


1. INTRODUCTION

In this paper we present a unified self-consistent conside-
ration of the correlation effects in multiband transition me-
tals. The main aim of this paper is to get more insight into
the nature of electronic states in transition metals from
a stand point of the quantum many-body theory. For this purpose
we develope a new self-consistent formalism for the descrip-
tion of electronic elementary excitations in the framework of
the multiband model by taking explicitly into account damping
effects and finite lifetimes.

In recent years much attention has been given to the theory
of correlation effects in transition metals, their compounds
and disordered alloys’!. The characteristic features of the
d-electrons in transition metals may be deduced from a number
of experimental facts. One of the most important conclusions
obtained from analyzing the expérimental data is that the d -
electrons exhibit both itinerant and localized properties,
Correlation phenomens are of great importance in determining
the properties of these substances, especially, for describing
metallic ferromagnetism of 3d-transition metals, metal-insu-
lator transitions, intermediate valence phenomena, etc.

There are mainly two methods for dealing with the electronic
correlation problenl/Q{Correlations are usually introduced in
band-structure computations through a local correction of the
effective one-electron potential. The one-electron approxima-
tion of the conventional band theory has provided a basis for
understanding a wide range of solid state phenomena. The ade-
quacy of the single-particle picture is based on the density
functional formalism and its extension, the spin-density func-
tional formalism/3/. The first principle band structure calcu-
lations have been remarkably successful in obtaining various
ground-state properties not only of nontransition but also
transition metals, rare earths and actinides’ %%/, However, it
is often not so successful in describing correctly the proper-
ties at finite temperatures.

In the second and complementary method, one therefore starts
with a model Hamiltonian for electrons and tries to calculate
both the ground-state and excited-state properties/Le"S/- This
approach has beem quite successful in calculating various
ground-state properties of transition metals’ 1:6-20/ Unfortuna-
tely, detailed investigations of the true nature of excited
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electronic states in transition metals including the damping
effects and finite lifetimes have been started only very re-
cently when it has been recognized that many-body effects in
transition metals are very important in understandiég photo—
emission experiments 0-267 As is pointed in paper’ #/ npickel,
from several points of view, is the case for which many—-elect-
ron correlation effects cannot be ignored. While photoemission
reveals well-defined single-particle dispersion curves in
nickel, they have a large energy width indicative of short
quasiparticle lifetimes. Angle-resolved photoemission experi-
ments providing direct observation of energy band dispersions
in copper and nickel revealed a few problems for nickel: the
presence of a satellite, narrowing of the d-band-width and
other discrepancies with standard one-electron-band calcula-
tions. While explaining these features the importance of the
correlation effects within the unfilled d-band has been gene-~
rally recognized /20-26/ por transition metals like nickel with
their highly localized d-orbitals and hencc strong variation
in the d-electron density, the effect of Coulomb correlation
on energy bands has recently been investigated in pnpersl2728/
within the degenerate Hubbard model by perturbation theory.

A theory for the resonant 3d-band photoemission spectra in
nickel has been developed in paper 9’00 the basis of a hybri-
dized s—- and d -band model.

In this paper we present a new unified soll-consistent ap-
proach to consider the correlation effects in trangition me-
tals like nickel The one-electron approximation [s invalid
in this case; thus the use of sophisticated many-body techniques
is required. For this purpose we utilize the novel irreducible
Green-function (IGF) method developed in pnporﬂlaoﬂ”/.The IGF
method allows one completely to describe the quasiparticle in-
elastic scattering processes in a many-body system and to find
quasiparticle spectra with'damping in a very gencral way. From
a technical point of view the IGF method is a special kind of
the projection—qurator approach in the thecory of two-time
Green functions /32:3%,

If one introduces irreducible parts of the Green functions
(or irreducible parts of the operators from which the GF is
constructed), the equation of motion for the CF can be cxactly
transformed into the Dyson equation. The representation of the
self-energy operator in terms of high-order GF is exact too.
To perform the self-consistent calculation of the self-cnergy
operator, we have to express it approximately in terms of low-
order GF’s. Recently, the IGF method has been applied to a num-
ber of solid-state problems/3*41/.An important problem was
to investigate the effect of the orbital degeneracy in transi-
tion metals by this method. A generalized Hubbard model of
a d-band with its degeneracy fully included is more realistic
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for transition metals than the one-band Hubbard model considered
greviously by’ the IGF method in paper/3l<Recent1y, a complemen-
tary approach for the computation of electronic excitations in
solids within the projection-operator formalism of the Mori-
Zwanzig type has been developed in paper /%%’ Unfortunately,
explicit results have been obtained for a system with one orbi-
tal per site which has been described only by the one-band Hub-
bard Hamiltonian.

The present paper is organized as follows: in the next sec-
tion we introduce the model Hamiltonian for the system with
several orbitals per site. In Sect.3 we describe the formalism
associated with the irreducible Green function method and de-
rive the exact Dyson equation for a single-electron GF. The
consideration of the generalized mean-field GF and their poles
is presented in Sect.4. The self-consistent approximative cal-
culation of the electron self-energy operator is developed in
Sect.5. The numerieal calculation is presented in Sect.6.

2. THE HAMILTONIAN OF THE MODEL

A better understanding of the electronic correlation im
solids really dates 8’ from Hubbard “s introduction of a new
Hamiltonian/€.7/ that could be used to analyze major aspects
of both the insulating and metallic states of solids in which
electronic correlations are important. To simplify the problem,
many of treatments of the correlation effects are effectively
restricted to a nondegenerate band. Most of them take only
account. of an intra-atomic integral, assuming its dominant |
role in magnetic properties. The model Hamiltonjan which is
usually referred to as the Hubbard Hamiltonian includes the in-
traatomic Coulomb repulsion and the one-electron hopping energy.
The Hubbard model has been investigated by many authors with
various assumptions (see, e.g./!6=19/y It is uswally a rather
difficult task to solve this model with a reasonable accuracy
and correctly describe a simultanepus electron correlation in
different d-states,

In this paper we want to develop a more realistic approach.
An important point is to find a model which includes the five-
fold degeneracy of d-states explicitly and to study the role
of additiomal (to the Hubbard intra-atomic) terms for transi-
tion metaks tike nickel. Let us start with the second quantized
form of the total Hamiltomian for an electron in & solid. This
method of deseribing many-particle systems is based on the
choice of any complete set of orthogenal nqrmg}ized wave func-
tions. In our approach we take the set !¢p(r—R;)! of the Wan-
nier fuqctions 43/ Here A is the band index. Fox a degenerate
d-band the second quantized form of the total Hamiltonian in
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the Wannier-function representation is given by
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The purpose of the present consideration is to apply the IGF
method to this total many-electron Hamiltonian (1). Relevant
calculations have been carried out. The obtained formulae,
however, are complicated. To give a physical picture of the
calculations, in this paper we restrict ourselves to the fol-
lowing model Hamiltonian

