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1.	 IHTRODUCTIOH 

It is known that the magnetic structure of matter in the ther­

mod~amic equilibrium state is complitely determined by the microsco­
-r'.....	 -..~ 

pic current density ! ("t..) and microscopic spin densi ty S (Z) at 
every point. In crystalline magnets the belonging to a space group of 
magnetic symmetry is characterised by the behaviour of functions .r (ãê) and ~ ( 'i) relative to space transformations and time in­

version. However, in the macroscopic electrodynamics dealing with 
quantities averaged over a "physically infinitesimal" volume there 
arises the problem of adequate description of the magnetic state of a 
system in terms of respective macroscopic characteristics. A conveni­

ent mathematical approach, for constructing such quantities is the 
Bcheme of multipole parametrization. Choosing an appropriate complete 

set of basis functions one may obtain an intinite series of multipole 

charaoteristics: moments and their power radii. As a rule, for the 
problema of macr-o scop í c 'phys1cs iLt is important to know only some of 

them. 

To study the orbital magnetic ordering, it is necessary to apply 

the procedure of.multipole parametrization to the function ~(~). 
Though this problem has a very long history, it is only quite recent­
ly that a clear understanding has been achieved of the multipole ex­
punaí.on of T('i >. /1 ,2 ( Here we ahall discuss only' some important 

pointB ·related with its formulation rather than with the Bo~ution,un­
til now these points were not clearJ.y presented in the literature. 
~ho main body of the paper is devoted to the problem of existence of 
thu oo-cru,led toroid structures in crystals wi th ferro- and antifer-' 

romnp~ot1c properties. 

2.	 ~llB flIMPLEST DEFINITIONS OF CURRENT TOROID JlOMENTS IN ELECTRODY­

~NAMtCS OF CONDENSED MATrER 

tllnoo in o. oteady state, the only object under consideration, 

Lhfl c:urront 10 oonoorved, div ]' (:c) = O•. The vector field J(i) 
2 _..... 

contains as much as two functional-independent components (linearly 

independent in a conjugate to coordinate space of wave vectors: 

r<T(Iê) =0 • With this fact in mind, one may express the transverse 

fi~ld r ('t) =- T-t. ('l) through .two scalar field,s 'fi ( ~) and JC (y) 

as	 follows: rC:t) ~ C wt (7:'!J(?:)) + c wt'l5Jt C2YC€ )1~ 
.L	 . . /(1) 

=- L 'IJ ~ K1) [-= ~ Vx f) R z: ~ f/x T 
We	 shall call this representation by the Neumann-Debye representa­
tion/ 3/ . 

---;. 

The differential operators [ and obey the following ope-J< 
rations of multiplication: 

-->	 -~ _,. --?' -7 -?i' ~-.....p ~2 

v	 L = L' L ~ \7·1< =: L· K := o 
-? 

L'}( 
~ 

=-c L . (2 ) 

Making use of these "rules" we perforrn the project (division) of 

components of the current densi ty h(~): 

---'.J' -~ ;) T 2. , ) f ~ -,.... 2.f ( ,L.i.L ::: C - L. '/J (1) B) f.PJ' C'3 7-' J ::: - L _"() e, 'f }. O) 

One can easily see that the standard exprmsion 'jJ and A over the 

solutions of the scalar Helrnhol tz e qua t on f Cv '''(' X (o 'f)í 

f h.'


r·"t = c!2L2~ Jk2clkol~ Me (I(l)f Ye ::::~ rL M ~·t(f-d)V (4)
e e t<11. f,m "" ...... e,I'"II,I("' [t,«, 

'l'R ~ -c L t ~ f klJ~}e1~(Il-Z)~ Yf~ z: c~Kf3e Ti~ fp ((/ti) Yl~ (5) 

provides magnetic Me... and toroid T.(M rnul tipole morrente easily 
normalised as follows: 

M = -~-q 4'" ' rd~ 't er {- [li'.VJtJ 
e~ t+1 ;tl4-i J u:	 . (6) 

lt ~ -~- I ~'i\ -, Jd~ te y/,' t Ci. r.L)' (7) 
v\'l e-t i . clt+ ~ ~ 

The set of moments (6) and (7) does not forrn a full parametriZ'3.tion 

of as the system of radial harrnonics if no t ciosed Ln the three­L ' 
dimensional space. The full parametrization includes together with 

each 1th moment, an infini te (rl = 0.1, ••• ) series of parameters ­

2)'\ - power radii specifying radial distribution of the moment den­
'Zl~ "L f+2.n.sity: integraIs (6,7) with changing In a systematic way 

3 
O~'hCJlideüH~il KHcmyr \ 
II~~H~ HtCJemonauui . 

f:.M~ m...l~"'r=u A 



one can obtain such a representation by using the expansion f1f~(k~ 
Il,.li) into the power series over k!l /1/. A particular role in (6) 

and (7) is played by the lowest (dipole) moments: magnetic dipole, 

moment M and toroid dipole moment -r 

I order parameters defining the genesis of a low-symmetry phase at mag­(8)N =- i Q J[;Z:)( f.L1cl 'J7 ) 
netic second order phase transitions in crystals. The toroid ordering 

_7 ~ will further be called "the toroid current state" (TCS)/4/; and crys­) 'll"i f) J37- . (9)T =-­d.-C tals with TCS are called the "toroics". 

3. PROPER AND PSEUDOPROPER TOROID MAGNETISM IN CRYSTALS 

From the multipole parametrization (6,7) it follows that the 

simplest ordered states of orbital magnets are the ferromagnetic (FM) 

and toroid states characterised by vectors '-M and T ,respecti­--;. 

vely. With definite symrnetry properties, these vectors may serve as 

The current transversality condition in terms. of the moments ffild 
their radii for weight t= 1 may be written in the form of a zero de­

rivative with respect to time of the charge dipole mean-square radi­

::= O. 
us 

r1(n~~) =tJ [?- i:(-Zf) .. '[2ncl~ (10) 

Considering (10) as the relation ·between its two right members we 

get one more definition of the toroid moment lF 
7 ~ ~ 2. -:7 el' '3 ( 11)r=-- 4c. j Y ~ 'C..1. 

It is seen that the toroid dipole may be called a mean square radius 

of·the current transverse parto From th1s a geometric shape of that 
dipole can easily deduced. In the simplest case ofaxial symmetry of 

the distrib~tion ~(~) integral (11) 1s a characteristic of a do­

uble cylindrical layer. Provided that the current lines are closed 
in a finite volume, this layer can be oontinuously transformed into 
a torus with poloidal currents on it. These geometrical properties of 

of the toroid-dipole model were predeterm1ned by the type of symmet­
ry of the operator ~. When there 1s no transversality condition
(t Vr = - j , where .p is the charge densi ty), i t is necessary to 
make use ,of a more general definition of the toroid m~_ment/1,2/ 

.... 

