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Intensive theoretical and experimental investigations in condensed 

matter physics of recent years stimulated the revival of attention to 

various polaron models described by the well-known Frohlich Hamiltónian 

~1. +	 iK.:t... -ritil + )H=..1.... + .L W K o.~ o.i( ... _L L (A~ e o.~ + All e a. ~ .2.r K .JV ~	 (1) 

The utmost physic~l interest is roused in optical and acoustical po­

larons, and not only in the bulk, 3-dimensional ones, but alsp in the 

surface- polarons in two spatial dimensions/ 1/. In this paper we shall 

confine ourselves to optical polarons when the phonon frequency does 

not depend on its momentum: UJ~~úJ. We shall not fix the number N of 

spatial dimensions. Such a multidimensional polaron has recently been 

investigated by Devreese, Peeters and Wu/ 2/. Here we accept their para­

metrization 

N-~t2.. N-i J!/e.
._i_ ~ =. d... 2. 1\ -r r ( N~! ) •A;, =. - K""-! [	 ( 2) 

In the representation with the total momentum of the system being a c­

number, Hamiltonian (1) can he written as follows 

!(J{ '* +)
\-\ =. (W - L.~ G\"!. o.~)2- + L o.~ ~~ + q.2. L(A~a.~+A~ C\"K j 

\ .,. K .... 

'" W ~	 (3)\é: 

~ ~/ 
\IV = P ~2.rw' 

Note	 that the ene r gy and rn as s in Eqs . (2), (3) are expressed in units 
~ , ofWand r, respectively. 

The-goal of this paper is to construct the perturbation theory for 

such characteristics of the N-dimensional polaron as the ground state 
... energy, effective mass and average number of phonons. Results for the 
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bulk and surface polarons will be obtained as particular cases. Besides, 

we discuss here the properties of the l/N-expansion which can provide 

us with a completely new approach to the polaron problem both in the 

weak-coupling and in the strong-coupling regimes. 

In the paper/ 3/ a special diagrammatic technique has been developed 

which may easily be generalized to a multidimensional case. The Feyn­

man rules are as follows: 

L ./ = [o( r ( "'~.i )/2. 7t ~ ] i/2.~ 
~= \<. r{~L 

(4) 

....,. n"i> n -l> 2. -i 
:: _ [ "'-2.W~Kl-t- (~K\) J ~ ~ -:1 • 

'-'to 

Here ~i are phonons momenta, and ~ is the number of phonons in a given 

virtual state. Let us briefly describe the main distinctions between 

our diagrams and the conventional ones. In addition to the ordinary 

stron&.ly connected diagrams we have also the disconnected ones. On the 

other hand, there are no weakly connected diagrams which can be separa­

ted into two parts by cutting an electron propagator. Furthermore, to­

gether with the electron-phonon vertices there exists another ~ype ~f 

vertices whose role is to change the powers of the corresponding elect­

ron propagators. For more details we refer to the paper/ 3/. 

The sum of alI diagrams defines the energy of a moving polaro~ 

e, (w) ::. ~o(W) + o( e:L(W)+ <:J{t.~2.(wJ"'", 

at small momentum taking the form 

~'( w) ~ E + W2./w. 
In the zeroth order in -coup l Lng constant go(w)= W'L s o that the 

required expansions for the ground state energy E and the polaron 

effective mass W\ are as follows 

E :: ol Ei. + ~ ao E.~ .... 

"' = .i ~ d.. Wli. .... olQ..Wl2, + ... (5) 

In the first order in oL, in accordance with tules (4), we obtain 

r( Ni.!) r J. '"~! ~ 
d:.g:L(W)= ~=-rJ...., ~ J K'N-:L \<:,t.._2.W~T! 

2.'"11\ 

2 

r( N-L} 2.)
~_cJ...f7t T (i.+~, 

T \"ttJ/2.) 2..1'1' 
from which there follow the first coefficients of expansions (5) 

r( ~) 
E!. ~ - ~ r{ ~) W\ s- -:. ...rrr­ (6) 

2.. \(N/2..)1tI'J 
\(""/2.) 