H=H,+H,+ Hg. ' (3)

The one—electron energy operator of the d-band electrons is
given by the expression:
o+
H, =3 2 t..a" a. . . (4
1 ij po ij %ipo ¢ jo : ( )
The term H, describes one—centre Coulomb interactions of d-
electrons:

1
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In- addition to the intrasite Coulomb interaction Ugq - which
is the only interaction present in the Hubbard model, the Ha-
miltpnian {5) contains three more kinds of interactions. The
last term Hg describes the direct intersite exchange interac-
tion

Hg=-1/2 3 X It a et a . (6)

ij “iag “iac " jav ** jao
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Here, we take only interactions Hg diagonal in orbital index.
‘Thus, our Hamiltonian (3) includes only a one-centre and two-
centre integrals of various kinds. In eqs. (4)-(6) these va-
rious integrals are defined as follows:

=.<ia,ia!\7lia, ia>

v AL
t}:.] = <i]l.lh‘, jv> Uaa

Ua'B=,<ia,»i,3';?z1j;3,ia>; 148 =<ia,iB|V|ia,if>, a7 (7
’ . . ~ . . aa . . ,A . . . .
Lg=<ia,ia|v[iB,iB>; J;; =<ia,jalvlia,ja>; i#j.

In the above equations v is assumed to represent an effective ‘

interaction screened by s— and d -electrons. ‘It is reasonable

to assume that:

agg

Upg =Us Ugg =U": Tgg=L  Ijg =17 Jij =J; - (8)

Thus, the Hamiltonian (3) is specified by six parameters: the
band width W and five integrals U ,U” |1 [ I” ' J. ye note

that s-electrons are not explicitly taken into account in our
model Hamiltonian (3), so the hybridization .effects are neglected.
They are, however, implicitly taken into account by screening
effects and effective d -band occupation.

3. THE DYSON EQUATION FOR THE ONE-ELECTRON
TWO-TIME GREEN FUNCTION

For the calculation of the electronic quasiparticle spect-
rum of the described model with Hamiltonian (3) let us consider
the equation of motion for the one-electron double-time tempe-
rature Green function’**;

B (1,1~ ) =i B (117 ) <[ 8 140 (9,87 g, 8] > =
9

+ ’
=<, (D), ajBa"(t' »> .

First performing the time t differentiation of {(9) we get the
equation for the Fourier transform Gﬁﬂ,ﬁj;m)
ug
+
>
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+(v"w(lz)+ V (12)) ((a&z~aaﬂv—q&ﬁn \a 30"»;) +

. (10)
+ V (12)( <a o0, j;% > +,-<<ai,,_~_g,a'i';_(,_aym,[a;Bq.'f,s;;j)}:, .
where
T =08y, gy -ty ¢ Vg (D=1 =8g, )8
Vi () =[US,, 4 U (=8, Moy © Vi (D)=-1(1-84,)55 an

av,. av i .
V4 (it)=~1" (1~ =84y )0 ip Vo (f)=~33p(1=640)3,,

The aim of the present investigation is to thoroughly study
the correlation effects in transition metals. Therefore, the
adequate approximation is the weak correlation limit: U/W
'/W I/W R 1°W J/W

To treat the many body problem in a self-cohsistent way,
we follow here the IGF method’3! In the weak carrelation limit
we introduce by definition the 1rredu€1b1e parts of the CF in
the r.h.s. of eq,(10)

ir

+ ia T
iy A0yt By “1 By Py TRy ity d for B 7 800 1\\(,; +
(12)
+<n > <<la tat S cag oAl o, Sada Sl >
A (T Cipo  Tifloy w o < foo froa Bry @
in which all possible mean-field contributions are removed.
The choice of the IGF's is determined by the conditions
it +
<[(d1ua np,. ") d‘iﬂql 1> - 0. (13)
From eqs.(12) and (13) we find:
ir 4 )
<[(aiu.:r nv?l/a')‘ djﬁnr ]4-5 =
[ : a, ap Sap, o). aig, 1>
"<‘(aiu7-nt’lfa"<nV1rg'>diun — <Ry, T A, ) By L,
(14)

+
= <[ a iug_n ?,ug »,a

j601];‘"<"ﬁﬂ'> 8948 a7y ~

+ -
_<ai’;o a&’0;> 5‘)‘] 8}/35& ;7_1: 0.

So, the IGF s are defined so that they cannot be reduced to the
low-order ones by any kind of decoupling. This reduction proce-
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dure is of fundamental importance in the present method because
it allows us to extract all relevant (for the problem under con-
sideration) mean-field renormalizations and to put them into the
"zero—-order” (generalized mean—-field) Green function. To de-
monstrate the pessibilities of our method, we explicitly write
the so-called "anomalous correlation functlons corresponding to
spin—-flip processes"/45/ﬂowever, it must be stressed that be-
cause of the spin rotational invariance of Hamiltonian (3) we
have <ay,,. ajﬁ_a, > =0. The spin-flip anomalous terms must be in-
cluded only for a rather special case of the system magnetized
in the % direction instead of the conventional ? axis. In the
remaining part of this paper we do not take spin-flip terms
into consideration. Thus, in the case of weak electron correla-
tion it will be enough to define a very simple mean-field ex-
traction, i.e.,<mj,>. In the general case the mean-field re-
normalizations may have a very montrivial sktrueture, and a spe-
cial projection procedure should be developed for higher-order
GF“s as it has been done for the Hubbard model in the strong
correlation limit, for the theory of superconduct1v1ty in tran-
sition metals anﬂ their disordered alloys/as‘qg‘ and for the
magnetic polaron problem at finite temperatures‘4y-

Using the definition (12) in eq.{(10) the equation of metion
(10) can be exactly transformed to the following form: ’

