe spaces J{+ 
and J{_ corresponding to ordered states. 

It is clear tha t flippon exci tations above 0/ + or o/_lead to 
a partial disordering of spins, while flippon excitations above 
t/Jo yield a p.ar t i a L spin ordering. 

Thus, the question arises how the system can choose one or 
another thermodynamic state. The answer is that the system cho
oses such a state that is thermodynamically more profitable 
than othp-rs. This rneans that the'Gibbs potential G (or the free 
energy) is to be rninimal. The ther~odynarnic state corresponding 
to a particular phase can be cha~acterized by an order pararne
ter. In our ca~e the order parameter is the average spin <a~>. 
As we have seen, there are two possibilities when <a~># O and 
<a~> =0. The system prefers that possibility for which the po
tential G{<a.~>l is lesse For exarnple, below a temperature ®e' 
called the Curie temperature, the Ising system can be in the 
ordered state having <u~># O, which means Lhat 

a I<a ~ > 1= O I < a {<a ~ > = ° J. ( 12 ) 

Above 8 there exists only one solution for the order parametere 
<a~> = O, and the system is in pararnagnetic s t a t e . 

The choice of a stable thermodynarnic state of a macroscopic 
system can ~e done by using the Bogolubov concept of quasi-ave
rages /1,6/. The general rneaning of the concept s to choose iní 

one or another way such a state that minimizes the free energy. 
There are several rnethods of quasi-averaging which we are going 
to discuss below. 

An obvious rnethod of quasi-averaging has been suggested by 
Bogolubov /1,6/. This is the rnetho~ of external ~ources. To choose 
one of possible states, it is enough to add, to the Hamiltonian 
HN, an external field, obtaining the Harniltonian 

.H -J-B) = _...!:- ~ J .. a ~ a ~ - B ~ o Zt • ( 13)
4 ij 1J 1 J i 

The additional term here reduces the Z~-synunetry of Harniltonian 
(I) c~oosing by this, when averaging, only the vectors of either 
the space J{+ or J{_ according to the sign of the field B. Then 
the quasi-average for a~ is defined as 

1 

-<.ér ~r- = Um lím <a ~ >H (Br (14) 
1 B-+O N-+cx: . N 

5 



Quasi~averages of other operators can be defined in the same 
manner. 

The widely known mean-field approximation is also a kind of 
quasi-averaging. Actually, in this approximation one replaces 
an i n i t í a I Hamiltonian, 'let us take e v g , H for a mean-field

N
, 

Hamiltonian that is in our case 

MF 1 . z z z
H == - - 2 J (20 - <a > ) <a > . ( 15)

N 4 tj ij i MF i MFí 

The latter, as is evident, is not invariant with respect to the 
Z2transformations. The symmetry is broken by the choice of sign 
for the mean spin <a~ > found by averaging wi th Hami1 t on í an 
(15). 1 MF 

Note that for a special type of interactions, th~ so-called 
long-range interac tions, Hami1tonian (15) asyrnptotically exac t-
ly (as N -+ (0) describes a I I thermodynamic characteristics of 
the considered system / 14, '15 ) 22( 

In general case the procedure of quasi-averaging using infi 
nitesimal sour~es can be formulated as follows. Let the Hamilto
nian H~ be syrnrnetric with respect to the group G, while a state 
of a system below a transition point be characterized by the 
subgr oup 01 <a. To define quasi-averages, break the synnnetry o f 
the initial Hamiltonian including in it an infinitesimal source:. 
H N -+ H N (v) = H N + vf , 

where f is an operator lowering the Hamiltonian syrnrnetry to 0 1, 

The quasi-average of any operator f, is by definition 

-HN(V) /8 -H N(lI) /8
-<0 >- ee lim lim Tr Ô e 1 Tre. ( I6 ) 

v'" O N-+oo 

Stress that the order of limits here as well as in (14) mllst 
not be changed. Note tha t in some speci f í c c as e s the 1 i mi t v ... O 
c an be absent 127.1. This situation may be illustrated us i ng the 
BCS-Bogolubov superconductivity model with the Hamiltonian 

+ + +
 
H N = 2 f k a k a k - 2 Jk k, a k a -k a -k' a k' , ( 17)
 

k k'
 

in which the combination of momentum and spin is marked by k. 
Hamiltonian (17) is invariant with r&spect to the group D(I). 
The symmetry can be broken by an additional infinitesimal 
source: 

H N -+ H N (v) = H N - 2 (v a_k a k + v *a ~ a :. k ) . 

Let v =Ivle~cf>, then kHN(v) can be written as HN(\vj) with the 
help "of t he gauge transformation a -+ a k e icf> 12 . Def ining now the 

tC1 +- + k . 
average of u = a k a -k one obtains 

ll< 

1, ( v + + )-<a: a:'k?- ee lim im -- <a k a k > . 
v-+o N-+oo Ivl 

As is obvious, the limit v ... O for the latter expression lS not 
correctly defined. 