In the second order in ~ the polaron energy is defined by a sum of 
three diagrams. The disconnected diagram contribution can be obtained 

in the analytical form 
,( ~j ç J.NK' i ~ 

~~ =: - d.. 'l..~!.(w) 2.1'\~~ J \<:rJ-! (\<:'l._~W~.d_)a. 
(7) 

c:J..'" [~ \ ('T!) 1~ (t -+ W ~ ~ ).
~ 

2.. ~ ,(N I~) 

Unfottunately, this cannot be performed for ~he remaining two diag­

rams. However, we succeeded in representing their contributions by 

one-dimensional integraIs of elementary functions for which numerical 

calculations can be carried out by means of a simplest programmable 

calculator su~h as HP-34C: 

~ :: _ do.2. r r ( N~i) ] 2. \ d liIK ol. N ct :t ~
 
L 2..~ ~ J\( N-i Il-"'-i. (q?-lwq -ti)'l. [(~~~1!l.-2 W(q-t~)+2.]
 

~ ~J. -t- &iW'l. ,) 

(8)i 
(\ ~ \( ~) ~..l rJ-2.. ( ! ~ )~i.: -o... ~ ~ ~ X+2...~ MCU>S~


2..~ ,(1'1(2.) «-xQ. 2.-.X2.. ~2-x2. rr ~
 
o
 

N-i j, rJ e: .
 
Bi,=-,J..2. ,( T) ~~ ~[x(1-1IP<.2."9X.It)+
 

2.N ri" ,(tJ/t) J{i- )(,lL (2.- x2l 
o 

.+ ~ (1_1ix~ ... 8X""-.l{XC.) MCCO.s2S.... ] • 

~2.-'JC'" ,K .) 

~:: _ .l~ [ ,(~)]t \" clrJK' dtJ1 i
 
1.1t~ J 'C,.,-J ~"'7"J. <~2._2-W~.d.)(\(.7..-e.W:-+~)
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r: ~ r( u) t, N-:t( J'	 Y.~ 2.::: - cJ.. 2. J~ X _:L__ Me COS ~ - _i__ MC.COS X. 

~ ,(1\112.) o -n::xe.. ~~_x'a. ~ 2.JJ.-x~ , W\ =- ~7t~ + Q.S1\ _ §.. -+ L rE:r2.(~/J() - ~. ri".{ + 
2.. bit i2.8 B L2.A ~ T .f.b V2:" r 'l-(i(lt) 

i.	 (9) 
t X.N-2.,( N-~J 1 2. ,( N-~) i I __a._ + 01.. 2.. C\)(~2..= - cJ...P-..!S.- r (2_:XZ ) 2. &1'J L ~(N{e.) tJ~'("'Ie.) o ~J.-xe. 

. r ~ (i-+xll.) + ~ MCCOS2L ]

L 2.. ..J 2..- x2. -J"'[".
 

By rneans of Eqs. (7)-(9) we can calculate the coefficients f~ and »1~ 
for arbitrary N. As to the f~ , we obtained the sarne values as Devreese 

et aI. did/ 2/. They used the path-integral technique and expressed 

their final result in the forrn of double integral. Thus, we confirrn 

their nurnerical calculations in the scope of a cornpletely different 

rnethod. For this reason, here we shall only present our calculations 

for the rnultidimensional polaron rnass for the sarne values of N, for 

which the energy has been calculated in the paper/ 2/. • 

7\/2­

-4- !+b~l1.e-b~'I1:Le+Jts--.·"l3e =O)i2.? 2.31t &3S..!. )Je_e__ 
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Here ~ = 0.915 965 594 is Catalan~s constant. Note that in the recenti 
paper/ 5/ by Das Sarma and Mason, devoted to the optical polaron in"	 í 
two dirnensions, the coefficients f:~ and \\0\2., are expressed through 

triple integraIs and their numerical values are calculated with a rnuch 

lesser accuracy: E~ = -0.062 and ~~ = 0.13. More precisely the value 

for E~ has been calculatcd by Devreese et aI. in the paper/6/. 

In the paper/ 3/ the relation between the average nurnber of phonons 

J( and the polaron energy e,(w) has been derived: 

.r _ (1.- ~o(,~-~.1-) 8>(WJ.	 (10)
U'l - 2.. ';)ot a, ";)w 

With the help of Eq.(10) we can construct the perturbation series 

forJ{o In particular, for the surface polaron with srnall rnornenturn we 

have 

j[~ cJ... f + cÁ2... O).1.:l.r ~1.t~!!)..3 -+ 0(0(..3) + 

+ w2.( cÁ ~: ~ r:Á 2., o.oso 333 2.0 -+- O(o{3)) . 

Note, that in the paper/ 3/ the energy of a bulk polaron in the third 

order in powers of ~ have been obtained: E3 = -0.806.10- 3. In the 

sarne paper one can also find the first three terrns of perturbation 

series for.)(. 

Let us now revert to the case of rnultidirnensional polaion. Calcula­

tions of the polaron energy and effective' rnass dernonstrate that the 

polaron effects weaken with the increase of the nurnber of dimensions. 