@) ay ir

E ,,V(i?)Gl B(H w)=5..8 ﬁ+%1v y ()<= Ay L a:Bn >+

i} “a

V‘IV NS ¢ ;
+ 2 (l')(‘vd fao, DYP_H ) Jﬂ”’ \\’ + .
\
b osdrme g AU s w . (15)

i) Dl I 3 oy
Lar av 0 ir T4 © .+ ) ;
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The renormalized energy E,(if) is given by the expression

av
E, GN=T" (if)- \Z (“)<af'aoafw

-fz (VY ()8, <ng,, > - V5! (1 )8z <ng, ,>)-
(16)
(ﬂ)(ah + _V4 ot)<aﬁﬁoa&_g

, av .
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Ly

Now we, proceed to derive the Dyson équatlon. To calculate the
IGF’s *’<A(t)B(t »> in eq. (15), we have to write the equa—
' ‘




tions of motion after differentiation with respect to the second
time variable t. Then conditions {13) remove the inhomogenequs
terms in these equations. If omne introduces irreducible parts
for the right-hand-side operators by analogy with expression
{12), the equation of motion (15) can be exactly rewritten in
the following form

| v VB .
¢P (i5;0)=G2P 5 0) z uz;,} A (me)PL (un; 0)Go,niie), an

where the generalized mean-field Green function Gy reads

2 Ef,'.’(iz)c'(’,f_(_ej;m)_-.saﬂsij ; , (18)

The scattering operator P is given by the expression

. , p8 . ir L+ ir
,P‘;‘.Q (1];a))=m2nj%vi 1 (:m)V (mj)<<a, 0 0l 3080 nmm>z) +

P T+ ir
+ V 1 (1m)V2 (nj) <<a B nys |3,nt“ ny—c?>w +
) (19)
av . _pB it L+ ir
+Vy (im)Vy (nj)<<a - n_, | 2080 PPt

ir
> .

BB ir o+
\Y tzw (m)V, (nj)<<a ,, n w_g; a ,F‘Bﬂp o %

Here we present for brevity the scattering operator only for

a part of Hamiltonian (3), i.e., H=H;+H, without two last
terms in Hp. The full scattering operator can be written di-
rectl

If'we go further and write down the Dyson equation

v vB
aRis;01=6P 05 0) +3 = A (im0 )My, (mn;0)G . (05 &) (20)
mn ‘

we get the following equation for M

Py o) = MY (mie) + 3 5 M, M (mize) 6% i )P (i w) (21
ij a
from which it follows that we can say, in complete analogy to
the dlagrammatlc technique, that the self-energy operator
(mn w) is defined as a proper (connected) part of the scat-

ter1ng operator P:
pv , - py, . c 2
M’ (mn; 0) = (P, (mn; w))* (22)

»
It should be emphasized that for the retarded (and advanced)
GF”s the proper part has only a symbolic character. However,
one may use the causal, instead of retarded, GF at any step
in the calculations because the equation of motion has the
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same form for all three {(retarded, advanced, and causal) GF’s.
In a certain sense there is a possibility of controlling, in
the diagrammatic language, the relevant decoupling procedure

in future approximative self-energy calculations. Thus, in
contrast to the standard equation-of-motion approach the deter-
mination of the full GF G has been reduced to the determina-
tion of the mean-field GF G, and the self-energy operator M.
The reason for this method of calculations is that the decoup-
ling is only introduced into the self-energy operator, as will
be clear from the next sections.

4. ELECTRONIC STATES IN MEAN-FIELD APPROXIMATION

The question now is how to describe our system in terms of
the quasiparticle picture. For a translationally invariant sys-
tem, to describe the low-lying excitations of the system in
terms of quasiparticles, one has to choose eigenstates such
that they all correspond to a definite momentum. For the dege-
nerate band model we need the transformation relations between
second quantized operators 2j,;. and atan, connecting the elect-
ron state with an orbital gymmetry a centered at atomic site
Ri and the Bloch state |k> of the same symmetry. The exact
transformation reads’*3:46:47/

—%. - + -1
ag,, =N jEBexp‘[-ikRj]U,\ﬁ(k)ang‘; vt =u". (23)

However, for the sake of simplicity, we shall follow the appro-
ximative approach of papers’13:8/ yhere the follow1ng trans—
formation

Y 2
aﬁag=N' 2% exp[-ikRjla 40 ) (24)

has been used instead of the exaet one, as given by eq. (23).
The second quantized operators in eq.(24) generate five artifi-
cial uncoupled bands for which ¢ = 1,2,...5. When coupled by
Uxﬁﬂo they reproduce the reallstlc bands labelled by A, as
given by eq.(23). This is, of course, d simplification of the
problem. We discuss this approximation more thoroughly in Appen-
dix A. The adoption of the approximative expression (24) is
equivalent to the following definitions of the Fourier trans-—
form

Gaf(ij:m)=N'1§ expl iK(R; - R )] B @t (25)
k
MaB(ij;w)=N°1§ exp[if((ﬁi—ﬁj)]m"ﬁ(i,m) (26)




.~ 1 - > - > ' . 3
t‘.:;l?:N‘ é ¢g ®yexp[R(R,—R I (27)
Using the definitioms (25)-(27) imn eq.(20) we find

> -» 1 - o Vﬁ -»
G‘;B(k,m')=(}gf{k,m)+I§VGO£§ ® )My &)y (Ko (28)

From the symbolie solutien of the Dyson equation (28)

6F,0) =[Gy, 0) ™ =M, o) (29)

it is now seen how to change the problem of calculating the
single-particle GF G to the one of calculating the generalized
mean-field GF Gy and the self-energy M.

Let us first consider the mean-field 6F Gp. In the momentum
representation we obtain from eq.(18)

av + vB »
S By (00 (ko) =8, (30)

‘ . 3
The renormalized energies Ei&k) have the form

av o e
B, ®=(w-e, (k)8

’, -1 +
av -—(U —I)(l 7-5'(11) )N z[] <apaoa pvo >=
. , e
- ‘z; (U =IX1=84y) 8y N % B e ™
: . -1 - L
- (U8, +U7(1=8,, ) 3,, N % My )+ (1=58,, N % pgy Appey >+
(, €31)
-1 ) +
+ I(t-§,, IN %<dm~nam—a>+
I + R i ot
+ 8, A@N ‘%< Virpr tppg” ~N S TEDIS <y i, >,
where
> -1 > > . :
(k)= S —i . -R.
(k)= N 3 T exp[~ik(R; -R;)hL (32)

For the multiorbital Hubbard model (U'=1=1"= J =0) we find
ayv - - -1
Eg (k) ={w—e,(ki—UN S <Bpgeg 180 - (33)

The spectrum of electronic low-lying excitations without
damping follows immediately from the poles of the single-par-
ticle mean-field Green function Gy (Gg denotes a matrix in
the space of band indices):

det[E, |=0; det|E_ | =0. (34)

- K}
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It is obvious that most important is the case diagonal in the
band indices:

o a >
E% (0Gg, (k) =1 (35)

because if a Green function is diagonal with respect to some
set of single-particle functions, these functions are "natural”
orbitals of the problem. Hence, we may write for the diagonal
case

G (ko) =[EC ®17":  6PRor=(BY (017, (36)

where

> - "
By (B =0 -eq®) =~ (U=D3 (1-5, N,

. u (37)
- £ (Ubgy +U° (13, IN, ~

— S N TSI (R-D)< a

+ i) +
a >+ F(ON X <a
7y P paoy Pady © P

g a >
k+pac = par

(38)
7 -1

N, =N % < o™

It follows from eq. (37) that in a complete analogy with the
one-band case one can define the band splitting A® in the
following form

a a -+ a a a v v
A =B, ()-E () =UN =N+ IS (1-54)Ny =N, )+

-» -—1\_ o+ + ‘ (39)
+ J(OON 5 (/‘ak+pa,' Ypar 77 “Aipa,dpal )-

The last expression generalizes the standard Hartree-Fock band-
splitting expression.