However, it is possible to define 
no exte rna l sources 124,25/. To show 

J
 
si-spin re prc sentat i on /28,291 :
 

+ 1 z ) + 
a k a k = '2 (1 - a k ' a -k a k = (J k 

Then (17) becomes 

1 (z) J 
H N ="2 ~ (k 1 - a k - k~' kk,a k a k " , (18 ) 

The D(I)-syrnrnetry of the model means the invariance of eq. (18) 
with respect to spin rotations characterized by the angle cf> in 
the xy -plane. Tne v~cua corresponding to d i f f e r en t fixed angles 
cf> and cf>' are mutually orthogonal/7.30/. Therefore in each space 
Hcf>corresponding to a vacuum with a fixed angle cf> one can reali 
ze a representation of canonical commutation relations for the 
algebra of local observables, representation with different fi 

gausi-averages invoking 
t h í s , let us pass to a qua

+ 

xed angles cf> 
'ra ge s c an be 

f3 k == li 
2
ka k

+ 
+ 

where 
1 

L =-2a
N k k 

and cf>' being unitary nonequivalent 17/. Quasi-ave
defined by means of new operators /24,251 

2 - + . (2 - + I)L
v k o k LL + li kv k a ka k - , (19) 

1 - 2 21-2a 
k 

> , uk+vk=l.
N k 

The definition of quasi-averages is as follows: 

-<a ->- == lim <a- L + > . (20) 
k N-+oo k 

As is clear, the operator L+ fixes a vacuum. In the thermodyna
mic limit L becomes a unitary operator. 

1 

Another method of quasi-avera8ing which is very convenient 
in practice is connected with boundary conditions for Green
func t ion equa ti ons /20,31/. These equa t ions can be presented in 
several forms: as an infinite hierachical Bogolubov chain, in a 
variational Schwinger form, or as Dyson integral equations. 
In any case these equations are strongly nonlinear and contain 
integral operators. Such equations have, generally speaking, an 
infinite number of solutions. \Then the Hamiltonian of a consi
dered system is invariant with respect to a group of transfor
mations containing nontrivial subgroups, then among a manifold 
of solutions for Green functions one can separate classes of 
solutions connected with partucular subgroups of the total 
group of transformations. As far as the connection exists bet
ween almost any thermodynamic phase and syrnrnetry properties of 

6 7 
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systems, we are choosing a particular thermodyna~ic phase when 
we separ~te solutions with a fixed type of symmetry. Thus, it 
is just the fixation of a concrete symmetry of Green f~nctions 

narrowing the set of possible solutions to 'equations of motion 
and choosing those of them that correspond to a particular 
thermodynamic phase which plays the role of a boundary conditi 
on. 

Consider an example of a. system with the Hamiltonian 

+ .... 2 -+ -+ 1 +-J +-+ -+-+ -+ -+-+ .... 
H:= fr/J (r) (_.Y_ -/l)r/J(r)dr +- [t/J (r)t/J (r") <f;(r-r")o/(r")r/J(r)dr dr ", 

2m 2 '(21) 

in which r/J(~) == 0/ (;, t) is a field operator in the Heisenberg 
representation.lf we would like to describe a crystalline pha
se, we should impose a periodicity condition 

-+-+ -+ -J-+ -+ 
G(r, r" , t - t ") := G(r + a, r I + a, t - t ") , (22) 

where ~ is a lattice vector. And if want to consider a uni
form liquid phase, then we have to use the condition 

-+ -+ -+ -+ 
G( r, r", t -t") := G(r -r", 0, t -t"). (23) 

In this way equations of motion for Green functions give solu
tions corresponding to thermodynamic phases which we are inte
rested in /20,31/ . 

Let us now proceed to the problem of a microscopic descrip
tion of heterophase states. Such states have been experimental
ly observed in variuos systems. For ínstance an admixture of 
normal electrons in superconductors/ 32 / can be treated as a 
kind of heterophase fluctuations. In some ~erro- and antiferro
magnets there are paramagnetic nuclei!33.34/.In ferroelectrics pa
raelectric fluctuaiions exist / 35( A striking example of a hetero
phase mixture is the usual water containing fluctuating nuclei 

+4oC.Nuclearof ice / 36/in the temperature range from OOC up to
 
matter with coexisting multiquark clusters can be also interpre

ted as a type of a heterophase system/37/.
 

All methods of quasi-averaging we 'have described above deal 
with possibility of separating pure phases. How could we d€pict 
a mixture of several phases? 

Return to the Ising model (1). Let the ordered phase be des
cribed by the space H+. This phase is~characterized by a nonze
ro order parameter 

<a~ > == <a'~ > i. O. 
1 + 1+ 

On the contrary, the disordered phase should correspond 
trivi~l order par~meter 

<O' z > == < O' z > == O. 
i O io 

(24) 

to the 

(25 ) 

Taking into account t ha t heterophase fluctuations may occu r 
in any place of a system one has to average over all possible 

positions of these fluctuations as well as over their shapes and 
sizes/20. 21/. For each fixed configuration of fluctuations the 
regions of the ordered phase correspond to the local symmetry 
breaking /38/. Supposing t ha t the system for N -+ OQ is ergodic/3 9 / 

and averaging over heterophase configurations /20,21/ we may 

replace in the Hamiltonian the sums'of the type 
N 

a = +,0, by the sums wa 2 with the factor wai:= 1 

Na 

.2 ,where
1 := 1 

:= NalN . Na 

being the average number of particles in the corresponding 
phase. As a iesult, the Hamiltonian of the heterophase system 
takes the form /40-42/ 