Equations (6)-(9) give us an opportunity to ob~ain the asyrnptotic be­

haviour of the expansion coeJficients at large N: 

Ei.~-~lN E2.~ - L(1r -.!:-)
) 

f\j2. 8 ~ .> 

(11 ) 

J~ W\i. ~ .i.. ~ 1\ W12...~ .i.. (57\_2.)
) . N~ J.( •:tN 2..1'1 
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Table 

Expansion Coefficients of the Exact 

Perturbation Series for the 

N-Dirnensional Polaron Effective Mass 

N rnl rn 2 

2 0.392 699 08 . 0.127 234 83 
3 0.166 666 67 0.023 627 63 
4 0.098 174 77 0.008 332 33 
5 0~066 666 67 0.003 880 44 
6 0.. 049 087 39 0.002 117 73 
7 0.038 095 24 0.001 281 48 
8 0.030 679 62 0.000 834 05 
9 0.025 396 83 0.000 573 05 

10 0.021 475 73 0.000 410 67 
20 0.007 283 41 0.0"00 047 68 
30 0.003 912 49 0.000 013 80 

As expected, for the 

bulk, 3-dirnensional polaron 

we have obtained th~ well ­

known results which can be 

expressed in an analytical 

forrn/ 4/. For. another -i n t e ­

resting case of a surface 

polaron (N=2) integraIs in 

Eqs.(8) ,(9) can be sirnpli ­

fied. We~ll take the plea­

sure to cite our results 

for the N=2 case: 

E = ~'1.-f\' _ lílf r'J.UI4) -1- 1'i'4f]f _-t__ + <\ ­
2. 8 ~2. ~ ~ Ti" ~ 2:" r2.(d./~) 

~z.. 
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It follows from Eq.(ll) that a nontrivial limit at large N can be ob­

tained through redefinition of the coupling constant, e.g., through 

scaling of the type d...~ cÁNg/R.. Such a redefini t on of the couplingí 

constant is not an innovation. For example, we used an analogous sca­

lihg while constructing the l/N-expansions for the anharmonic oscilla­

tor/ 7/, which allowed us to reproduce the results of perturbation 

theory as well as the strong coupling limito The 1/N-expansion could 

provide us with a new method of description of the polaron properties 

at alI possible values of coupling constant~ . We still have no regu­

lar procedure of 1/N-expansion, but the results just obtained can help 

us to guess its leading termo 
2/

Indeed, it has been not~ced by Devreese et al./ that in the Feyn­

man variational approximation there exist scaling laws 

E(N)<.ot.) :: tJ... E~3)(d.. ~ffi r( ~)) 
~ .3 2.1'1 ,(Nf2.)-, 

(12) 

WI t"') (cl)	 =- VVl (,3) (d.. ~nf ,l ~J) 
~ F ~N ,(N (2.) , 

where the index in parentheses indicates the space dimensionality. For 

exact solutions these scaling laws (12) are valid only in the first per­

turbation arder, but nevertheless they show a right way. Really, to 

obtain a nontrivial l/N-expansion, e.g., for the bulk polaron, we rede­

fin~ the coupling constant in accordance with Eq.(12) and consider ex­

pressions 
,(tJ/2.J	 )

rv (3) t"W\ ~ E(NJ(d.. ~ E: (oi.) ==	 ,(~) ,
N ~ co '" Stt 

(13) 

,(N/~) )Q...:\M V\1 ("') ( \I.. Y::!iW\ (3)lol)	 -= 
N .... oo ~~ \(~) . 

By definition, the functions under the limit sign at N=3 are nothing 

else than the exact energy and mass of the bulk polaron: Evidently, 

they can be expanded in inverse powers of N. So, Eq.(13) gives us the 

leading approximation of the l/N-expansion. What are the properties of 

e:l~t~) and ~(,3t~)? With the help of Eq.(ll) it is easy ~o find the
 

first terms of perturbation series:
 

f'J t3)(~~	 -: rJ.. _ e:;J...'l.. ~ ( i - ~) -+ O(tJ.1)E ~	 3 g 31t ~ 

6 

!l:1 
i"~ 

I 
(14)VV\ (~)(oL) = ~ -t ~ + r:J...'L !:L(..!... - ...L) -+- O (bl~) 

~ b .3 a .3~ . 