(12 )T == 1~ e JLi li f) - ~ t 2rJJ-\: 

To establish what places is occupied by the toroics in the gene­

ral classification of magnets, some definitions are to be recalled. 

From a group-theoretical point of view the antiferromagnets (AFM) are 
crystals of the Shubnikov white and black-white spatial symmetry 

with zero mean magnetization (hereafter we imply long-periodic struc­

tures). In this sense the ~roics are antiferromagnets described by 
a vector order parameter jí changing sign at the time inversion and 
characterized by the limit 'group of magnetic symmetry ~/mm.Ollt 
of 122 classes of magnetic symrnetry, according to ref./5/ , 31 admit 

the existen~e of a vector with such transformation properties (the 

same numb er as the vector M wi th the limi t group .o.c m ' m' ).
VY\ 

These nurnbers indicate that toroics should not be treated as exotic 
objects. 

It should be emphasized that t he ' very introduction of the polar­
vector order parameter, that is odd with respect to the time inver­
sion, for describing the AFM structure in crysttils is not something 

essentially new. Indeed, consider how are things going in the spin 

AFM. Since the order parameter in AFM cannot be chosen universally~ 

(in contrast with FM where the choice of the magnetization vector ~ 

with the relevant sYmmetry is natural), it is worth while to consi­
der two limiting cases. 

In the case of AFM with localized'spins the separation of the 
subsystem into independent magnetic lattices is the most ~fective 

app r-oa ch , In this case as an order parameter the vector L is int­

roduced, that is a linear combination of the magnetiz~tions of subla­
tices and as a result, has an additional symmetry associated with in­
terchange of atoms of various sublattices. The vector ~ may in 
fact have the symmetry properties that coincide in a concrete space 

group wi th the properties of the vector T (however, the vector r 
is neveI' characterised by any limit group). 

that reduces to (9) OI' (11) if (10) i8 taken into account. 

54 



In the case of AFM with delocalised spins an approach isneeded 
that is not based, on the concept of magnetic sublattice. It has been 
proposed in/ 6 ,,7/ and further deveLop ed- in/8/. The generic idea of 

these papers consists in the classification of magnets into groups of 
exchange symmetry (space crystalline group supplemented by three-di­
mensional rotations and reflections in the spin space). The order pa­

rameters in/6- 8/ are introduced as expansion coefficients of the 
spin density function ~CZ) over irreducible'representations of the 
crystal symmetry space group. Among the quantities thus constructed 
there may appear those transforming over the vector irreducible rep­
resentation isomo~hic T under space transformations though not 
coinciding wi th T under spin rotations. 

Thus, the definition of toroics as a separate class of magnets 
is due not to the new properties of space symmetry of the vector 
but to the orbital nature of its formation and specific proper~ies 

of TCS (optical/9/, magneto-optical/ 10/, magneto-electric/ 11/ and 
other anomalies). In this connection it is indispensable to studs in 
detail concrete magnetic structures permitting TCS and tõ point out 
possible objects of 'experimental investigation. Such a statement of 
the problem determined the·airn of the present paper. 

In accordance with the general theory of second order phase 
transitions the toroid moment ~ may aris~ independen~ly as a re­
sult of a spontaneous symmetry breaking (proper TCS). The microsco­
pip model of such a transition has been proposed in Ref./ 12/. How­
ever, the conditions for an proper TCS to arise in o~bital AFM are, 
rigorous enough and may probably be realizes rarely, which complica­
tes their experimental detection. According to/ 13/ a proper TCS may 

be realized in the nickel-iodine boraoite. At the sarne time, it is 
reasonable to consider situationa in which TCS appears as a result Df 
another type of ordering. From this point of view it is most tempt­
ing to study a pseudoproper TCS in the spin FM and AFM due to inva­
riants. of the type' TL and TM (or of a higher order in L and ~ ) 

inthe thermodynamic potential. Note that for pseudoproper transitions 
(in the given case for TCS).an additional lowering of symmetry does 
not occur (in the given ca~e of the FM or AFM st!ucture). It is clear 
that a pseudoproper TCS should inevitably arise from relativistic 
corrections to interactions in crystals with the usual spin mecha­
nism of FM or AFM if only the system symmetry admits the coexistence 
of T wi th r or M, respective.Iy , 

,6 

Classification of possible types of coexistence of the vectors 
~, ~ and ~ can be made on the basis of the results of/5/ 

shown in table 1. It is to be noted t ha t '18 magnetic classes admi t 

coexistence of r and T but do not adrni t a weak FM; 13 ciasses ad­
mi t coexistence of ~ and T , and 7 classes admi t under certainM -' 
orientations of 1: TCS and (or) a weak FM. In this case a simulta­

neous appearance of both weak FM and TCS does not change the magne­
tic system symmetry. 

Tâble 1. Toroid magnetic classes. 

T~pe Df o"e.de 'ti f13 MQ~ne i it: C eQ.-jj es 
WI o..~ netic eeec.t't'·~ 

p ytun2) ~mm/ 3m) 6mmL 

"I
J 
4~'m 

, 
6; 6 :n21

) 11, 
- 2;rn' , :lí;m ) mmm /) 4-Im I ,L p 

'I;' -/ -I 6~ Jm'mm , 3, 3 m, m 1 
:» 

6/m'mm 

p 3) 4) 6M 

1't 2 f 2' 32 6 2 1
M ,P ~ 

L , f1 ' 2'f2m}2,m:mm'P J )weak FI1 

L, N -
2'2'2Pwea1( FH 

2 / 

7 
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4. CONDITIONS FOR TCS IN THE SPIN FM AND AFM 

In this paragraph we shall apply the method allowing us to for­
mulate conditions for arising a pseudbproper TCS in the spin magne~s. 

We mean the conditions imposed by the presence of a symmetry elements 
in the crystalline space group of a magnetic, by the position of mag­
netic atoms in a lattice and finally, by the nature of the magnetic 
spin ordering (orientation of the'vectors ~ and f1 with respect 
to crystallographic directions). For alI space crystalline groups we 
shall compile a table allowing classification of pseudoproper toroid 
magnets according to the type of invariants responsible for the ap­
pearance of TCS. Following the theory of weak ferromagnetism farmu­
lated by Dzyalashinsky/14/, ane shauld analyse a passible existence 
af the relevant invariant combinations af the vectors ( T and L) 
and ( ~ and ~). In its main features the appraach used i8 ana­
logaus to that used by Turav/ 15/for classification af weak ferromag­
nets. 