2
Wa z z 

H := H+GH o' H = N(- W ) 2 J í t o ia a ja ' (26) 
a 

A 
2 a 

2 
- 4"-

íj J 

in which the parameter A describes the competition between di
rect and exchange interactions of particles/43•44/. By defini
tion the condition 

w+ + w O ::: 1 . (27) 

is valid. So ,only one of the coricen t r a t i.ons w is an independenta
 
function, and it is 'corrven i.en t to use the notation
 

w ==w+' wo=l-w. (28) 

The concentration of the ordered phase w should be found ,by 
minimizing the free energy of the system. 

To demonstrate consequences of the heterophase approach~ we 
shall below consider the case of the long-range interacti 
on /14.42/ when exact solutions can be obtained in the thermo
dynamic limito In such a case Hamiltonian (26) is thermodyna
mically equivalent -to the approximating one 

Z 
H H~P (±)H ~PP , H app:% ~ W 2 A _ 1.. w 2 2 (2 a. - C ) C , (29) 

app a 2 a _ 4 a í la a a 

where 

J == 2 'J.., C == <a Z >. 
. 1J a i a, 

Accor~ing to eqs.(24) and (25) 

I i C+== C

h
 The free
II 
il 
I,i f := A(w 

2 

!
$ 

==0, CO==O, 

energy per spin is 

1 w 2 2 
- w + -} + --JC 

2 4 

minimizing it with respect 
l 

d 
~ I., 

w2 CJ 
8 ln(4cQsh----);

28 

to C and w we obtain 
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o = tanh(w2 JO/20). w = A/2(A - ~C 2) • (30)
4 

In ad d i ti.on to solutions given by eq.'(30) we have those corres
ponding to pure phases, i.e., w=1 and w =0. The profitabili 
ty of each kind of solutions must be checked b~ minimizing the 
free energy. 

The model of heterophase ferromagnet has been analysed in 
detail earlier /40-42/. Here we list some of interesting results 
of this modelo 

1. Exact criticaI indices depend on constants entering into 
the Hamiltonian. Thus, for the criticaI indices corresponding 
to the specific heat (a) and to the order .par amet e r «(3) we have 

O, A ,f 3J/2 {1/2, A,f 3J/2
 
a = { {3 =
 

1/2, A = 3J/2 •	 114, A = 3.J/2 . 

2. Hhen A <O, there exists a maximum in the specific heat be-: 
low 8 c = J/8. A similar maximurn occurs for the magnetization 
M= wO below 8 c ' These anomalies can be due to the presence of 
a partial disorder that takes place below 8 c . ana l ogou s l y , to 
the exi s tence of a par t ia 1 order tha t has be en di scovered ,/45/ 

in magnets above ec' The anomalies in the specific heat have al 
so been observed in some magnets below ® c' and the interpreta
tion of such anomalies ha s been given /48/. 

3. If A < J/2, but A > 0, the concentration o f the ferromag
net ic phase r eache s the value w == 1 a t the tempera ture 0 n < 0) c' 

Below Sn solely the pure ferromagnetic phase remains, while 
above 8 t he system is a mixture of ferro- and paramagnetic phan 
ses. At the point 8 a specific phase transition oecurs, thisn 
trans{tion can be called the nucleation as far as just at this
 
point 0 the nuc le i of the compe t ing phase appear ~ At the nuc-
n 
leation point the jumps of the specific heat take place, which,
 
probably, has been observed too /47/',
 

4. When A = 3J/2 the arder of the phase transi t íon changes and 
for O < A <3J/2 the transition becomes of first orde r , The tem'
perature of first-order phase transition lies in the interval 
(Sc' T ) in which T c = J/2 i s the Curie temperature for .the pure c 
ferromagne t ic phase, when w:= 1. . 

The existence of heterophase states and the, peculiarities of 
their thermodynamic properties are directly connected with the 
presence ,in the Hamiltonian,of the parameter A playing the role 
of	 disordering interaction.Without this interaction no heterop
hase $tates are possible.The competition between ordering and 
disordering interactiQns,that is between the parameters J andA, 
regulates the values of the phase concentrations of ferromagne
tic	 and paramagnetic phases and thus defines thermodynamic pro
perties of the system. 
10 

Tbe considered approqch may be applied to other systems 
with heterophase stqtes. In particular, it has been used for 
describing super c onduc t or s /48,49/ and crystals /26,50/. 
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Bogolubov N.N., Jr., Shumovsky A.S., Yukalov V.I. EI7-86-567 
Concept of Quasi-Averages and Spontaneous 
Symmetry Breaking 

The essential content of the Bogolubov idea of quasi-avera
ging is considered. The problem of nonuniqueness of the choice 
of the space of states for a microscopic system is investigated 
using as an example the Ising model. A microscopic description 
of heterophase states based on the concept of quasi-averages 
is examined. 
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