5. ELECTRONIC QUASI-PARTICLES AND THEIR DAMPING

Now let us take into consideration the damping effects and
finite lifetimes. Hence, our next task consists in obtaining
self-consistent approximative expression of the electron self-
energy operator. In the general case, to find the damping of
the electronic states, one needs the following expression for
a single-particle Green function (c.f. /0.4ty

& k) =Gy Fon - 2% o) 40)
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Here Efz:-(l?.w) is a functional of Mé"’(l?,w)

£ (K0)=F (M5 (§,0)]. 41

if we confine ourselves to the most important diagonal case,
we find that the renormalized electron energies are self-con-
sistent solutions of the equation

?,J‘f_(fz)—-Ef,a (_l;)—Re z";‘.[ﬁ,:;‘&);:o. (42)

R
Hence, if k labels a quasiparticle electronic state, the spect-
ral functions

g (k ®) = Il"lG (k,w) (43)

will have a strong maxima at_ energies of the quasiparticle
state,

Thus, now we have to find the matrix elements of self-ener-
gy M to complete 29ur solution of the problem. To find explicit
expressions for My, o (K,w), we have to evaluaté higher-order Green
functions in eq. (19) In the quasimomentum representation we
obtain from eqgs.(19) and (26)

aB‘» -2 av [,LB ir + + + ir,e
M, (kiw)=N uEV p%rswl Vi <<8y4paP prao 2 quol Dr o8 o B rsuo >3 *
v B + + + ir,c
+ Va Vﬂ <<ak+paa ptqro aqva~‘»dk+s8g-arp—a rpsp~o Tt
(44)
av® BB i + + + ir,e
+V2 V1 <8 4 pao ‘lp+1qv—g-‘a‘qv—a}ak+ s_ﬁoaqlo ar+sua‘>>(o +
av ‘13 ir + o+ + ir,e

+ V2 Ve <<a’k+oao dptqu-o-? qV—O‘aI“SBU a "I“Ua”’ Su=g <2
It is convenient to write down <<A]A >>n terms of the correla—

tion functlons in the form

e ,
o + 1 do .
Cikipao dprquo qvglak+sﬁaary.0' ar+s;m‘> = 'g'n"_f,o—_:m"(e +Hx
. (45)
o0 . ’
iw "t ¥ PR : o+
x [ dte DTy ([)a]u—o' (6 - a‘r+sp—a‘(t) Atpar? prquo 2avo >

—00

It is reasonable to use the following pair approximation {(for
a low density of quasiparticles) for the correlation function
in th® r.h.s. of eq.(45) in terms of single-particle corréla-
tion functions )

+ + + ne 4 a,. . >x
< ak+560(t)aw _g(t)ar+sp.—o(t)ak+pao ap+qu—-ﬂaqv—0"’ =< a’k+chr~\ k+pao
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e ——

<a q# o (t)aqV_U><a (46)
Taking into account the spectral theorem we obtain from (44)-

(46)

MP @ wy-N2s ziv‘"’v“B QB0 Ve v,f B g
O X

+ .
p+apo (D 3prquo” X Okt s,kep ~Org O res,pg

(kpd;w)l, (47)

where

apvf3 > - dwidwpdwg
Q 17 (kpqvm) ("‘ —_) _[JI ) +m1..w2—-a)

tn(e, M 1-nw ,)—1(w, )1+ Wo Jnlwy) be
; .
x  ImG" B0 HIm G.F (c‘;.wz)lmc‘;ﬁ(ﬁ’+5,w3>+ (48)

w 5 -+ Ve, » a >
+ Im(}g,(p+q,wl)ImGUB(q.mZDImG; (E+p,m3)§

QB R3¢ wy=(- Ly7fpp o laglos,

—o @ +a)1—a)2

tn(w N1-n(wy)~nwy)l+n(w (o )i

(49)

xImG (P+Q.co1)ImG P Qo )ImGﬁEal,(os)

Equations (29) and (47) form a closed self-consistent system
of equations for the single-particle electron GF for the gene-
ralized multiband Hubbard model described by Hamiltonian (3).
In principle, we may use, in the r.h.s. of eq.(47); any relevant
initial GF and find a solution By repeated integration.

For the first iteration step we choose the following simple
one-pole expression (cf. eq.(33))

L @)z 5(0-ERD) 5,4

av » - a
Ey ®=lo-c, ®-UNI 18, . (50)

Then we obtain

R u?
% (R0) =8,1 &

aaa —y—»—;

Pq w+E (p+Q) EZ (Q)—E K+p)

> : (51)
(U' DU H® o "HR PDA-Sav) ‘.
2 > > v > > ' .
N P 4B B4d)~ Bl @) - Er (€4 D)
where
V1V2 3,2 Vi 2 Vo Vg
Ng © "kp)=n 05 (1=ny 3, ~ng3, 1+n k+pan__ (52)
v vV o -1
n,,=lexp(BE, () +11] . . (53)
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For a simple ene-band Hubbard model we directly obtain from (51)
the result by Kuzemsky/

Mk m)»_ s Pergoll=D gapom “g—g_lf.'lht&‘i&:{-_ . (54)
7 N® pa w + E_ (p+q) ~E_,(@-E, (K+p)

In the region of the resonance between the one-particle and
collective excitations another approximation is possible, in-
stead of (46): ‘