It should be noted that the AFM structure is called even with 
respect to a given symmetry elements if the relevant transformatian 
interchanges magnetic mome~ts within one and the sarne magnetic sub­
lattice; in the case when magnetic moments af various magnetic sub­
lattices are interchanged, the structure is called odd. Taking into 
account the symmetry properties of the v~ctor lF ,one may conclu­
dé that the toroid ordering is possible only in the AFM structures 
even with respect to alI the translations and odd with respect to 
the"symmetry centre if the one exists in the system (further, in des­
cribing concrete structures, the parity will be denoted by signs (+), 

namely ~i!(±)' 1(±\ 1~±) e t c , }, ­

,Thus, for the AFM structures admitting TCS 

a) the magnetic and chemical elementary cells shauld coinc~de; 

'b) the directians af magnetic rnoments in alI the sites ·corres­
panding to the sarne Bravais lattice should coincide as well; 

c) the directions of rnagnetic maments in the sites transforming 
into ~ach other under space inversion shauld be strictly opposite. 

For the FM structures admitting TCS', the paints a) and b ) are 
fulfilled aut omat í.caâ Ly , However, the veetor M· is even with res­
p'ec t t o . space inversion and the vector f is odd, the point 9) 
should be fDrmulated differently;

'\ 

d) the space group af the crystal symmetry should not have in­
version." Though the very division of the FM structures into even ar 

8 

Table 2. Invariants due to crystal symmetry elements. 

N 
S:Jmmeitj 

eeeWlent 
even (+) 

odti (-) 
-jt>zu~tu"t

Tn v-a~{Q.Y2 t j 
e 

L)c.T;., L~7;J Lz T.z ,1)47;) L,...7;J Ly7;,L~7;J Lz1;J·Lz7;1 - -
~ 

2 
1 

+ ._­
L)(Tx.} L x 7; , LyTx J L~ 7; J Lz7;3 + 

~ 

4 
2z - L)(,T; ,.L~T;, i, T; J i,7; 

5 
i-­

e 2x 
-

+ L)( Tx I Ly G, i, i; I Lz7; I Lz7; 

- Lx ~) t.,Tz ) Ls 7;; I Lz 7; 
7 + L)I t; ) L) Tz j c,-r; J Lz T; J Lz 7;r­

8 
2)-

- L)I. Ty i., ~ I t., 7;J L!lTz 
;) 

I---­

10 2r ':i -
+ L)I,' T;. + L:i7Y J L z Tz I L x7; t: l-s----r; 

- L).T; - LyTy) L)t.7;-L JlTx 

11 

I--­ 42 

+ 

L11 T; + i, 7; J L1 -r;) 4­ '-L Y T)( J 
(Lx/j - L~~){L: +L~)) [L; /,j -L~ /;)L}) 
(Ly;1; +L~ Ij)L~, 7;L; j{Lxlx+L'jT;){L:+- L!/J.> 

i,~ (L~+Lf)) (L)( ~-L)7;)LxLy )(L)(7j+Ly7;)LxL..v. 
(Lx 7;-rLy 7;) (L: - L~) (L~Tx - l»7j)(L: -L;) ) 

12 -

i,T;. '- L~ t, 1 L~ 7; t LiJ; ) 
(Lx 1; - L'JT;)(L/-+Lj)J (L).7; ­ L'J~)L~ ~ 
(L xT.i + L}7; ) (L}+Lj) (L}(~TL~'.r)L~.> 
(L.." 7;, +LyT;)l{L} -L})7 (Lx I~ +-L~ '"';) i, LJ ) 
LzT; (L~ - Ly) J L"1Tz L)( Ly , 

u,7; - L'J 0 )(L1 - Lf) 1 (L)(/> -LyIA ) t, Ly 
/3- + L2 v, I Lx 7X + L;y7) 'Til< TJ. - Li l « J 'L )2.L

Tz (ú:t 1.'61)3 J()( %-1' ú-)( L:t+-{.Y Z 

1~ 3z - -
/r 

I-­ G + Lz7i I L)< T; t: L:y T;) t.,7; ­ i, Ix 
16 z - r. n, 1:(' L'y)~ u: t: i 7;)(L)< '1 iLy )2. Lz 

9 



odd ones.is senseless, it is convenient for our purposes to use the 
fact that the symmetry properties of the AFM structure even with res­
pect to some elements formally coincide with the relevant properties 

of the FM structu~e. Therefore, the table constructed below for in­.-. ~ ~ -.. 
variant combinations of the vectors T and L by changing L - M 
for even AFM structures provides alI inváriant combinations of the 

T-- -Mvectors and in FM. 

Let us make the table of invariant combinations of the vectors 
~ -L and ,- under proper and improper rotations specific of the 

crystalline lattices (table 2). With the knowledge of the concrete 
crystallographic structure of a magnet, one can find the AFM.struc­
tures admitting TCS as well as the direction of the vectors ~ at 
which lF ~ O. In the general case one should use tablé 2 for the re­
levant group 'generators thus defining an invariant in the thermodyna­
mi t po t an t LaL r-asporiaí.bLe for the appearance of TCS. Note that if 
magnetic atoms lie on a simple (not spiral) rotational symmetry axis 

or on a simple (not s11ding) symmetry plane, the AFM structure is 

always even with respect to these elernents. 

Now we 'paes to the discussion of sufficient conditions for ~CS 

in each system (eee table 3)~ It is assumed further that the struc­
ture is even with respect to pure translations. Let us consider in 

more detail the AFM structures. 

TRICLINIC SYSTEM (1) 

If the positions of magnetic sites are single, there cannot be 
AF~ ordering without increasing dimensions of the cell and TCS is al­
80 impossible. If the positions of magnetic sites are double and re­
lated by the symmetry centre, the TCS is possible (N2 by the Fedo­

rov claaaification). 

JlONOCLINIC SYSTEM (2, m ; 21 t'tt 

a) There is nd symmetry centre (2, rn) ; there is only one inde­
pendent aymmetry element: plane or second order axie,with respect to 
which the AFM structure should be odd (NN 3-9). The magnetic sites 
in thia case are necessarily in the general position; 

b) There is symmetry centre (21m), and since the AFM structure 

ahould necessarily be odd with respect to it, with respect to axis 2 

,th! atructure may be even and odd (NN 10-15). In this case the mag­
netic sites'may be bõth in general and special crystallographic po­

lO 

T a b 1 e 3. Classification of toroid antiferromagnets. 

