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Intensive theoretical and experimental investigations in condensed
matter physics of recent years stimulated the revival of attention to
various polaron models described by the well-known Frohlich Hamiltoénian
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The utmost physicdl interest is roused in optical and acoustical po-
larons, and not only in the bulk, 3-dimensional ones, but also in the
surface.polarons in two spatial dimensions/j/. In this paper we shall
confine ourselves to optical polarons when the phonon frequency does
not depend on its momentum: WR =&W. We shall not fix the number N of
spatial dimensions. Such a multidimensional polaron has recently been
investigated by Devreese, Peeters and Wu/z/. Here we accept their para-
metrization
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In the representation with the total momentum of the system being a c-

number, Hamiltonian (1) can be written as follows
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QI= P/Jarw.

Note that fhe energy and mass in Eqs.(2), (3) are expressed in units
of & and , respectively.

The- goal of this paper is to construct the perturbation theory for
such characteristics of the N-dimensional polaron as the ground state
energy, effective mass and average number of phonons. Results for the
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bulk and surface polarons will be obtained as particular cases. Besides,

we discuss here the properties of the 1/N-expansion which can provide
us with a completely new approach to the polaron problem both in the
weak-coupling and in the strong-coupling regimes.

In the paper/S/ a special diagrammatic technique has been developed
which may easily be generalized to a multidimensional case. The Feyn-

man rules are as follows:
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Here'z; are phonons momenta, and N1 is the number of phonons in a given
virtual state. Let us briefly describe the main distinctions between
our diagrams and the conventional ones. In addition to the ordinary
strongly connected diagrams we have also the disconnected ones. On the
other hand, there are no weakly connected diagrams which can be separa-
ted into two parts by cutting an electron propagator. Furthermore, to-
gether with the electron-phonon vertices there exists another ‘type of
vertices whose role is to change the powers of the corresponding elect-
ron propagators. For more details we refer to the paper/3

The sum of all diagrams defines the energy of a moving polaron

E(w) = &o(w) + L & (W)t L4 (W) + n.

at small momentum taking the form

L(w) & E+W/m .
In the zeroth order in -.coupling constant 80(\,.;): W" so that the
required expansions for the ground state energy E and the polaron
effective mass Yy are as follows
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In the first order in o, in accordance with tules (4), we obtain
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from which there follow the first coeff1c1ents of expansions (5)
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& C(n/2) N T(ng2)

In the second order in ol the polaron energy is defined by a sum of
three diagrams. The disconnected diagram contribution can be obtained

in the analytical form
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Unfortunately, this cannot be performed for ‘the remaining two diag-
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rams. However, we succeeded in representing their contributions by
one-dimensional integrals of elementary functions for which numerical
calculations can be carried out by means of a simplest programmable

calculator such as HP-34C:
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By means of Eqs. (7)-(9) we can calculate the coefficients Eg_and W
for arbitrary N. As to the Ez_, we obtained the same values as Devreese
et al. did/2

their final result in the form of double integral. Thus, we confirm

/. They used the path-integral technique and expressed

their numerical calculations in the scope of a completely different
method. For this reason, here we shall only present our calculations

for the multidimensional polaron mass for the same values of N, for

which the energy has been calculated in the paper/z/

Table

Expansion Coefficients of the Exact As expected, for the

. . ilk ~di i laron
Perturbation Series for the bulk, 3-dimensional polaro

N-Dimensional Polaron Effective Mass we have obtained the well-

known results which can be

N n n expressed in an analytical
1 2 form/4/. For. another 4inte-
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. .02 7 . .
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Here G = 0.915 965 594 is Catalan’s constant. Note that in the recent
paper/s/ by Das Sarma and Mason, devoted to the optical polaron in

two dimensions, the coefficients Ea. and W, are expressed through
triple integrals and their numerical values are calculated with a much
lesser accuracy: Eg = -0.062 and Wa = 0.13. More precisely the value
for E; has been calculated by Devreese et al. in the paper

3/

In the paper/ the relation between the average number of phonons

M and the polaron energy&(ﬁﬂhas been derived:
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With the help of Eq.(10) we can construct the perturbation series
for N. In particular, for the surface polaron with small momentum we
have ’

N = ok"l{'\- + k2. 0,127 347 93 + O(o?) +
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/31 the energy of a bulk polaron in the third
order in powers of ol have been obtained: E3 = -0.806-1073. In the
same paper one can also find the first three terms of perturbation
series for .

Note, that in the paper

I3

Let us now revért to the case of multidimensional polaton. Calcula-
tions of the polaron energy and effective mass demonstrate that the
polaron effects weaken with the increase of the number of dimensions.
Equations (6)-(9) give us an opportunity to obtain the asymptotic be-
haviour of the expansion coefficients at large N:
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1t follows from Eq.(11) that a nontrivial limit at large N can be ob-
tained through redefinition of the coupling constant, e.g., through

3
scaling of the typedh—>dN /2,

constant is not an innovation.

