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1. INTRODUCTION

It is known that the magnetic structure of matter in the ther-
modynamic equilibrium state is complitely determined by the mlcrosco-
pic current density ( Z) and microscopic spin density f;( 2) at
every point. In crystalline megnets the belonging to a space group of
magnetlc symmetry is characterised by the behaviour of functions

J (%) and S (T ) relative to gpace transformations and time in-
version. However, in the macroscopic electrodynamics dealing with
quantities averaged over & "physically infinitesimal" volume there
arises the problem of adequate description of the magnetic state of a
gystem in terms of respective macroscopic characteristics. A conveni-
ent mathematical approach, for constructing such quantities is the
scheme of multipole parametrization. Choosing an appropriate complete
gset of basis functions one may obtain an inginite series of multipole
characteristics: moments and their power radii, As a rule, for the
'problems of macroscopic physicsiit is important to lkmow only some of
them.

To study the orbital magnetic ordering, it is necessary to apply
the procedure of. multipole parametrization to the function J ().
Though this problem has a very long history, it is only quite recent-
ly that a clear understanding has been achieved of the multipole ex-—
paneion of (‘L)/1 2/ Here we shall discuss only some important
points related with its formulation rather than with the solution,un—
til1 now these points were not clearly presented in the literature.
Tho main body of the paper is devoted to the problem of existence of
tho po-cnlled toroid structures in crystals with ferro- and antifer-~
romagnotic properties.

2, THE SIMPLRST DEFINITIONS OF CURRENT TOROID MOMENTS IK ELECTRODY-
.NAMICS OF CONDENSED MATTER

{ilnoo in o oteady state, the only obaect under con51deratlon,

-

the current Lo consorved, JJ”-/ (T) = 0. The vector field J (z)

contains as much as two functional-independent components (linearly
independent in a conjugate to coordinate space of wave vectors:
?ﬁ’([} Q . With thls fact in mind, one may express the transverse

field ]5( ¥) = )l_( ¥) through two scelar fields y/( %) and~]C (Z)
as follows:

1(@)= ¢t (ZY(E) + wt wt (TN () =

\Ij :Kf) E:%ﬁ‘zﬁ}( VXL-

(1

We shall call this representation by the Neumann-Debye representa-
tion 3
— —
The differential operators L_ and }< obey the following ope-
rations of multiplication:

— = - T - A — =7 —_— > ——>Z
vL=%L=9X=LK=0, TK=-¢cL. o

Making use of these "rules" we perform the project (division) of
—_7
components of the current density JJ} )

E'IL:GJ‘LZ V(7,6), 1?3 7] = - L7680 o

One can easily see that the standard expansion V/ and 7( over the
solutions of the scalar Helmholtz equation -{ (y'z' >/ (6 )
sf < Ly, p

I3, = cUE Jld My (Y, = 4, M, fl(0),,
7.3 =- il ZI dep T, (N, = CEK@ T (Y,

provides magnetic P4€m and toroid 'T}nq multipole moments easily
normelised as follows:

¢ v
Mem_ €+4 au j‘d’z't >/é —LL(? V)}] (6)
e g AT o

The 39t of moments (6) and (7) does not form a full parametriz2tion
of y &5 the system of radial harmonics if not closed in the three-
dimensional space. The full parametrization includes together with

each 1th moment, an infinite ( M = 0.1,...) series of parameters -

2n - power radii specifying redial distribution of the moment den-
sity: integrals (6,7) with changing zl_. t€+27 In a gystematic way
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one can obtain such a representation by using the expansion PZ4~/k2
‘ﬁn(tginto the power series over k2 /1/. A particular ?ole.;n (6)
and (7) is played by the lowest (dipo;EQ moments: magnetic dipole.
moment M and toroid dipole moment T

— — q
™M 13}”@&[“"h347> (8)
—— o per 3
T=5%S‘L 'lé/)‘{'l- (9)

The current transversality condition in terms. of the moments and
their radii for weight f: 1 may be written in the form of a zero de-
rivative with respect to time of the charge dipole mean-square radi-

.

us .

Go g [aEEp- T I =0, o

Considering (10) as the relation between its tqg right members we
get one more definition of the toroid moment | :

:]_?— = - -%{‘Q S\ZZ]“’ Cl:;ﬁ (11)

L

It is seen that the toroid dipole may be called a mean square radius
of "the current transverse part. From this a geometric shape of that
dipole can easily digged. In the simplest case of ax%al symmetry of
the distribution j (%) integral (11) is a characteristic of a dg—
uble cylindrical layers Provided that the current lines are closed

in & finite volume, this layer can be continuously transformed into

a torus with poloidal currents on it., These geometrical properties of
of the toroid-dipole model were predetermined by the type of symmet-

ry of the operator . When there is no transversality condition
VT ‘ i densit it is necesgsary to
(% vtj = - J , where _9 is the charge V) eges

meke use of a more general definition of the toro%? m¢_ment’ "’