AI 
:1J ~-tf!.A'I1 
C~i"'g.on'y) 

SpQce 
çpzOUp 

I}pe of 
.J-t- 'zuc}« 'ze T nu-arcan t-: 

f TY.ic!e,:nic! Z 
. -(-)
f 

L)t7;.~ 47;,Lz~, Lx~, l,<12,L.y7;, 

Ls Tz, L Z &7 Lz /5/ 

2 
L_ 

3 
"-­

4 
f--­

f) 

t-ionoc fl'niet 3-5 2 
z 
l - > l.x 7;, L~ r: Lz 7;, L z Ij 

6-9 - Ir )
12z i.r; L)' 7;,Lz J;~ Ix7;~ l,y ;; 

10-15" 
T(-J, zl+) f)( r; r, ;;,Lz 7z, Ix ~J L'y .& 
-(-) ,,(-)
t ;) z Lx 7Z, L,y lZ, /, 7;,) Lz 7; 

6 í!. (+) Z ( ) 
2 ~ X Z, J;.1 L,y Ix 

I-­

7 
ROt118ic! 

{6-24 ~(-) ,2 (+)
z} X Ly 7;.1 c, 7; 

r--­

8 
1---­

9 
f--­

lO 
I-­

z<:-) ,2 (-)' 
Z, x Lz r.,«, '1; 

25-46 

,2(+) 2(-)
z) x I x 1;, Ly Ty.l L.z I z 

2<-> 2 (t)
Z ~ )( i x 7; ~ /. 7; 

11 
r­

12 
r--­

2(-) 2(-)z )( ,Lz /y ~ L!JI 7Z 
';l-) ,z(+) :l+-I

) z) x /, T)( / Ly /;/ L7 7; 
13 
f-­ 47-74 T(-!~+! 2~) /, 7Y" ~!I?; 
f't 
r-­

T(-) 2 (-) 2.(+)
) Z > )( Ly 7; ~Lz 7; 

15' T(-),2(-) 2(-) 
, z} x 1; Lz ) c; 7; 

(6
"­

17 
r-­

(8-

Tei 'lo.gona f 75-80 4~-) Lx 7; -J-y 7y Lx(y-t Ly J; 
81-8Z [/-) Lx I: r L/j 1YJ fzli,.4~-lyi; 

83-88 
7(-) 4 t t ) 

" z L>. 7; ., 4 ~.J Lzl;, Lx? -4 i; 
19 
"­

ZO 
f-­

. tt-: 1(-)
I . z Lx T;-Ly1;I i, lY fi!!?; 
~ (+) R (-) 
Z, x /, 1; - /.!I 7; 

21 
f--­

89 -ss ~ (-) ,.2 (+) 
Z ) x Lx 7; - L!f Iy 

2I!. 
'--­

23 
'--­

it (-) t2 (-)
z, x Lxi;y. 4 ~ 

4}f-) 2)«(-) t. 1k!' Lj' 1;) /, Tz 
24 
r--­

99- {lO 4(-)/2(+)
Z. x r, T; r f y Tx 

2, f) 4(-r;{-)
z) )( -­

L)( Tx - L!fí; 
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T a b 1 e J. (Continue) - 2. 
Table J. (Continue) - 1 

26 
Tei7.ClJonat 1({-lf4 

4{~} 2(-) Lx T!J t- 1..1 ~ 
I------

Z) X 

2.7 1"(-) 2 (f) Lx 7; f L,y Ij; Lz i;
t--------e- 1~{-122 

z , x 

28 j,. (-) 2 (-) /, 7; - Lyl; 
t---

yz :> X 

2q fz(+) ,(x(-J c, r; - /..'1 7; 
t---

30 115-//20 4 (-) j (1") ., 7y -!.!/ r;
f----'- Z ) X 

3-( 4 (-) t2 (-) Lx TX +-/y ~ 1z 7; 
t---

t z , ... )c 

32 T(-)//fo) t (+) Lx0 .,t c, 7;) Lz 7; 
r-------

) Yz,} X 

33 {f, 3 -14;' ['"4(1-) 2(-) L)(;; -L.yTx 
r---

~ . z) )( 

34 T(")1(-) 2(1-) r, I; -iy T;
f-.--<- ,} Z. l X 

3~- T(-) 4(-> 2(-) /, 7y r Ly 7;, Z ~ X 

3~ 
~{~onat 

f47-11t8 31-) Lx r; t-Ly7;.. L,,/!/-L!j Tx,Lzlz 
f-

37 3(+) ,2( ) i, 7; -L~ ~ 
,--- ("g-Ifi~ 

z . X 

~8 
3 Uo) 2<-) c, J;.- Lylx 

r---
z, !I 

38 
(fi6'-{61 

3(+) ;2 (-) c,Tx I-L.!ITy') Lz i; 
r-- Z o' X 

40 3(+-) 2 (-J. c.r; fi!, Ty, Lz;Z 
r-- Z" !:I 

41 Tr~J3t) ~~+) i, 7;t !y 7Y> Lz / z 
'-- . 

{(-) ~ (+-)2(-:->412 °f6~ -16'7 Lx Ty - L.Y Tx't -z ~J( 
I------

r(-> 3 tf ) ,.,(+)
~3 Lx Tx -t c,Ty ) c, Tz· 

I--- ' z.,}t:.!:/ 

~~ Tr-J 3 (,.) ';'(- LyTy-LyTx, z,t:-y 

4fi He:r:.QJonat -/68-173 6 (-) 7; (Lx:t /L/I);Lz (7; :i t"l!1 )(I){1/L!lJz 
I---

1,6 174 6 (-) J;Lz , Lx T; r L!l1;>L!/7;-Lx /.!I 
f--------"-

?z 

~7 ' 
17Ç-176 

T(;) Ci"') . Lzfz, LxTx+L'y7;;> Lx1; - Ly!x 
I------

. ~B 1 (-) 6/-) Tz(!}(tt'L!I)~ Lz(~·~( 1;)~x:!:/4J 
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sitions not coinciding with the inversion centre (as is known, gene­

ral positions cover not only those lattice points which neither sym­
metry element passes through but also those placed on spiral axes 

and aliding reflection planes. 