(l
In the theory of bulk polarorr such expansions have been obtained by 

Haga/ 8! for the energy and by H6hler and Milllensiefen/ 9/ for the ef­

fective mass. It has been shown by Saitoh/ 10/ that these expansions 

arise from the Feynman type variational approximation with arbitrary 

quadratic trial action. The coincidence of the first terms of pertur­t	 bation series for Ê'''1:..,L) , M (3lot) and approximate expressions by Sai­

toh can be scarcely accidental. It seems, we have the reason to sug­

gest that EC.3)(ol) and 

value of cI-... • 
I'! In other words, we 

approximation of the 

the l/N-expansion is 

{M(3(ol)Coincide with the Saitoh results at any 

believe the Saitoh result to be the leading 

l(N-expansion. If it is really the case, then 

indeed suitable to describe the polaron proper­

ties in the whole range of the coupling constant. In particular, at 

largec( when the Saitoh approximation gives the well-known Feynman 

results,	 we have 
....." (3) .. r:J.. 2­ w; (3)("'-J ~ 1..bol "" E (o() ~ - ­ ") 

~9\	 B,f7\e.. 

rather close to the exact results. It follows then that the multidi­

mensional polaron characteristics in the strong-coupling regime 

E (N) (01.) ~ - ANel Q.. Wl (NJ(oL) !l! MN ~ t, 

"I, should behave at large N as follows 

Ao M", ~ .!i­A'N ~ ~N~	 (15)N' 

Predictions (15) are straightforward consequences of our analysis of 

the perspectives for the l/N-expansion. 
I 
~
 

, I It ~s clear that in a similar way one ~an construct the first
 

I approximation of the l!N-expansion for the polaron of arbitrary dimen­i 

! 
~ sionality: one has only to introduce appropriate factors into argu­

ments and functions under the limit sign in Eq.(13). Functions ff{Nt~J 
and ~tN)bl)thus obtained will satisfy the same scaling laws (12).I 

,I 
I Therefore it is easy to obtain an analogous expansion for the polaron 

~ ,~ 
at any given N directly from Eq.(13)~ 

Our analysis provides the ·answer to the question why the variatio­

nal methods by Feynman and Saitoh are so good. It turned out that 

the latter is asymptotically exact at large N. 

7 
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To conclude, we would like to stress once more that it will be very 

useful and interesting to invent a regular procedure of the l/N-expan­

sion which would give us an opportunity to calculate corrections to 

the leading approximation. 
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CenIOI'HH O. B., CMoHAblpes M. A. EI7-86-424 
'I'eonna B03My\UeHHH AJIH MHOJ:'OMepHOJ:'o nOJUlpOHa 

B paxrcax p;HarpaMMlIof! TeXHHKH HCCJIep;yeTcH OnTHt.IeCKHH 
nonHpoH B N-MepHoM npOCTpaHcTBe c uenbW nocTpoeHHH TeopHH 
B03MYIIJ,eHHH AJIH TaKHX xapaKTepHCTHK N-Mepnoro nOJlHPOHa, 
KaK 3HeprHH OCHOBHoro COCTOHHHH, 3~~eKTHBHaR Macca, cpep;Hee 
t.IHCnO <pOHOHOB. Hatíp;elIbl nepnue rraa t.IJleHa pa3nOJKefIHH B pHP; 
TeopHH B03MymeHHH 3HepJ:'HH OCHOBHOJ:'O COCTOHHHH H 3<P<peKThBHoH 
Macc~ nOJlHpOHa. 06cymgaIDTcH B03MO)l(HOCTH 1!N-pa3JlO)l(eHHH, KO­
TOpOe CnOCOÔHO nar s HOBbrH MeTOp, HCCJlep,ODaHHH CBOH:CTB nOJlH­
pOlIa B peJKHMaX CJlaÔOH H CHJlbHOH: CBH3H. 

Pa60Ta BbInOnHeHa B JlaôopaTopHH TeOpeTHt.IeCKOH ~H3HKH. 

OI-UU1 • 

ITpenpHHT Oõsemeteaaoro HHCIHTYTa snepasrx HCCne.IJ,OBaHHH. Ilyõaa 1986 
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Perturbation Theory for the Multidimensianal Polaron 

The optical polaron in N-dímensional space is inves­
tigated in the framework of diagrammatic approach~ The 
goal of this work is to construct the perturbation theory 
for such characteristics of the N-dimensional polaron as 
the ground state energy, effective mass and average number 
of phonons. The first two terrns of perturbation series for 
the ground state energy and effective mass are obtained. 
The perspectives of the I!N-expansion which can províde 
a new method for investigation of polaran properties in both 
weak and strong coupli~g regimes are Jiscussed. 

The investigation has been perfarmed at the Laboratory 
of Theoretical Physics, JINR. 
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