= jLE(%?)—&tzyldjl (12)

. = 10¢
that reduces to (9) or (11) if (10) is teken into account,

3. PROPER AND PSEUDOPROPER TOROID MAGNETISM IN CRYSTALS

From the multipole parametrization (6,7) it follows that the
simplest ordered states of orbital magnets are the ferromagnetic (FM)
. N 5
and toroid states characterised by vectors M and T , respecti-

vely, With definite symmetry properties, these vectors may serve as
order parameters defining the genesis of a low-symmetry phase at mag-
netic second order phase transitions in crystals. The toroid ordering
will further be called "the toroid current state" (TCS)/4/; and crys-—
tals with TCS are called the "toroics".

To establish what places is occupied by the toroics in the gene-
ral classification of magnets, some definitions are to be recalled.
From & group-theoretical point of view the antiferromagnets (AFM) are
crystals of the Shubnikov white and black-white spatial symmetry
with zero mean magnetization (hereafter we imply long-periodic struc-
tures). In this sense the_ﬁgroics are antiferromagnets described by
a vector order parameter T— changing sign at the time inversion and
characterized by the limit group of magnetic symmetry 7Y™, Out
of 122 classes of magnetic symmetry, according to ref./S/, 31 admit
the existence of a vector with such transformation properties (the
same number as the vector M with the limit group = m'm’ ).
These numbers indicate that toroics should not be treated as exotic
objects.

It should be emphasized that the very introduction of the polar-
vector order parameter, that is odd with respect to the time inver-
sion, for describing the AFM structure in crystals is not something
essentially new. Indeed, consider how are things going in the spin
AFM. Since the order parameter in AFM cannot be chosen universa.].ly__>
(in contrast with FM where the choice of the magnetization vector M

with the relevant symmetry is natural), it is worth while to consi-
der two limiting cases.

In the case of AFM with localized’ spins the separation of the
subsystem into independent magnetic lattices is the most effective
approach, In this case as an order parameter the vector 2? is int-
roduced, that is a linear combination of the magnetizations of subla-
tices and as a result, has an additional symmetry associated with in-
terchange of atoms of various sublattices. The vector ZT mey in
fact have the symmetry properties that coincide in a concrete space

3y ) ==
group with the properties of the vector 7‘ (however, the vector [_
is never characterised by any limit group).



In the case of AFM with delocalised spins an approach is needed
that is not based on the concept of megnetic sublattice. It has been
proposed in/6'7/ and further developed in/a/. The generic idea of
these papers consists in the classification of magnets into groups of
exchange symmetry (space crystalline group Supplemented by three-di-
mensional rotations and reflections in the spin space). The order pa-

/6-8/

spin density function E?K?U over irreducible 'representations of the
crystal symmetry space group. Among the quantities thus constructed
there may appear those transforming over the vector irreducible rep-

rameters in are introduced as expansion coefficients of the

resentation isomorphic T under space transformations though not
coinciding with T under spin rotations,

Thus, the definition of toroics as & separate class of magnets
is due not to the new properties of space symmetry of the vector
but to the orbital nature of its formation and specific properties
of TCS (optical/gl, magneto—optical/10/, magneto-electric n and
other anomalies)., In this connection i1t is indispensable to study in
detail concrete magnetic structures permitting TCS and t6 point out
possible objects of ‘experimental investigation. Such a statement of

the problem determined the.aim of the present paper.

In accordance with the gqufal theory of second order phase
transitions the toroid moment 'T_ may arise independently as a re-
sult of a spontaneous symmetry breaking (proper TCS), The microsco-
pic model of such a transition has been proposed in Ref./12/. How-
ever, the conditions for an proper TCS to arise in o;bital AFM are .-
rigorous enough and may probably be realizes rarely, which complica-
tes their experimental detection. According to/13/ a proper TCS may
be realized in the nickel-iodine boracite., At the same time, it is
reasonable to consider situations in which TCS appears as & result of
another type of ordering, From this point of view it is most tempt-
ing to study a pseudoproper TCS in the spin FM and AFM due to inva—
riants of the type TL and TM (or of a higher order in L and M )
inthe thermodynamic potential., Note that for pseudoproper transitions
(in the given case for TCS).an additional lowering of symmetry does
not occur (in the given case of the FM or AFM st;ucture). It is clear
that a pseudoproper TCS should inevitably arise from relativistic
corrections to interactions in crystals with the usual spin mecha-
nism of M or_# AFM 1if only the system symmetry admits the coexistence
of T with T or M , respectively.