Satg, (a) o (Ma.  Maygat i, > |
iBoy juog’ “jpog laog ivoy “ivoy = o
< +

= aJBo {t)alafrg njuog(t)nivo4 >+ <3jBq, (t)aim74 >

S 4<an ta

+
. . . . t : >
x<nw02(0a 1Vq4 oy laUB><aJBUl(t)a”mg()nw% +
(55)
+ <at (Ha ~<at (Ha; (Hha, at >t
“ipog 2 iBay CtTg lagg “ive, -
+ + + + ‘ (56)
<Bjug, (c)ai’,”,\z\ajﬁngt)aw,,2(04,”3&”,{,4,
For the multiband Hubbard model (U'=1=1"=J =0)  ye fing
o . -»
a 2 ik(R; —R}) do . de
ﬁ(k,m)_ﬂ__.- v DT pp Seafes
72N 2 ij —o W= +Wo
. np{w 1 Inp(wg) o+ .
DR i Wit MGL LA (Imaza, la;g > « Ima<n, _Ing >+
Nplo ~w g) iB w4 g ViR w,
(57)
) + vt <
+ Il gl g I iy M [ 2B, )
(1-n Hw1 Mg lw 2) - -
+ OIS Im«/\ajﬂ__q;aia_q,\?uilm/( b otin—o rij”(xjﬂ_q\?uzl
FWo Wy
6. NUMERICAL RESULTS
Let us apply the results of previous sections to the reaso- o

nable model calculations of the self-energy and spectral densi- !
ty. In the pair approximation (46) the general expression for
the self-energy has the form (cf. eqs.(48), (49))

2 ~ dodwod !
M (k. Cz)) = -——— b3 ff e s e e I Xl((‘) 1)(1 n((o 2] ﬂ((u )) + Il(w )Il((,)
N PG S @ +W |~ W o~
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X gp+q,—-o'(m l)g k+p o (w 2)g q'_g-(w 3): (583
where

8@ ==L G (k,0+ic). (59)
For our artificial uncoupled bands (24) it is reasonable to
accept the effective one-band model with a possible total num-

ber of 10 electrons per atom to proceed the numerical calcula-
tions. For this model we have calculated the self-energy M(K.w)

‘according to formula (58), where for the spectral density of

states and dispersion law we take
£, () = 8w — ¢ (k)

1 . . 60)
Ty aky aky ak x ak, -, aky _ak, (
s(k)—-E0—4tams~§—cos—zf+cos—§—cos—g-+ cos‘g_cos—g-).

In general, formula (58) proyides a self-consistent way for

obtaining the self-energy M(k, ) and Green function G(k,w).How-

ever, because of a rather tedious integration method in 9-di- \
mensional space .(6-dimensional space for the k—1ntegrat10n

and 3-dimensional space for energy integration) we calculate
the self-energy in first iteration step only for the model den-
sity of states of "the FCC lattice.

The calculations were done with the appropriate set of me-—
tal parameters for FCC lattice. The band-width W= 4.6 eV for
a band filling 867 and 94%. These values of parameters approxi-
matively represent the ones for d-bands in transition metals,
namely, in Co and Ni, respectively. All calculations were done
for ‘temperature kKT = 0,03 eV.

The integrals which appear in eq. (58) were calculated by
the Monte-Carlo method, and quite a bit noise showing by calcu-
lated curves is mainly due to our limit of the computer time,
For each energy and k -vector approximately 250000 points in
6-dimensional space of the quasi-momentum vectors (P,Q) were
randomly generated. Of course, we first calculated the imagi-
nary part of our self-energy and then obtained the real part
by the Kramers-Kronig relation.

In Flgs 1-4 we show real and imaginary parts of the self-
energy M(K,0) calculated at different points of the Brillouin
zone.

In Figs.1-3 the self-energy curves have been calculated for
energy bands of width 4.6 eV and the band filling equal to
86% for I' , X and L symmetry points in the Brillouin zone,
respectlvely.

In Fig.4 the same curves have been calculated for the band-~
filling equal to 967 for I' symmetry point.

15




k-10,0,0)

ReM [k E)

ReM/U?, ImM/ U’

.gos~ / ImM(k,E)

-010L

4

Elev)

Fig.2. Real and Tmaginary
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Fig.1. Real and imaginary

parts of self-energy calculated
for point ' of the Brillouin
zone (k=(0,0,0)) and for model

s —type tight-Dinding energy
dispersion curve in fee crystal
lattice. The width of band

W= 4,6 eV (from -3.45 eV to
1.15 eV), Ep = 0.95 eV, band-
filling equals 86%, kT = 0.03 eV.
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Then, we may see that the differences between self-energy
curves calculated for different Kk —vectors are relatively
substantial. For our model start-density of states (FCC lattice)
the most different from other self-energy curves is the case of
I’ point. In comparison with these ones for X and L ‘points
we" can observe the absence of a long tail in the imaginary part
and a considerable decrease of a real part for the states near
the bottom of the band. These features of the imaginary part
of self-energy may lead to broadening of the initial Bloch
states with the k -vector lying far away from [’ point in compa-
rison with the ones for K=vector from the vicinity of I' point,
In Fig.4 we present similar calculations for I' point but for
a different band-filling, namely, for band filling equal- 947.
The main differetice is only in the absolute value, and the shape
and general trends are similar to the ones for smaller band
fillings.

o

In Figs.5-7 we show the spectral densities for the same k -
values along the I' | X symmetry line. For computational conve-
nience the spectral density curves are evaluated at complex
énergies, E=¢+0.001i. The presence of the finite imaginary
part'in energy effectlvely causes these curves to be averaged
over an energy interval of order ~0.001 eV. Because of a very
small part of the energy these curves are broadened very slight-
ly, and their peak heights are somewhat reduced from the true
results which would be obtained in the limit of vanishing ima-
ginary part,

In Figs.5-6 we present the spectral deusity of states for
band width W= 4.6 eV (the band extends from-3.45 eVto 1.15 eV)
for the band-filling equal to 857 and for two values of para-
meter U/W = 0.33 and 0.66, respectively, Small irregularities
on the curve in Fig.6 come again from a too small number of
randem points used in the Monte-Carlo integration in the imagi-
nary part of self-energy. As was expected, with increasing va-
lue of the Coulomb integral U the spectral density curve be-
comeés broader and exhibits a much more rich structure. Roughly
speaking,, at I’ point we have a long tail from the upper side
of a band with a great peak on the lower side of the band. Then,
when we will move, for example, along the I'X gymmetry line to-
wards X point we obtain a longer tail on a lower energy side,
and at the same time we have a reconstruction of the main peak
from the one side of the Fermi energy level to another 51de.

The similar behaviour of ,spectral density can be seen for other
parameters, i.e., for the band filling equal to 84% and for
U/W = 0.33, as represented in Fig.7.
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. Fig.5. Spectral density of
states of model S -type tight-

f '. binding energy dispersion curve
[ : with self-energy calculated

: ittt from formula (58). Parameters:
@ i | U/W= 0,33, W=4.6¢V, BEp=
Soul g ! = 0.95 eV, band-filling equals
2 ! E 86%. The vertical dashed line
Fo3 i ' ./\;  represents a one-electron eigen-—
B ! ' value.
Eaz ' e
1) E ; / Fig.8. The same as in Fig.5
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7. SUMMARY AND CONCLUSIONS

We have provided a relatively simple method that enab%es
one to calculate electronic quasiparticle spectra including
electron-eleetron inelastic scattering processes in a self-
consistent way. The most important cenclusion to be dravn from
this paper is that the conventional one-electron approximation

of the band theory is mot always a sufficiently good approxi-

mation for transition metals, especially for metals like nickel.