Such a redefinition of the coupling
For example, we used an analogous sca-
ling while constructing the 1/N-expansions for the anharmonic oscilla-
tor/7/, which allowed us to reproduce the results of perturbation
theory as well as the strong coupling limit. The 1/N-expansion could
provide us with a new method of description of the polaron properties
at all possible values of coupling constant & . We still have no regu-
lar procedure of 1/N-expansion, but the results just obtained can help
us to guess its leading term. /2 -

Indeed, it has been noticed by Devreese et al. that in the Feyn-

man variational approximation there exist scaling laws
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where the index in parentheses indicates the space dimensionality. For
exact solutions these scaling laws (12) are valid only in the first per-
turbation order, but nevertheless they show a right way. Really, to
obtain a nontrivial 1/N-expansion, e.g., for the bulk polaron, we rede-

fine the coupling constant in accordance with Eq.(12) and consider ex-

pressions
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By definition, the functions under the limit sign at N=3 are nothing
else than the exact energy and mass of the bulk polaron. Evidently,
they can be expanded in inverse powers of N. So, Eq.(13) gives us the
lead1ng approximation of the 1/N- expansion. What are the propert1es of
E (#) and ““(5%#)7 With the help of Eq.(11) it is easy to find the
first terms of perturbation series:
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In the theory of bulk polaronm such expansions have been obtained by
Hagalg/ for the energy and by Hohler and MUllensiefen/g/ for the ef-
fective mass. It has been shown by Saitoh/1o/ that these expansions

arise from the Feynman type variational approximation with arbitrary
quadratic trial ag&lon

bation series forE ‘LL)
toh can be scarcely acc1dental.

The coincidence of the first terms of pertur-

,Vtsj (t) and approximate expressions by Sai-
It seems, we have the reason to sug-
gest that Efc5udj and Cﬁcﬁei)coincide with the Saitoh results at any
value of A .

In other words, we believe the Saitoh result to be the leading

approximation of the 1/N-expansion. If it is really the case, then
the 1/N-expansion is indeed suitable to describe the polaron proper-
ties in the whole range of the coupling constant. In particular, at
large ¢{ when the Saitoh approximation gives the well-known Feynman
results, we have
FOy o - &2, M@y o b7
kY'y 84w

rather close to the exact results.

J

It follows then that the multidi-
mensional polaron characteristics in the strong-coupling regime

N,
E™MW) oo Auol® , miMe) & Myot®
should behave at large N as follows
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Predictions (15) are straightforward consequences of our analysis of
the perspectives for the 1/N-expansion.

It is clear that in a similar way one can construct the first
approximation of the 1/N-expansion for the polaron of arbitrary dimen-
sionality: one has only to introduce appropriate factors into argu-
ments and functions under the limit sign in Eq.(13). Functions E?‘”tg
and vn(”%g)thus obtained will satisfy the same scaling laws (12).
Therefore it is easy to obtain an analogous expansion for the polaron
at any given N directly from Eq.(13)-

Our analysis provides the.answer to the question why the variatio-
nal methods by Feynman and Saitoh are so good.
the latter is asymptotically exact at large N.

It turned out that




To conclude, we would like to stress once more that it will be very

useful and interesting to invent a regular procedure of the 1/N-expan-
sion which would give us an opportunity to calculate corrections to

the leading approximation.
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Cemorun 0.B., CmongmpeB M.A. E17-86-424
Teopusa BosMylleHu#l OJiA MHOIOMeEpHOTI'O TMOJIAPOHA

B paMkax pguarpammioii TeXHHKH HCClefyeTCs ONTHYeCKHH
NMONAApoOH B N-MepHOM MpOCTpPaHCTBE C LeNblo NMOCTPOeHus TeopHH
BOSMYIEHHH OJIA TAKMX XapaKkTepHCTHK N-MepHOro mnojsipoHa,
Kak 3Heprys OCHOBHOI'O COCTOfHHA, 3bhdPeKTHBHAR Macca, CpefHee
yucyio ¢poHoHOoB, Hafienb nepBbie JIBa 4ylieHa pasNOXKeHWH B pHb
TeOpPHH BO3MYUEHHH 3HEPrHH OCHOBHOI'O COCTOSHHA H 3bdeKTUBHOMN
mMaccel monspoHa, OBcyxmawTcsi BosMoxHOCTH | /N-pasnoxeHus, Ko-
TOpoe CNOCOBHO [ATH HOBHIII METOH HCCiefoBaHHsi CBOHCTB MoOsa-—-
poHa B pexuMax cnabod U CHIBHOH CBS3H.

Pa6ora Bummonuena B JlaGopaTopuu TeopeTHUeCKOH GHauku
oudu.,

Tpenpunt OGLeUHEHHOrO WHCTHTYT2 SIEpHLIX HCCrmeoBakni. [lyGua 1986
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Perturbation Theory for the Multidimensional Polaron

The optical polaron in N-dimensional space is inves-
tigated in the framework of diagrammatic approach, The
goal of this work is to construct the perturbation theory
for such characteristics of the N-dimensional polaron as
the ground state energy, effective mass and average number
of phonons. The first two terms of perturbation series for
the ground state energy and effective mass are obtained,
The perspectives of the |/N-expansion which can provide
a new method for investigation of polaron properties in both
weak and strong coupling regimes are discussed.
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