-6

Classlflcatlon of possible types of coexistence of the vectors
FT and 7- can be made on the basis of the results of/S/
shown in table 1. It is to be noted that 18 magnetic classes admit
coexistence of L. and 7_ but 4o not admit a weak FM; 13 clagsses ad-
mit coexistence of P1 and 7_ , and 7 classes admit under certain
orientations of L_ TCS and (or) a weak FM. In this case & simulta-

neous appearance of both weak FM and TCS does not change the magne-
tic system symmetry.

Table 1. Toroid magnetic classes.

Tyre of oxdering
magnetic electrid

L P

Magnetid cladses

mm2, 4mm) 3m, 6 mm

4 §om 5 6m2, 1,
Z/m’J 22‘"} mmm’; 4/’”/,
Ymmm, 3 3m, &/me, 4
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M P 3,4,6

)
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L, M

2" m’ mm'2’
weak FM P f,2,m,2,m, mm
LrM - / _?

weak FM P 222




4, CONDITIONS FOR TCS IN THE SPIN FM AND AFM

In this paragraph we shall apply the method allowing us to for-
mulate conditions for arising a pseudoproper TCS in the gpin magnets.
We mean the conditions imposed by the presence of a symmetry elemehts
in the crystalline space group of a magnetic, by the position of mag-
netic atoms in a lattice and flnally, by the nature of the magnetic
spin ordering (orientation of the vectors [_ and P4 with respect
to crystallographic directions). For all space crystalline groups we
shall compile & table allowing classification of pseudoproper toroid
magnets according to the type of invariants responsible for the ap-
pearance of TCS. Following the theory of weak ferromaghetism formu-
lated by Dzyaloshlnsky/14/, one should analyse a possible ¢ exlstence
of the relevant 1nvar1ant combinations of the vectors ( 7_ and [_ )
and ( T end Pd ). In its main features the approach used is ana~-
logous to that used by Turov/15/for classification of weak ferromag-

nets,

t should be noted that the AFM structure is called even with
respect to & given gymmetry elements if the relevant transformation
interchanges magnetic moments within one and the same magnetic sub-
lattice; in the case when magnetic moments of various magnetic sub-
lattices are interchanged, the structure is called odd. Taking into
account the symmetry properties of the vector :F , one may conclu-
dé that the toroid ordering is possible 6nly in the AFM structures
even with respect to all the translations and odd with respect to
the® symmetry centre if the one exists in the system (further, in des-
cribing concrete structures, the parity will be denoted by signs (+),
namely 6’ (+), 1(+ ZU) etc.).

Thus, for the AFM structures admitting TCS

a) the magnetic and chemical elementary cells should coincide;

b) the directions of magnetic moments in all the sites -corres-
ponding to the same Bravais lattice should coincide as well;

¢) the directions of magnetic moments in the sites transforming
into each other under space inversion should be strictly opposite.

For the FM structures admitting TCS, the points a) and b) are
fulfilled automatically. However, the vgg}or Fx»is even with reg-
pect t6~space inversion and the vector | is odd, the point c¢)
shqpld be formulated differently; )

d) the space group of the crystal symmetry should not have in-
version. Though the very division of the FM structures into even or

Table 2.

Invariants due to crystal symmetry elements,
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odd ones_ is senseless, it is convenient for our purposes to use the
fact that the symmetry properties of the AFM structure even with res-
pect to some elements formally coincide with the relevant properties
of the FM structure. Therefore, the table constructed below for 1n-
variant combinations of the vectors T_ and L_ by changing L_‘* b7
for even égM strugﬁyres provides all invariant combinations of the
vectors | and M in FM,

Let us make the table of invariant combinations of the vectors
L_ and T— under proper and improper rotations specific of the
2). With the knowledge of the concrete
crystallographic structure of & maghet, one can find the AFM_SEEPC~
tures qggitting TCS as well as the direction of the vectors | at
which _T_ # 0. In the general case one should use table 2 for the re-
levant group -generators thus defining an invariant in the thermodyna-
mit potenfial responsible for the appearance of TCS. Note that if
magnetic atoms lie on & simple (not spiral) rotational symmetry exis
or on a simple (not sliding) symmetry plane, the AFM structure is

crystalline lattices (table

always even with respect to these elements.

Now we pass to the discussion of sufficient conditions for TCS
in each system (see table 3), It is assumed further that the strdc—
ture is even with respect to pure translations. Let us consider in
more detail the AFM structures.