The adequate description of electronic quasiparticle spectra

in multiband transition metals requires a much stronger role of
the many-body correlation effects than believed some years ago.
Our results give further information about correlgtlon_efgects
in transition metals as compared to that one ebtained in pa-
pers/26-29,42/ however, our approach is a more general one.
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In conclusion, we hope to have provided some insight into
the nature of electronic states within the realistic many-band
model of transition metals. The approach developed here can be
useful for studying photoelectron and X-ray excited Auger spect-
ra of transition metals. To extend it for transition metal
compounds, we must consider the strong correlation case and
generalize the formalism used for such a case as it has been
done for the one-band Hubbard model earlierfsl{Also, the an-
proach developed here can be extended to the deseription of the
corretation effects in the antiferromagnetic transition metals
and in disordered transition metal alloys, We hope that these
important problems will be considered in future works.

APPENDIX A

Wannier Functions and Tight-Binding Functions
for Degenerate Bands

To compare our results with those obtained in Kleinman and
Mednick calculationsfgefwe shall now briefly comment on the in-
ter-relation between Wannier function and tight-binding-fune-
tion representation of the electronic states for the multiband
metal, e.g., for degenerate d-bands in transition metals.

In our paper, wg need the complete orthonormal Wannier func-
tion basis !é)r—=R;)! for introducing only the second quanti-
zed operators 2j,, and dj,,.0ur main calculations; i.e., defi-
nition of the irreducible mean-field GF (18),etc.,are in a ve-
ry general form. However, to find the spectrum of electronic
quasiparticle excitations we must introduce into our considera-
tion the wave vector K. Hence, we must accept a certain relation
between Wannier and Bloch functions, or equivalently, between
second-quantized operators representing Wannier localized
states and Bloch extended states. Construction of Wannier func-
tions for degenerate band is an essentially complex problem.

At the present time there seems to be generally accepted the
practical method developed by ¥ohn’*¥ .1t is well known that

such a relation for composite bands we need is of the form’ 43:46.47/
>
N > —l/l LS 0 iﬁRi N
¥, (k,r) =N %\,(b/\,(r-Ri)e Uy -y (k) (A.1)
¥
or equivalently
3
+ Y% 1kRy -
ak)w:N %\fe 2ixe Uana®
> ’ (A.2)
+ -V ikRy 4 -
a; =N kzl\’e a . Upa(k)
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- i +
& 5, N ’2&’9, U,_\,\'(k)
] o (A.3)
‘ Y < ikR
3iM_=N k‘.i’e ak)\, U}\/\'(k)

T
where U(k) is a unitary matrix. When we substitute the Bloch
function (A 1) into the Schroedinger equation, we obtain for
matrix U(k) some eigenvaluye problem

> 5 -
2 e,,.(kK)U,., (K)=EU (k)
L A7A A 1 (Al
> iiﬁi > 5
w(® = Ze <gy-(DIH| g, (T-R;)>.

In the case of generalized transformations (A.2), (A.3) we
must change our definition of the Fourier transition, Eqs.{(25),
(26) as follows:

aB . -1 ﬁ{(ﬁl R )
G, (jw)=N 3\’3 aA(k)G (k (")UA B(k) .
B i?gi—_ﬁj) o W N (A.5)
(k.co) N~ % f}f U ®G, (i:0)Uyg &)

and similar equations for the self-energy. av
Because of a very complicated form for Ey (k). Eq. (31)& written
in terms of general transformations here we give only E ;5 V(%)
for Hamiltonian H=H;+Hy; without last two terms in H, Then
we have:

av > ¢
E, K)=(w-c, (k)5 - L=t

3 1-5
N5 g, T

W)y VU, BY BT P+Tan, BT, BT AU, B

+
X<3D).3r; ap)\4rr->
(A.6)
Us s u®uy, U DU 5 B)<a
N P Apdglg aAp A Agh g P EAp ) pAoapAgrr
SO s des, UL (B @YU D)UY (p)<a a N
N AAg AAg? PaA B A Ap g P XA P S0A 6P Ay o
Aghy
20

0f course, when we apply the substitution U Az(k)= 57‘1,\5.or

in other words, take transformations (24) instead of (23),

obtain for Eg (k) the formula given by Eq.(31) of the main text

Expression for self-energy for the same Hamiltonian and for pair

decoupling of correlation functions is given as follows:

Mgﬁ K, w)={~ ;17_)31\1 > s s U }\{k)UA ﬁ{k)UM (k+p)U,t V(p+q)x
g My... Aq pq

DU EDOL, DU, s, B Tl 2N g0y )

oo W+ @ '“(02

A pv Vi, | Ady
x {A#A 1[ImGp+q;_m 1) Im Gv(\la(o)gim(} k+pa((" Q +

A (A7)
+ ImGhY (0 ) InG ) (@) rmck+p,,(n,3)1+
+ B¥ me"” InG ¢ )ImG {@)h
uA 1 prgmo? ® k+pom
where
N(w 1,0g.03)=n(0 pll—n(wg )=n(wg)] + n(wyinlwy)
N .
Ay = (=80 )X1=80,)(U = D? (A.8)
» , . .
CBin, SlUS), +U(1=8),)IUS, ), + U (-5, ) ) o

For the approximation U, Ag” 3), and for a simple Hubbard

re
model we obtain the limiting case fouild by Kuzemsky 3Y..