ORTHORHOMBIC SYSTEM (222, mm a, mmm) 

a) There is not symmetry centre (222, Yt1 rn2): in these groups 
two independent symmetry elements are either two axes 2(perpendicular 
to each other) or two planes YY\ perpendicular to each ot he r , In' 
the case of two axes 2 generating the third one perpendicular to them, 

the -atructur-e should be even wi th r-e'apec t to one axis and odd wi th 

respect to the others (NN 16-24). In the case of two planes the AF~ 

structure should be odd with,respect to axis 2 and even with respect 
to planes m m or even wi th respect to 2 and one of the planes m 
but odd with respect to the other (NN 25-26). Both in the first and 
second cases magnetic sites may occupy either general or special po­
sition~ 'in the lattice. Thus, if magnetic si t es are placed on the ro­

tational axis 2 or on the mirrar plane m , TCS is admitted by only 

II one AFM structure for which two other symmetry elements transform 

the sites with antiparallel magnetic moments into each other. If the 
magnetic sites are at intersection of rotational axes or mirror pla­
nes, the AFM structure does not exist and TCS is impossible; 

b ) There is a symmet ry centre (m m m ): for general posi tions 
the structures are possible as in the case a) - odd with respect to 

one axis 2 and even with respect to the others; moreover, the AFM 
structure is possible that is even with respect to all the axes 2 
but nec'eas ard l.y odd wi th respect to the inversion centre (NN 47-74). 

For special positions when the sites are placed on the rotational 
axis or mirror plane only two types of the AFM structure are ad.rnis­
sible (even or odd with respect to the other two axes or planes). 
If the magnetic sites aré placed at- intersection points of two mir­
ror axes or at the line of intersection of two mirror planes, the 
AFM structure should be even with respect to all rotational elements. 

For crystals of higher symmetry (tetragonal, trigonal, hexago­
nal and cubic systems) the treatment is more tedious though can be 

performed by analogy with the previous one. The corresponding results 
are listed in table 3 in which the first column contains the numbers 

of space groups, the second one contains possible types of the AFM 

structure generating TCS and the third one contains concrete types 

of invariants. The absence in the table of the number of spme group 

means that TCS is impossible in it (at least due to linear and cu­

bic wi th respect to L invariants)., Formally, i t is admissible that 

li


Ir can be generated by any higher with respect to L invariants;
 
however, such systems are not considered in this paper. Therefore,
 

hereafter the possibility (or impossibility) of ~CS should be treated
 
as the presence (absence) of linear or cub í.c wi th respect to L in..."
 

variants in Table 3.
 

For the FM structures the invariant combinations of the vectors 
T and M are constructeü by analogy with AFM taking into account 

\ 'I the remarks made above. The results are 'listed in Table 4. 
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5.	 CDNCRETE EXAMPLES DF MAGNETS WITH TCS 
A.	 ANTIFERROMAGNETS , 

Before applying the appronch developed in the previous paragrapn 
for the analysis of concrete AFM combinations, we should like to 

make the following remark. The consideration of a pseudoproper TCS 
regardless of a concrete AFM structure generating it may turn ou~ to 
be aimless, and that is the reason why. 

In listing in the corresponding column of Table 3 the types of 
the AFM structure generating TCS for each crystalline system, we im­
plicitly assume that the magnetic atQms occupy general places in the 

/ 161 lattice. The consideration of real magnets indicates that in most 
cases the magnetic atoms are on some symrnetry elements (rotational 

axes or symrnetry planes), i.e. occupy special positions. Transition 
from the general type to the special one may lead to violation of 
sufficient conditions for the existence of TCS. 

We start consideration with the space group D~6(p~mQ)' that for 
methodical purposes will be made thoroughly. 

Placing the magnetic atom into the general position 8d(Je, U J 

1171 . d 
~ ) and using the available 8 symmetry elernents (in notation of 
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point groups:	 the elements E, 2:X:, 2~ ,2"2 ,1. , 6':x: ' b ' bz),
S 

we get 8 atoms, inside the elementar~ cell with coordinates 

1(x, ~ \"l) ) 2. (!+'x)1- ~L !-Z)) 3 (:r J J. ~ d/~. ), 4C! -x}y) ~ +~), (13) 

5 (XJ~,2)) 6 (!-:r'~+d,1+?)) 7(x J1 +f ,z)) g(-1t:CJYJi-~). 

1et us denote	 the relevant spin local moments by S.( i = 1, ••• , 8).
t

Due to the presence of the .Lnv er-s í.on transformation connecting the 

pairs of sites 1 ++ 5,2~6, 3-7 and 4 .....8 and to the condition of 
odd AFM structure wi th respect to t'he inversion centre, i t follows 

that S... =- -s, J s, = S6 ,S3=-/1'1 and SI; = 518 • Talcing into account 
atom interchanging, realized by the rest symmetry elements, we get 4 

types of colinear antiferromagnetic structures admitting TCS: 

( 'f (-) 2l-t-)	 2 (t-))S1 I[ S~ ti S311 94	 'l X ) 
(1 (-) 2(+) c2 (-»)	 (14 )$111 gt, li $611 S?	 "l .x: , 

1(-) 1(-) 2(+) )s, I1 SJ.II S71/ S8	 ( z x: J 

( 1(-) 2-C;) :l ~) ) . S~ II 51 3 II S6 11 Se 
There are also three types of special positions of magnetic 

atoms each having multiplicity 4. The first two types (4a, 4b)/17/ 

coincide with	 the position of the symmetry centre: respectively,with 
the coordinates (0,0,0) for position 4a and (0,0,1/2) for 4b. The 
third position 4c with coordinates ( :x: , 1/4, Zr is in the plane 

ç:;~ • When passing f'r orn the gen er-aL 8d p os í, tion to special 4a 
and 4b, the AFM structure generating TCS disappears. Such a situa­

tion occurs, for instance, in yttrium orthoferritcs with the struc­

ture YMe 0 ( Me is the 3d metal) where the magnetic atoms Me3 
occupy 4b positions~ 

When passing from 8d to 4c the points connccted by the plal1c 

6~ coincide, L e. h-~7, 2 ..... 8) 3-5 and 4 -6 so thnt instend of 
eight sites in the elementary lattice we have four: I (instead of 1t7), 

11 (instead of (J.5), III (instead of 2,8) and IV (instead of 4,G). 

In particular, this is valid for the compound r:J... - FeobU in which ions 

of FÊ: occupy 4c positions. The AFM structure ge;wrated is of the 
type' 

CSrllsrr}=-(Sm ll SiY) (1(-)c1(~ J;+)) (15) 

and admits TCS with the invariant Lj ~ (sce 'l'able 3). lt is Lut a­
resting to note that three compounds Ln this group Li CoPq un-to 
and Li.Ni POi( , in which the corresponding magnc t í.c a t oms I Co , M~ 
and ,Nt' also occupy 4c posi tions, are characterised by the struc­

18 

lI. 