TRICLINIC SYSTEM (1)

If the positions of magnetic sites are single, there cannot be
AFM ordering without increasing dimensions of the cell and TCS is al-
so impossible. If the positions of magnetic sites are double and re-
lated by the symmetry centre, the TCS is possible ( N2 by the Fedo-
rov clagsification),

MONOCLINIC SYSTEM (2, m ; 2/m )

a) There is no symmetry centre (2,Yn) 3 there is only one inde-
pendent symmetry element: plane or second order axis with respect to
which the AFM structure should be odd (NN 3-9). The magnetic sites

in this case are necessarily in the general position;

b) There is symmetry centre (2/m ), and since the AFM structure
should necessarily be odd with respect to it, with respect to axis 2
thg gtructure may be even and odd (NN 10-15). In this case the mag-
netic sites may be both in general and special crystallographic po-

10
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3+ (Classification of toroid antiferromagnets.
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Table 3. (Continue - 3).
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sitions not coinciding with the inversion centre (as is known, gene-
ral positions cover not only those lattice points which neither sym-
metry element passes through but also those placed on spiral axes
and sliding reflection plenes,

ORTHORHOMBIC SYSTEM (222, mm2, mmm)

a) There is not symmetry centre (222, Mm2): in these groups
two independent symmetry elements are either two axes 2(perpendicular
to each other) or two planes YN perpendicular to each other, In’
the case of two axes 2 generating the third one perpendicular to them
thesstructure should be even with respect to one axis and odd with

14
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?

respect to the others (NN 16-24). In the case of two planes the AFM
structure should be odd with respect to axis 2 and even with respect
to planes mMm or even with respect to 2 and one of the planes M
but odd with respect to the other (NN 25-26), Both in the first and
second cases magnetic sites may occupy either general or special po-
sitioné.in the lattice. Thus, if magnetic sites are placed on the ro-
tational axis 2 or on the mirror plane M , TCS is admitted by only
one AFM structure for which two other symmetry elements transform
the sites with antiparallel magnetic moments into each other. If the
magnetic sites are at intersection of rotational axes or mirror pla-
nes, the AFM structure does not exist and TCS is impossible;

b) There is a symmetry centre (MMM ): for general positions
the structures are possible as in the case a) - odd with respect to
one axis 2 and even with respect to the others; moreover, the AFM
structure is possible that is even with respect to all the axes 2
but necessarily odd with respect to the inversion centre (NN 47-74).
For special positions when the sites are placed on the rotational
axis or mirror plane only two types of the AFM structure are admis-
sible (even or odd with respect to the other two axes or planes).
If the magnetic sjtes are placed at- intersection points of two mir-
ror axes or at the line of intersection of two mirror planes, the
AFM structure should be even with respect to all rotational elements.

For crystals of higher symmetry (tetragonal, trigonal, hexago-
nal and cubic systems) the treatment is more tedious though can be
performed by analogy with the previous one. The corresponding results
are ligsted in table 3 in which the first column contains the numbers
of gpace groups, the second one contains possible types of the AFM
structure generating TCS and the third one contains concrete types
of invariants. The absence in the table of the number of spme group

means that TCS is impossible in it (at least due to linear and cu-
bic with respect to [_ inveriants)., Formally, it is admissible that

T can be generated by any higher with respect to [ invariants;
however, such systems are not considered in this paper. Therefore,
hereafter the possibility (or impossibility) of TCS should be treated
as the presence (absence) of linear or cubic with respect to [ ine:
variants in Table 3.

For the FM structures the invariant combinations of the vectors
T end M are constructed by analogy with AFM taking into account
the remarks made above. The results are listed in Table 4,

15



Table 4, .Classification of toroid ferromagnets.
v
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Table 4. (Continue - 4).
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5. CONCRETE EXAMPLES OF MAGNETS WITH TCS
A. ANTIFERROMAGNETS

Before applying the approéch developed in the previous paragraph

for the analysis of concrete AFM combinations, we should like to
make the following remark. The consideration of a pseudoproper TCS

regardless of a concrete AFM structure generating it may turn out to

be aimless, and that is the reason why.

In listing in the corresponding column of Table 3 the types of

the AFM structure generating TCS for each crystalline system, we im-
plicitly assume that the magnetic atoms occupy general places in the
lattice. The consideration of real magnets L indicates that in most
cases the magnetic atoms are on some symmetry elements (rotational

axes or symmetry plares), i.,e. occupy special positions. Transition
from the general type to the special one may lead to violation of
sufficient conditions for the existence of TCS.

We start consideration with the space group D;6(Pn,na), that for

methodical purposes will be made thoroughly.

Z)

1$}acipg the magnetic atom into the general position 8d(x, 5,

and using the available 8 symmetry elements (in notation of
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point groups: the elements E, 2x , 2\3 , 22,1 , 6’1 , 6'3 s 62 ),
we get 8 atoms. inside the elementary cell with coordinates

f o), LG5, 3(5502), LIGZ“I:E):%*Z), (13)
5(®,5,2), 6(4xiy3), A=489,8(1r 0y 4-2).