Let us now consider the tight-binding approximation follows
ing/ 47/ The tight-binding degenerate Rands are constructed
from locallzed atomic orbitals ?,{T—R)1n the following well-
known way
%

-» 3 —_— > )\ -» 5
AED=N"T em [iER, IV (k) ¢,G-R,), (4.9)

where we denote atomic orbitals by ¢ ,B indices and energy
bands by A , A; indices. This equation gives the required
{exact) expansion of the Bloch function in the general case

of several bands. The main point of that expansion is the rep-
lacemeat of the expansion coefficients exp[ik-R; ] (appropriate
for theope-band case) by more complicated ones. The coeffi-..
cients V™% (k) give the required mixturée of atomic.orbitals to

Fagt

bt
) |



yield the Bloch states. Formula (A.9) may be inverted by wrir
ting for the atomic orbital state

> 2 . > A > > .
(i -R)=NTs emi-iki, 10" @0, (KD, (A.10)
. ,
where matrices U , V yield the relations:

ah.. A)\l" 5 -
AZ;:U (k)V (k)expflk(Rl—RJ )= 5(2!118“ -N,
(A.11)

Evl\la(f' Ua/‘?.“ ﬁ > 3 5 5 N
= P) @expliR; (p-)]1=8) ) 053 - N

Here we have, because of non-orthonormalized atomic orbitals,
overlap integrals '

“ﬁ—N T explik (R, —R; )}U*a'\(k)UB(k) (A.12)

Now we can 1ntroduce the formalism of second quantization with
operators akAa’ KAy fOr the creation and annihilation of elect-
rons with wave vector K spin o for band labelled by index A
or with operators atno, b,aa,for the creation and annihilation
of electrons described by function ¢,(*-R;) and spin o . Note
that because of non-orthonormalized atomic orbitals vaﬁ-ﬁ )
now we have bﬁa"¥alag In such a case we can still work with
the Hamiltonian written in terms of af,,»b iz, but some opera-
tors, for example, @ :;n»b,aq have to be handled with a certain
reare (they are not Hermitian) /48/ por that reason, one often
make the approximation

a3 .

Rij = aB %
whth 1s equ1valént ﬁg’wgfklng with QatrlbesﬂJEdeﬁﬁwaQHGhéu4
above deéctlbed‘ﬁormalxsm&ggveq)by“Gutzyn}Ler “iequlvaleqtﬁuﬁ

toﬁihat onesgiven. for thent1ght—b1nd1ng descrlgtton bx ar-

NS S AU £8=17 U+ 8T ;f&gw)

schallf%74,: and~iny h15ggq @tzon<gquqveb‘i Coeadgia a0 T g
1 [ L. \ . s
¥, (K,1)= =N /6: exp[lk Rp]a)l(kiqa(r—f{p) vt ‘;%‘ :mi
¥4y
5> ; - > w2 -
(> 3, @~ Ry ),=N‘V’Eexp[—ik’-,R“g»}}:zgx(k)ﬂf Wkt T

whererfor ithe Lransformation. coeffag;ents«sgk) we, have the P

elgénvalue'equaxxonfr,,u\c,,uM,‘ TyoLassl . 2 vﬁ .
LanE LETEAN 9 ‘"su L POad st e iel ey 1ot i,
5 ) FELTIE N 3 xez; (2 mpn
~q 3 tTw&(k)ez%pN&Rﬁ«xlqg,x{k}gkgk,}exp[1 Br,tl Lo v (A.IS)
Ll‘ﬁ wgorqqe) | H - dGere papsie i jo s oty L

Such ‘énoapgfoaqbqfor 1,ghe desg.r,tptwp of. elect;romc states has
beenzised  in p;aperA, {We-may c;leanly rewrite Eq (A 6) in tems

o2

Pty

of coefficients 5&({) and in the limit of the Hubbard model
(only U integral is retained) the obtained result is quite the
same as that one given in paper’/?2/,

APPENDIX B

The Perturbatien Theory for Self-Energy

/e1/

In paper it was mentioned that an expansion of. self-

- energy to higher orders in the Coulomb integral U would im-

prove the description of the correlation effects. Therefore,
we want to describe briefly how the special kind of expansion
for the self-energy can be made 1n a very simple but usual

workable way. Following papef’ we may write
- L mG® (kw) =L ,r”(k'“i»).» ...... -
m o w ~a-> 2 ‘;(l d 2
[(z)*'Eg(k)]+(lo(k)‘U)) (B l)
(K, )
= (L= AZ () 80~ F(R) + ;-~——~(:—°’~) ,
(w - 'Eg(k))
where
a - -
Iy (Koo)=—Im My (K,w+ ic) (B.2)
E2(H) - EX S @ +ReM " (k,E 5 () (B.3)

a
The unknown coefficient (1-A,(k)) in (B.1) must be determined
from a normalization condition

” a - ‘
- L [mG K0)de <1 ’ (B.4)
Then we obtain

“® (kpa) , DB @)? o No * (Kpa)X1-dyq)

A",,(E)=U_>: (.5
D a . (B.5)
N p aaa(kpq)_E‘;(k) N pq”Q' Va(kPQ) g(k)
where
a R - > >
Q2PYRBE) = ¢y B+1) e gfab) o, (D). (B.6)

For the occupation numbers we obtain:

aaa
= z n(E2 (k)+UZN"2 3 Ny (kpq)
“PQ[ 2ea by ~E2(k))°

- 23




12, Stollhoff G., Fulde P. Z.Phys., 1978, B29, p.231.

- ryaaa —a ’
x [n(Q,™ (kpw)-n(Eg (k) I+ 13. Thalmeier P., Falicov L.M. Phys.Rev., 1979; B20, p.4637.

N2 () (1 ) 14. Thalmeier P., Falicov L.M. Phys.Rev., 1980, B22, p.2456.
[ﬂ1ﬁ4)2+(U’ﬁDT'22 o KpD\1~dva < 15. Stollhoff G., Thalmeier P. Z.Phys., 1981, B43, p.13.
VRO Y (kpa)~ B P (k)1 16. Oles A.M. Phys.Rev., 1981, B23, p.271. |
} ~ (B.7) 17. Oles A.M. Phys.Rev., 1983, B28, p.327.
x[n(QVVa(kpq)—n(EZ(kD]. 18. Oles A.M., Stollhoff G. Phys.Rev., 1984, B29, p.314.
7 19. Oles A.M., Fulde P. Phys.Rev., 1985, B30, p.4259.

The first term in eq.(B.7) describes the mean-field renormali- 20. Eastman D.E. et al. J.Appl.Phys., 1979, 50, p.7423.
zation effect, and next two terms. represent the effects of in- 21. Liebsch A. Phys.Rev.Lett., 1979, 43, p.1431.

elastic scattering. The partial density of states in this appro- 22. Tersoff J., Falicov L.M. Solid State Comm., 1979, 32,
ximation is given by p.IQQS.

a 2 a N 23. Kleinman L., Grisé W.R., Mednick K. Phys.Rev., 1980, B22,
Dy ) =N ™" (1~ A7 (k) 80 - E7 (k) + p.1105.