I; 
ture Tl-l1~) 2. i+) . In this case the 

: ! 
I> in them are direeted along the axis of 

the relevant invariants are different. 

veetors of antiferromagrietisrn 

~ (Co), 'X-(MI1) arid ~(rJ/)al).d 
A similar situation occurs in 

CO,l51i 0 and KFe r!R 3 where the magnetic ions of Co or Fe also
4 

occupy 4c' positions; however, the AFM structure is even with respect 
... ~ 

to the inversion center and	 TCS is impossible. 
Now we undertake a systematic consideration of magnets belong­

ing to alI the systems starting from the monoclinic one (we are not 

aware of any real 'antiferromagnetic belonging, to the triclinic sys­
tem though for the space group No. 2 the existence of TCS is not for­

i/'[­
bidden by the	 symmetry conditions}. 

< I The group C;h ( P.2 1 / Y}1 ): such a type is represented by the 
'\ compound E't OOH where ions o f' i= 'l. , the magnetic moments of which 

I are directed along the axis ~ ,occupy special two-dimensional 2 

I positions. According to the general classification of AFM, the struc­

ture is of the type	 - (-) C:-'!, S~ (Sli) =s, CS3)	 C1 cZ~) (16) 

and admit , according to Table 3, TCS corresponding to invariants 

L T:( and L I; . In the isomorphic compound 'DyOOH the 
y

magnetic ions of 'D~ o ccupy 2 e p os.í,tions as well but are placed 

in the plane :x:. ,the invariants having the form Lx7!t and L~7J. 
In the orthorhombic system ap ar-t from the group D~(;" conside­

red above we are interested in 1)~\ (P &n Q.. )-compound C"VOlt 
and ])~\{CwitWl\) -compound ~-Fe.OOH.For Q'r V04 magneto-active 
ions of C~ and V occupy special ~ositions 4c. The spin AFM struc­

ture ia of the type -1 (-) 
~i
?(-) 2. (+) the moments having only ax com­

ponent along the axis II (L ) wi th
d . J 

( Sf 11 s~) = - C~~ I1 S3 )	 ( 17 ) 

and TCS is charact erised by the invar~ant L ~ T"i . 
For ~ - FeOOH ions of re o ccupy 4c posi t Lons , The AFM atruc­

ture is of the type "1(-) :Li) 2~) ((~-1IlS3)=-(SJlI~J) and TCS is specified 
by the invariant Lx. T (since spins are direct ed along the axis s: ).z 

\ Note	 that in the com~ound from the aame group ])11 - 0t.. V o~ , ions 
of C~ occUPY 4a positions, the AFM structure being even with respect 

to the inversion centre and TCS is impossible. 
( 

'j
I	 

Consider now the tetragonal system. 

The group 'D~~(P~~/WlYlWl) is represented by C!.tt.J.W06. Ions of 
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11­

l' 

I~ occupy 4e positions, the magnetic moments lie in the basis Tho group C:~ (T \'ri V\1 2) is represented by the ferromagnet 

plane ::x.~ ,the structure is 
1 Na Ni Fe F;r. The vector M is derected along the axis .r; 

( ";-)6 c-)) ( 18)CS~ 11 S.J =- (S3 I1 g~ ) x 

and TCS is characterised by the invariant LX'Tx... - L)j ~ 

The gr oup C~~ (I"Im em) is represented by KCrc F'3' Ions af 
0c.. occupy 4e positions, the magnetic moments lie in the planex.~ 

the structure is of the type 

l s, 11 S. ) =- 0,11 S4) (4~1 GCLC::») (19) 

and TCS is specified by an invariant of the type L::r..-ç:.. LjJ Tj, In the 
compound Fe. Te 0 from the sarne group of symmetry, the AE'lVI struc­

1 
ture is of th~ type I'C-l 4~) ~2 ~- J TCS is impossible in this case 

since the magne t í,c moments of Fe ions are directed along the axis 
Z and necessary invariants are absent. For the sarne reason TCS is 

absent in the comP.ound Cf C!2. (group 1/1- (141 Vl1 rn ) though the 
Tt. 4h /I'hAFM structure is of the type 1 -) /.(t) f")(-) 

I ~ oLx.' G -
In the hexagonal system we shall consider the group ])3d (R. 3c.) 

represented by Vl 0 • Ions of V occup y 4c posi tions (on the3 
third order axis). The magnetic moments in this compound cannot be 

thought well localizedj however, it follows from the neutron-diffrac­
tion measurements/ 16/ ~hat maximum of the spin density is placed at 

the sites V and the spin vectors at the sites are oriented along 
th~ third order axí.a, The vec t or of antiferromagnetism for .t he struc­
ture VlOJ corresponds to the type/ 18/ 

L = Si - 8;,. - :1
1 

+ S4 CI C-) 3;+) ;2 ~t) ) . (2 O) 

The only invariant admitting TCS has the form ( L"l T; ), Le. for 

V.2. 03 the symmetry of the vectors L arid T coincides (this is 
solely due to the character of the spin density distribution). 

Of particular interest are crystals of the cubic system. In a va­
riety of cubic AFM we could not find any for which sufficient condi­

tions for the existence of TCS could be fulfilled. At the same time, 

as it follows from table 3, the appearance of TCS in the cubic AFM 

are not in principle prohitited; 

B. FERROMAG[~ETS 

Sinee there are no real FM belonging to triclinic and monoclinic 

systems/ 16/, we immediately pass to the orthorhombic system. 

20 

therefore, the corresponding invariant has the form t1~ 1v . 
The tetragonal system: the group C2~ (I4 em), the fer­

romagnet Ct Fe. Mo0 • The direction of the veetor M is no t in­
ot 6

dicated in ref./ 16/ • If ~ lies on the principal aXis, the linear 

with respect to ~ - invariants are absent. 
U. ­

The hexagonal syst em: the group 1):;ld.. ( I ~ ~ 01....- ), the fer­
fimagnet ~u.. Cn 04 . The vector M lies in the basis plane and 

an invariant generating TCS has the form M::cT~ - M~T-a . One 
more representati ve in this system is the ferromagnetic Mn "'~.2 :16 
group D; (.e 6 3 1 ~ ) and the invariant M~T}(. -+- M~T~ , 

The cubic system: group T4 ( P 2 ~ 3), is represented by Mn~' 
-~ -the magnetic structure of which admits only the invariant T M (M 

is directed along one of the coordinate axes). The data of neutron 

difraction indicate a weak helicity of FM structure (the helicity 

period is 120 0 A), that is du e to the relativistic interactions.N 

Probably, this is an indirect indication of TCS since the presence 

of the invariants r: M and 'f, rot M indicates a weak inhomoge­

neity of the FM structure. 