Let us denote the relevant spin local moments by ‘Si( 1 = Tyeees 8)e
Due to the presence of the .inversion transformation connecting the
pairs of sites 1 «» 5,2<>6, 37 and 4«8 and to the condition of
0dd AFM structure with respect to the inversion centre, it follows
that S‘:-SS,Sl:gé,%:-g? and ng: S’g . Taking into account
atom interchanging, realized by the rest symmetry elements, we get 4
types of collnear antiferromagnetic structures admitting TCS:

SNEAERE? (1€ 2% 287),
S4H gz, ” S(,Hgy (T(—) 2(-;) O‘Z}C_)) ’ (14)
I SIS IS (19 29 29,
9,1l SIS S, (19 25 29).

There are also three types of special positions of magnetic
atoms each having multiplicity 4. The first two types (4a, 4b)/17/
coincide with the position of the symmetry centre: respectively,with
the coordinates (0,0,0) for position 4a and (0,0,1/2) for 4b. The
third position 4c with coordinates ( I, 1/4, Z) is in the plane

Qf . When passing from the general 8d position to special 4a
and 4b, the AFM structure generating TCS disappears. Such a situa-
tion occurs, for instance, in yttrium orthoferrites with the struc-
ture Y Me Oz( Me is the 3d metal) where the magnetic atoms Me
occupy 4b positionses

When pagsing from 8d to 4c the points connected by the planc
6 coincide, i.e. 1«7, 248 3«5 and 4«6 so that instead of
eight sites in the elementary lattice we have four: 1 (instead of 1,7),
II (instead of (3.5), 1II (instead of 2,8) and 1V (instead of 4,6).
In particular, this is valid for the compound oL—FeOOH in which ions
of Fe occupy 4c positions, The AFM structure ge;lerated is of the

(S8 =- (Sl S5) (1929 99)

and admits TCS with the invariant L}j—rZ (sce Table 3). 1t is inte~
resting to note that three compounds in this group L1 COPO4 L'(anﬁ
and LLNiPOq , in which the corresponding magnctic atoms ’CO , Mj,
and 'Nt' also occupy 4c positions, are characterised by the struc-

18
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ture O 22’2&:” . In this caese the vectors of antiferromagn‘etlism
in them are directed along the axis of ld (Co) , X.(Mn) and %(M )and
the relevent invariasnts are different. A similer gituation occurs in
CO.’L iOII and KFQ ng where the magnetic ions of Co or Fe =also
oécupy 4c positions; however, the AFM structure is even with respect
to the inversion center and TCS is impossible.

Now we undertake a systematic consideration of magnets belong-
ing to all the systems starting from the monoclinic one (we are not
aware of any reael antiferromegnetic belonging to the triclinic sys-
tem though for the space group No. 2 the existence of TCS is not for-
bidden by the symmetry conditions).

The group Cih ( p‘21 /m ): such a type is represented by the
compound E¢ OOH where ions of FEt , the magnetic moments of which
are directed along the axis , occupy special two-dimensional 2
positions. According to the general classification of AFM, the struc-
ture is of the iype

TG o)
g (s8)=9,(8) (T74,) e
and edmit , according to Table 3, TCS corresponding to invariants
Ly—rx and LyTz . In the isomorphic compound :DQOOH the
magnetic ions of "Dy occupy 2e positions as well but are placed
in the plane X , the invariants having the form [_17; and ['Zy’

In the orthorhombic system apart from the group :Dg’h conside-
red above we are interested in —DH ( anu )=compound CzVOQ
and bfz“h‘(_cvm“\) -compound ¥-Fe Q0O H, For (% V0, magneto-active
ions of (n eand occupy special positions 4c. The spin AFM struc-
ture is of the type i(—) OZZ—)QEE) the moments having only a com-

( L, ) with
d

(3,018,) = - (&11S,) an

and TCS is characterised by the invariant LyT'L‘ .

For X“FQOOH ions of Fe occupy 4c positions. The AFM siruc-
ture is of the type 4O’ 1(2—)2(;) ((5‘4”33):-(32“5)) and TCS is specified
by the invariant L:cTz (since spins are directed along the axis ).
Note that in the compound from the same group :D?g‘ - G)LV Ol[: ions
of QR oceupy 4e positions, the AFM structure being even with respect
to the inversion centre and TCS is impossible.

ponent along the exis

Consider now the tetragonal system.

The group :Dz{h (Pl(.z/m" m) is represented by di.?WOé, Ions of
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OIL occupy 4e positions, the magnetic moments lie in the basis

plane XYy , the structure is
(4960 (o

(3,118,)=-(%:118,)

and TCS is characterised by the invariant LIH‘ Lj G .

10 =
The group 043—(14/""(: m) is represented by KC)z tq. Ions of
occupy 4e positions, the magnetic moments lie in the plane):z
the structure is of the type

CSi18)=-(s.18,) (4;’@“) (19)

and TCS is specified by an invariant of the type Llﬂ;'LL37§ . In the
compound Fe,l‘]"'e_o3 _‘from the same group of symmetry, the AFM struc-
ture is of the type iL_)L{(Zi)ﬂQg) TCS is impossible in this case
since the magnetic moments of [e ions are directed along the axis

Z and necessary invarients are absent. For the same reason TCS is

¢, (group 'Dﬁ; (I 4, Mm ) though the

absent in the compound A
AFM structure is of the type 1bq4(f)269
z

6 —

In the hexagonal system we shall consider the group:I)3d(hf3C)
represented by VlO3 . Ions of V' occupy 4c positions (on the
third order axis). The magnetic moments in this compound cannot be
thought well localized; however, it follows from the neutron-diffrac-
tion measurements 1 that maximum of the spin density is placed at
the sites V and the spin vectors at the sites are oriented along
the third order axis. The vector of antiferromesgnetism for the struc-
ture V103 corresponds to the type/18/

L=9-8-0+d (193999) o

The only invariant admitting TCS has the form ( LZ.T; ), i.e. for
Vi[js the symmetry of the vectors L and —r coincides (this is
golely due to the character of the spin density distribution).

Of particular interest are crystals of the cubic system. In a va-
riety of cubic AFM we could not find any for which sufficient condi-
tions for the existence of TCS could be fulfilled. At the same time,
as it follows from table 3, the appearance of TCS in the cubic AFM
are not in principle prohibited.

B. FERROMAGNETS
“
Since there are no real FM belonging to triclinic and monoclinic

systems/16/, we immediately pass to the orthorhombic system,

0
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- dicated in ref. e If

Tho group Cj:ﬁ_(;[vnW|2) is repregented by the ferromagnet
Na Ni Fe F-_;( . The vector ™M is derected along the axis X
therefore, the corresponding invariant has the form fﬂa:~7y,

10
The tetragonal system: the group Clﬂx( T4 Cwm ), the fer-
romagnet C’ZiF}1h4oC%. The direction of the wvector FT is not in-
3 .
/18/ M 1lies on the principal axis, the linear
with respect to T invariants are absent.
b (TFad
ad (T 4«9. ), the fer-

The hexagonal system: the group
lies in the basis plane and

fimagnet Q\LC’)’LOQ . The vector M
an invariant generating TCS has the form P4I:T;L— h4y'r% . One
more representative in this system is the ferromagnetic F1nh/é;5%

group .Deé (B Gy L ) end the inveriant My Ty + METH .
The cubic system: group 1—4( P 2, 3), is represented by MnS

the megnetic structure of which admits only the invariant T M (M
ig directed along one of the coordinate axes). The data of neutron
difraction indicate a weak helicity of FM structure (the helicity
period is N1200A), that is due to the relativistic interactions.
Probably, this is an indirect indication of TCS since the presence
of the invariants ﬁ%FI and ﬁ{rot M indicates a weak inhomoge-

neity of the FM structure.

The second representative of this system is the ferromagnet N
Li. Fo.. Al.0, eroup 07 (P4, 32), invarient TpMx(Myt
05 'Cg stV g ) . =
2 ! 2 Mz ) The exact data on the direction of
wMe )+ TyMy( Mzt Mg aare
are not available. The third representative is the ferromagneti;
. -, . . 2
NiMn S8 , &roup '[_dz ( F 23 m ), invariant T’I‘_M‘!‘.(Mg _M2)+
2 2\ end the vector pj has the gene-
£ TyMy ( M3-ME) +ToMy (Mi-1Y) M

" b’
ral direction.

6. SOME MICROSCOPIC MODELS OF PSEUDOPROPER TCS3

The microscopic- model of proper "TCS in the systems with electron
hole pairing has thoroughly been investigated in ref. . Under cer-
tein requirements on the symmetry of electron wave function, the or-
bital toroid ordering mey appear already in the exchange approxima-
tion, i.e. the relativigtic smallness is absent. For & pseudoproper

7eS, one should take into consideration the spin-orbital interaction.

Iet us consider two simplest models of a ‘pseudoproper TCS in
ferro and antiferromegnets, respectively, allowing one to trace the
origin of .this unusual orbital ordering. .
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A. FERROMAGNETIC SEMICONDUCGTOR

Assume that the crystalline potential V ("?) of the system can
be expressed through the sum V(:Z) = V,S(-i,)f VQ(Z) where V:S is the
even and VQ is the odd potentiael parts with respect to spatial in-
veérsion; for simplicity we shall assume Va,<< V5 « In what follows
we shall consider va_ as perturbation. Let at \/QEO the wave func-
tions of extrem of the conduction and valence bands transform accord-
ing to even and odd one-dimensional representations of the potential

V‘S at the point K,A of the Brillouin zone. Then, in the two-band

w P model, that is the aim of our congideration, the model Hamil-

tonian of a ferromagnetic semiconductor is
A

H: l:IO“- l:\{(i)("' Hio;