The second representative of this system is the ferromagnet
 

Liols" Fe.~ S"--':X!. Ai:c04 group q1 c P 41 32), invariant Tx.MxCH~ ",
 
T M'2'l ) + T'JH ~ ( M~ + M~ ) The exact data on the direction of ;:;r
J 

are not available. The third represe~tative is the ferromagnetic 

NiMnSB ) group 1d2 ( F 43 m), invariant T~M~(M~ - M~) 1­

T T~ M~ ( t--\~- Mi) +liM (M;'- MZ) and the vector M has the gene­
ral directlon. 

i J 

6. SOME MICROSCOPIC MODELS OF PSEUDOPROPER TCS 

The microscopic' model of proper'TCS in the systems wi~ electron 
12/.ho~e pairing has thoroughly been investigated in ref./ Under cer­

tain requirements on the s~mmetry of electron wave function, the or­

bital toroid ordering may appear already in the exchange approxima­

tion, i.e. the relativistic smallness is absent. For a pseudoproper 
TCS, one s~ould take into consideration the spin-orbital interaction. 

Let us consider tW9 simplest mode~9 of a 'pseudoproper TCS in~ ! 
ferro and antiferromagnets, respectively,. allowing one to trace the 

origin of.this unusual orbital ordering. 
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A. FERRONffiGNETIC SEMICONDUCTOR 

Assume that the crystalline potential V (i) of the system can 

be expressed through the sum V(~) = V~(i) t Va.(f) where V,i is the 
even and Vo.. is the odd potential parts wi th respect to spatial in­
vers í.on ; for simplici ty we shall assume Va.« V~ . In what follows 
we shall consider VfL as p er t urbat í on, 1et at Vfk..=. O the wave fUnc­
tions of extrem of the conáuction and valence bands transform accord­
ing to even and odd one-dimensional representations of the potential 

V at the point ko. of the Brillouin zone. Then, in the two-band1 
~(? model, that i8 the aim of our consideration, 

tonian of a ferromagnetic serniconductor is 
A A A A 

H = HO + Hex i- H-10 

A I' '~.::\.)t1-C~) i?J-k. +t 
oH ::: CiV:K:~~ f 1 Ct ) 

A 

l J1 ~ O )if~)\i ex 
O J. ) 

A 

C f, x ~ Xx~),t~l10 
-X x G' 'P3. (5x 

the model Hamil­

(21 ) 

(22) 

(23) 

(24 ) 

In the exchange part of the Hamiltonian (21) only the intraband 
terrns Hex of the interaction of iti~erant electrons and local 
spins are retained for simplici ty; i y.. is the interband veloci ty 

matrix·element, ~:::<~IVlll2.> is the matrix element of the potential 

Vo.. at the extrernurn point, X=-~c2<1/vV112> arid ~,t4~c.l~}2J9~,{~ 
are the inter- and int:raband matrix elernents of th,e spin-orbi tal in­
·teraction. For simplicity we shall neglect in further calculations 

the contribution "- '11,1 in view of the assurned srnallness of V4 l{a
though a t Vlt t\.. V-s i t should in fact be retained. Then, assume for 

aí.mpLí.c í t y E.-1l~) =- ~~C~)= ESA ~ *Itt:f'(~where m"" is the effective 
mass of ~arriers, Et is the width of the serniconductor band gap, 

and I ~. ,2.S ICCESso tbat we can restri ct our consideration to thc 
mearr field approximation wi th respect to the ~- d exchange inte­
raction. 

The electron spectrum in the model (21) in the above assumptíoJls (11 
Lá easily calculated an d is· of a "skew" nature 

..E7 (e) :: ~'-(~>6r ± [(t(~) - t~~ 1"(st>~~)~ 
(25) 

22 

+ l ~ - (~~ ~),& ~~ ) 2 + I~ r)2. + (~)( k: )1J ~/;). . 
--';00 

Hera tho axio ~ i8 directed along <3> . 
Let U8 conaider this expression in more detail. At t = O, i.e. 

in the ferromagnet wi th the inversion center, we have E ~(k)= ~(-~ 
but EG( ~)1: E"'~ ('k:) . If ~ I- O then EG (e)t- EG'(-ll) and the spec­
trum is "skew" (it is natural that EG'Cil).f E"'G'f-iZ». The symrnetry 
loss te ~ - \Z of the electronic spectrum of magnet wi thout the 
inversion centre is not unexpected by itself; the thoroics posses 
just this asymmetry/13/. 

We now calculate the orbital toroid moment of a ferromagnet
 
wi th the Hemiltonian (21). For this purpose we proceed as foll·ows.
 

By introducing the 'orbital current operator
 

~ - ~'A (26 )
~L - e. ~t ' 

1\ 

where ~ is the quasimomentum operator, we calculate the Fourier 
~ ' 

componen~ < á~>=} for small short-wave fluctuations of magna ti ­

. zation <~ > (~-'>O}. Then, u~ng the known~elation of the orbi­
tal óur-ren t arid toroid moment j =C!.. 'tct'uli-T ' as a rezult of cum­

bersome calculations we get L 

= :~IB <s> x)7 Oj-1.)p N,,;';zT 
~ 

L (27) 

- _ ("";JI.l. l:: 'I> jN s. 

All the calculations have been perform~d at the temperature
 

(Y« and under the assumption {l ~ ~ 1,11 SI, ~ ') <<: E ~ in
E1the first order in the spin-orbital interactiôn ~. . 

Thus, in our model at 1.4 j ~ 2.• the toroid moment of a r erromag­
netic semiconductor without the inversion centre dirrers from zero. 
However, the ao9yrnmetry property of o9pectrum (25) with reo9tpect to 

the time, inversion ( iZ·~ - iZ) is conserved e.Lao at 1 = l:t . 
1 

Note that in the model cono9idered another,physical quantity 
analogous in syrnmetry to lIL ~s'different from zero: the o9pin (or 
lIinducted 11 by the terminology of r ef , /2/) toroid moment ~ charac­

teristing the rediatribution of the spin density of itinerant elect­
rona undor ferromagnetic ordering of local apins. The calculation of 
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Tg performed on the basis of the expression for magnetization- ,m= 7o-t T,sI of i tinerant e Lec t r-ons gives: 

~'=~2 iJx<S>}6N?(J~-J~)' (28) 

~ 
However, we should like to note that alI speci!ic features of TCS 
rnaking it into a special type of an orbital rnagnetic ordering are as­
sociated just wi th TL • In particular, as is seen from (25), a t 

?: = O when TL = O but Tg :f= O the electron spectrum becomes "non­
skew". 