(21)
A si(‘fz‘) 1% vy
Ho = (—H?féw EI(TAZ) ) (22)
‘%4 0 ) AL
0 }1 (SGJ)) (23)

e (
lw= (F

e => 2, .i:,
\01"(; %xi e
Xx&  ¥,x6 (24)

In the exchange part of the Hamiltonian (21) only the intraband
terms Hex of the interaction of iti_n,erant electrons and local
spins are retained for simplicity; 4 1 is the interband velocity
matrix element, z:(d l V&I2> is the matrix element of the potential

at the extremum point, x=,4 4 VV 2> and W =4 G4,2IPv It
arya‘;he inter- and intraband mi\itﬁi;:ﬂege’mendtis >c>f the Jbzig:f)‘:rgzi;il gl-&
‘teraction. For simplicity we shall neglect in further calculations
the contribution 4,0 in view of the assumed smallness of Vd‘%
though at Vn_'\—\/5 it should in fa(it be {etained. Then, assume for
simplicity I () :-QL(_\Z).—_Es/lf k/lmff‘(l)where M™ is the effective
mass of carriers, FE, is the width of the semiconductor band gap,
and I }th'kagso t%xat we can restrict our consideration to the
meanr field approximation with respect to the /S-d exchange inte=
raction,

The electron spectrum in the model (21) in the above assumptions
i easily calculated and is of a "gkew" nature

£ (0) = - bl e, £ [0 - Fohipe o
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(25)

. zation < a >

+(1= (B ©),8, )V + 1274 (xE)E ]2

—
Hero tho axis @ 1s directed along L ¢ > .

L]

Let us consider this expression in more detail., At =_9, i.e.
in the ferromagnet with the inversion center, _\ive hag}e E‘(K): Eéc—-\(t)
but ES(K)EE™S(¥) . 12 Y # 0 then E¢(W)* ES(-W)end the spec-
trum is "skew" (it is natural that EG‘(\Z)# E’G(—\C)). The symmetry
loss E-»- \Z of the electronic spectrum of magnet without the
inversion centre is not unexpected by itself; the thoroics posses

1
just this asymmetry 3/

We now calculate the orbital toroid moment of a ferromagnet
with the Hamiltonian (21). For this purpose we proceed as follows.

By introducing the “orbital current operator
A

A
_j' - Q _%_ﬂ 5 (26)
L Eh4
)
where E is the quasimomentum operator, we calculate the Fourier
component_‘<é1(>= 21 for small short-wave fluctuathzions of magniti-
(@'_»O) . Then, ui%ng the kn0wn‘4relatlon of the orbi-

tal ¢éurrent and toroid moment éL:Quf‘wi—T , as a rezult of cum-
bersome calculations we get

— — T N
— m _ N '
T = W*)(B<S>XA (}4 I}z)? 40532’ (27)
.4
- ()R ES"
Q it y
All the calculations have been performed at the temperature

— ~»
®<<E and under the assumption {H}-K_]zlj‘Sl, 2‘5<<E3 in
the first® order in the spin-orbital interaction A -

Thus, in our model at B # l‘the toroid moment of' a ferromag-
netic semiconductor without the inversion centre dirrers from zero.
However, the asymmetry property of spectrum (25) with restpect to
the time inversion ( E-»-E) is conserved also at 24 = Z’*-

Note +that in the model considered another physical quantity
analogous in symmetry to TL is different from zero: the spin (or
"inducted" by the terminology of ref./z/) toroid moment —]:, charac-
teristing the redistribution of the spin density of itinerant elect-
rons under ferromagnetic ordering of local spins. The calculation of
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TS performec on the basis of the expression for magnetization
m = ot TS' of itinerant electrons gives:

T = ;‘;2 TS usN 7 (9,-1,). (20)

However, we should llkﬁ, to note that all specific features of TCS
making it into a special type of an orbital magnetic ordering are as-
uoc1ated just W1th T\_ « In particular, as is seen from (25), at

9\ = 0 when TL = 0 but T ¥ 0 the electron spectrum becomes "non-
skew",

B, ANTTIFERROMAGNETIC SEMICONDUCTOR

Now we consider the model Hamiltonian analogous to (21) but with
another term of 4 - ¢ exchange interaction and at Z = 0, 3=<¥l=0,
y

Php = O A A\ A
H;x= ‘(,O} ?:jz (S‘Q‘ 3062) (29)

= 2,
where Sa and S’g are the local spins at the sites of the sublat-
tices Q. and 8 that are SJmmetrlcally placed with respect to the

inversion centre, so that é' )Z‘ (‘z)l,l> <4IZ4Z(7’)12> due to a

different parity of representatlons L], L2 at extremum. Assume
that a—ferromagnetlc order is established in the system and <ga>

-—-<g8> The electronic spectrum of an antiferromagnetic semicon-~
ductqr is of the form

Egi(m) [EZ(\() (A0 QML)MM]F(MM]

E[ (the axis 2 is directed along L Yand
is degenerated with respect to spin projections 5/2 ; 1t has the
property E(\Z)# E(—l—(’). Calculating the toroid moments ?L and

g in the same manner as in the pervious section A, we get
= m

T = Tﬁ*)ﬂ (3x ‘——,)?42 ( &)
. 3
Tg—}{BN(vxL)gu(&Eé

It is seen that at & = 0 or [ = O simultaneously T = 0 and the

specfrum as asymmetry EGI? (1() disappears. It is obv1ous that for
)\ =0 am::uerromagnetg with an odd magnetic structure with respect

(30)

(31)
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to inversion, the parity proporiles of tho olootronic spectrum E (iC)
are unambiguously agoocintod wlih {ho prononve or absence of the to-

roid moment .

7. CONCLUSION

Tho abovo bLernutemant of prnoudopropor TC8 4n ferro and antifer-
romagnot allows ug Lo mnko the Lollowing conolunions:

1. Thero oxioto a lurgo oluws of sunoroto compounds of different
types of syﬁmetrieu (muinly low und middle) in which the toroid or-
dering is induced by tho opin FM or AI'M ordoring doponding on a type
of the magnetic structure.

2. Even under favourable cryntallino oymmotry opsoontial limita-
tions of the appearance of TCS are imposod by tho typo of magnetic
atoms, orientation of their magnetic moments and looution in an ele-
mentary cell.

3. In this paper we have thoroughly gstudied only the simpl;ast
types of invariants mixing the spin FM or ATFM and orbital TCS gtruc-
tures. The inclusion of higher order invariants in | and M as
well as of the contributions associated with striction interactions '
maey lead to a larger number of crystals admitting TCS. In this case
the system, in which TCS appeared, will obviously belong to one of
31 classes magnetic according to Table 1.

4. We have considered the collinear AFM structures and homogene-
ous TCS gonérated by them. Transition to more complex (noncollinear,
long-poriod, etc.) structures may cause more complex types of TCS.
For inntance, in rare-earth orthoferrites, where cells contain two
kinds of magnetic ions (4§ and 3 d metals), there may appear a non-
collinoar ATM structure in the rare-earth-sublattice as a result of
compotition of intra- and inter-sublattice exchange and relativistic
intercotions, Since theflons occupy favourable for TCS 4c¢ positions
(it should bo noted that ions of 3Ametals are in unfavourable 4-posi-
tiono), thoro appears an inhomogeneous structure described by the
highoot toroid multipoles,

5. In tho ocape of long-periodic FM and AFM structures the requi-
remontd on tho thoir parity change: thers appears a possibility for
genoroating inoommensurable TCS due to an invariant type T‘zo*bl_ or

"I"wtm .(horo [,_ may be even with respect to the .inversion cent-
re). Thun, tho oluns of systems, where the search for TCS is ‘expedi-~
ent, onlnrgon.
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6. In this paper we did not touch upon the AFM structures with
multiplication of periods of an elementary cell, However, one can
easily realize that the relevant TCS structures, if any, should be-
long to the type of "antitoroids"™ and can be described only by using
higher toroid multipoles.,
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Topouguele TOkoBuE CTPYKTYpu n doppo
H aHTHDeppOMATrHETUKAX

NpoBegexn cuMMOTpUilunfl mianvus $oppo- H aHTHPEeppOMATHETHKOB
C [eJIbl0 BHRIABJICGHHA 11 1IHX CTPYXTYD, AONYCKAWUHX TOpPOHAOHOE YIIOPS—
OoueHHe opOuTANLINX ToKon, JloCTpoOHMA TEOPHA NCeBIOCOGCTBEHHOIO
TOPOUIHOro TOXODOI'O COCTOANMA N KPUCTAIUINUHECKHMX MArHeTHKAaX,
MPOAHANIMIKPOUNIIH HOKOTOPHO O'0 MYKpOCKONMUUEcKkHe Moperm. llpen~
cxasano cymocernosaure TTC p 1onoM paAne KOUKPETHWX BEmECTB.

PaGora vuuonnaua n JlaBoparopun Toopatuuccxoit dmsmxu OHAH.

[Tpenpunr O6beAHHEHHOro MHCTHTYTa AnepibiXx nccnemopanuft. dy6ua 1986

Dubovik V.M., Krotov S.S., Tugushev V.V, E17-86-499
Torold Current Structures in Ferro

and Antiferromagnets

A symmetry analysis of ferro and antiferromagnets is made
in ordor to cstablish in them structures admitting a toroid
ordaring of orbital currents. A theory of pseudoproper toroid
curront atata (TCS) in crystalline magnets is presented and
some microacopic models are analysed. The existence of TCS in
a numbor of concrete materials is predicted.
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