B. ANTIFEHHOMAGNETIC SEMICONDUCTOH 

Now we consider the model Hamiltonian analogous to (21) but with
 

an~her term of :'l - d exchange interaction and at E == o, 'J = J:J- =o,
 
'(JA, 2. = o:
 

I
 
(


He x ::: 1O ~12)(S:-Ss)? (29)( 
1 2 O ) 

A /\ 
---. ­

where Sa. and S'B are the local sp í ns a t the si tes of the sublat­
tices Q and B that are symmetricnlly placed with respect to the
 

inversion centre, 130 that 011~ii')I..1.>=-(~IJ1zLi')t2)=1udueto a
 
different parity of representations ~11 Z21 at extremum. AssumeI 

that' 11l'erromagnetic order is established in the system and <S!~)= 
::--<Se>· The electronic spectrum of an untifel'TOmagnetic semicon­

duc t q.r is of the form 'X' 
E~' (lê) 'O:! [E!CiZ) TCCi1 x e)z + ~;J)\ l1j kl~ &â)n ,\30) 

-;j -? i 
L z: Sa - t (the axis Z is d.i.r e c t ed along r )and 

is degenerated with respect to ap í n projections b'z j it has the 

property E (e) i- E(- iZ). Calculating the toroid moments TL and 
TS in the aarne manner as in the pervious section A, we get 

TL = C:~")}8 Ai (>-'Xr) f ~J C-; ), 
- - (-., -- 1j (311) ~ (J 1)Ts = }. a N \.. 19- )c L) ~ H ~ ~E3 . 

11: 
..-'.> ry ­

It is seen t hat at Ã = o OI' L = o simul taneously T = o arid the 
ap ecfrum as asymmetry Ebi!i (tZ) disappears. It is obvious

L 
that for 

~, ± 
~ = O antiferromagn,ets w.í t h an odd magnetic structure with respect 
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to inversion, the par1ty p ropo r t Lu» nt tho oloot.ronio apectrum E (lZ) 
are unambiguously aono cãu t ed wLLh 1,110 prenenoc or ab senc a of the to­

roid moment ::r 

7. CONOLUSION 

'rho ubo vn Lrnu.1. emnu L or pncudcpr opor TOS in ferro and antií'er­
romagnot allowu U(J Lo rnltl~tl ~ho !allowing ooncauntons r 

1. 'rherc oxioto a llJ.rgo aluuo or ocJnoroto compoundu of different 
types of s~etrieo (muinly low nnd mic1tllo) in whioh tho toroid or­

dering is induced by tho opin JM or AFM ordorlng doponding on a type 

of the magnetic structure. 

2. Even under favourable cryotnllino o~nmotry oooontial limita­
tions of the appearance of TaS are imposod by ~ho typo of magnetio 

atoms, orientation of their magnetic momento and lool1.tioH in an ele, ­

mentary oell. 

3. In this papel' we have t~oroughly studied only the simplest 
types of invariants mixing the spin FM OI' AFM and orbital TaS struc­
turee. 'rhe inclusion of higher arder invariants in L und r1 as 

well as of the contributions associated with striction interactions 
may lead to a larger number of crystals admittin~ TCS. In this case 

the eyetem, in which TCS appeared, will obviously belong to one oí' 

31 claao9s magnetic according to Table 1. 

4. We have considered the collinear AFM structures and homogene­
ous TOS gon;rated by them. Trarsition to more complex (noncollinear, 

long-poriod, etc.) structures may'cause more complex types oí' TCS. 
For inotanoe, in rare-earth orthoferrites, where cells contain two 

kindo of ntagnotic ions (4 -f and 3 d metaIs), there may appear a non­
collinoar AFM structure in the rare-earth-sublattice as a result oí' 
compotition of intra- and inter-subla~tice exchange and relativistic 
interuotiono. Sinoe th~fions occupy favourable for TCS 4c positions 

(it ohould no noted that ions of 3~metals are in unfavourable 4~posi­
tiono), thoro appears an inhomogeneous structure described by the 
highoct toroid multipoles. 

5. In tho oaoe of long-periodic FM and AFM structures the requi­

remonto 0n tho thoir parity change: ther~ appears a possibility for 
--. '~ 

genorat1nR inoonuneneurable TCS due to an invariant type T --ooi L ar 

~ 'tOt F1 ,(horo L may be even wi th respect to the .Lnver-e.í.on cent­
re). ~huc, tho alUDa of systems, where the search for TaS ia 'expedi­
ent, onlrlrgoc. 
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6. I~ this papel' we did not touch upon the AFM structures with 

multiplication of periods of an elementary ccl1. {Iowever, one can 

easily realize that the relevant TCS structures, if any, should be­

long to the type of "anti toroids" arid can be described only by using 
higher toroid multipoles. 
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!I. 
nY.~OBHK B.M., KpOTon c.C., TyrymoD B.B. E17-86-499 
~OpOHAH~e TOKOB~e CTpYKTYPW n ~DppO 

H aHTH~epPoMarHeTHKaX 

Ilpoaerren CHMM01'PHtlJ1hJll OJJMHD rboppo- H BHTHq,epPOMarHeTHKOB 
C uerrsio BbJRBJIOJmn 11 IIMX CTPYKTYP, AOnYCIUlIOUUlX TOp01:lAHOe ynopa­
gOl.leHHe OP~HTl1Jlbllbl)( '1'01(011. nOCTpOOUa T60pHlI rrCeBAocoõcTBeHHoro 
TOpOHAHOro 1'01(OD01'O CClCTOflllMn n KpKCTnnnHtleCl\HX xar-neraxax , 
npOaHtl1tH3HpOUnllhl mU<UTOphIU C1['O MKKpOCKOmitleCICHe MOAeJI1:I. Ilperr­
Clm30JlO CYIJ~Oc'rrlorH1llHt1 T'l'C n I\OnOM pnnc I(OJlICpeTHbJX neurec-ra , 

Paõuru usmonnuu« U Jla(5opnTopHH TOOpOTKllCClcoA l1JH3HI<:H ornm. 

Ilpenpaar Oõsenaacmroro HHcTHTyra lI,D,epllblX nccncmoDaJlHR.1ly6ull 1986 
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Duhovik V,M., Krotov S.S., Tugushev V.V. E17-86-499 
ToroLd Current Structures in Ferro 
and Antifcrromagnets... 

'\ 

,I 

A 9yn~ctry analysis of ferro and antiferromagnets is made 
in ordor to cstabIish in them structures admitting a toroid 
ordorinR of orbital currents. A theory of pseudoproper toroid 
cur rnnt FJ ta to (TCS) in crys talline magnet s is presented and 
Borna microRcopic models are analysed. The existence of TCS in 
a nwnhvr oC concrete materiaIs is predicted. 

Tito lnVClrltlgtltion has been performed at the Laboratory 
o~ ThC'or.utleol Physics, JINR. 
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