24. Treglia G., Ducastelle F., Spanjaard D. Phys.Rev., 1980,
B21, p.3729.

—-1 .
+ N7 UNTR 2 NP (kpa) 8(w - 05 (kpd)) + 25. Kleinman L. Phys.Rev., 1980, B22, p.6468.
£ pa (8.8) 26. Kleinman L., Mednick K. Phys.Rev., 1981, B24, p.6880.
2 2 _ 27. Treglia G., Ducastelle F., Spanjaard D. J.de Phys. (Paris)
. ’ 2 ’ ’ ]
+LQ__I.373£U_2EN S (1-5,, )NSY® (kpa) 8(w -0 % (kpa)). 1980, 41, p.281. ,
[w -E .(k)] VP4 ‘ 28. Treglia G., Ducastelle F., Spanjaard D. J.de Phys. (Paris),
- 1982, 43, p.341. ,
If we use eq.(B.8) for the calculation of the self-energy by 29, Jo ?., Kotani A., Parlebas J.C., Kanamori J. J.Phys.Soc.Jap.,
substitution eq.(B.8) into the r.h.s. of eqs.(48) and (49), 1983, 52, p.2581. ]
we straightforwardly obtain a perturbation-type expansion for 30. Plakida N.M. J.Phys.C: Solid State Phys., 1971, 4, p.1680.
the self-energy up to order U® ,(U”® and 1€, ) 31. Kuzemsky A.L. Theor.Math.Phys., 1978, 36, p.208.

32. Ichiyanagi M., J.Phys.Soc.Jap., 1972, 32, p.604.
33. Tsercovnikov Y.A. Theor.Math.Phys., 1981, 49, p.219.

REFERENCES 34. Wysokinski K.I., Kuzemsky A.L. phys.stat.sol,, 1982, bll3,
p.409.
1. Electron Correlation and Magnetism in Narrow Band Systems. 35. Vujicic G.M., Kuzemsky A.L., Plakida N.M. Theor.Math.Phys.,
(Ed. by T.Moriya). Springer Verlag, Berlin, 1981, 198%, 53, p.138. ' .
2. Friedel J. Physica, 1982, 109-110B, p.1421. 36. Christoph V., Kuzemsky A.L., Frauenhaim T. 1In: Crystalline
3. Kohn W. 1In: Highlights of Condensed-Matter Theory. Electric Field Effects in f-Electron Magnetism. Plenum
LXXXIX Corso Soc. Italiana di Fisica, Bologna, 1985, p.l. Press, New York, London, 1982, p.219.
4. Skriver H.L. The LMTO Method. Springer Verlag, Berlin, 37. W§S°klﬂ5kl K.I., Kuzemsky A.L. J.Low Temp.Phys., 1983,
1984. 52, p.81. ]
5. Andersen 0.K., Jepsen 0., Glstzel D. 1In: Highlights of 38. Kuzemsky A.L., Holas A., Plakida N.M. Physica, 1983,
Condensed-Matter Theory. LXXXIX Corso Soc.lItaliana di 122B, p.168.
Fisica, Bologna, 1985, p.59. 39. Marvakov D.I., Kuzemsky A.L., Vlahov J. Phys.Lett., 1984,
6. Hubbard J. Proc.Roy.Soc., 1963, A276, p.238. A105, p.431. .
7. Kanamori J. Prog. Theor.Phys., 1963, 30, p.275. i 40. Marvakov D.I., Vlahov J., Kuzemsky A.L. J.Phys.C: Solid
8. Yoffa E.J., Rodrigues W.A., Adler D. Phys.Rev., 1979, : \ State Phys., 1985, 18, p.2871. .
B19, p.1203. 41. Marvakov D.I., Kuzemsky A.L., Vlahov J. Physica, 1985,
9. Lacroix Lyon-Caen C., Cyrot M. J.Magn.Magn.Mat., 1977, B136, p.631,
5, p.142. 42, Fulde P., Lucas W.D. Z.Phys., 1982, B48, p.113.
10. Kajzar F., Friedel J. J.de Phys.(Paris), 1978, 39, p.397. 43. Kohn W. Phys.Rev.,.1973, B7, p.4388.
112 Stollhoff G., Fulde P. Z.Phys., 1977, B26, p.257. 44. Zubarev D.N., Usp.Fiz.Nauk, 1960, 71, p.7!l.

24 : 25



45.

46 .
47.

Kishore R., Joshi S.K. -J.Phys.C: Solid State Phys.,
1971, 4, p.2476. .
Gutzwiller M.C. Phys.Rev., 1964, 134, p.923.

Marshall W., Lovesey S.W. Theory of Thermal Neutron Scat-

tering. Oxford, Clarendon Press, 1971.

Received by Publishing Department
on January 17, 1986.

WILL YOU FILL BLANK SPACES IN YOUR LIBRARY?
You can receive by post the books listed below. Prices - in US 8,

D1,2-B2-27

D2-82-568

D3,4-82-704

D11-83-511

D7-83-644

D2,13-83-689

D13-84-63

including the packing and registered postage

Proceedings of the International Symposium
on Polarization Phenomena in High Enexgy
Physics. Dubna, 1981. 3.00

Proceedihgs of the Meeting on Investiga-
tions in the Field of Relativistic Nuc-
lear Physics. Dubna, 1982 7.50

Proceedings of the IV International
School on Neutron Physics. Dubna, 1982 12.00

Proceédings of the Conference on Systems and
Techniques of Analiticzl Computing and Their
Applications in Theoretical Physics. Dubna,1982. 9.50

Proceedings of the International School-Seminar
on Heavy Ion Physics. Alushta, 1983. 11.3D

Procéedings of the Workshop on Radiation Problems
and Gravitational Wave Detection. Dubna, 1983. 6.00

Procecedings of the XTI International
Symposium on Nuclear Electronics.
Bratislava, .Czechoslovakia, 1983, 12.00

E1,2-84-160 Proceedings of the 1983 JINR-CERN School

D2-84-366,

D1,2-84-5399

D17-84-850

D10,11-84-818

D4-85-851

Orders for

of Physics. Tabor, Czechoslovakia, 1383 6.50

Proceedings of the VII Internaticnal Cénference
on the Problems of Quantum Field Theory.
Alushta, 1984. 11.00

Proceedings of the VIIX International
Seminar on High Energy Physics Problems.

12.00
Dubna, 1984.
Proceedings of the Il Internaticnal Symposium
on Selected Topics in Statistical Mechanics.
Dubna, 1984, /2 volumes/. 22.50

Proceedings of the V International Meeting

on Problems of Mathematical Simulation,

Programming and Mathematical Methods

for Solving the Physical Problems,

Dubna, 1983 7.50

Proceedings of the IX All-Union Conference
on Charged Particle Accelerators.

bDubna, 1984. 2 volumes. 25.00
Proceedings on the International School
on Nuclear Structure. Alushta, 1985, 11.00

the above-mentioned books can be sent at the address:
Publishing Department, JINR-

Head Post Office, P.0.Box 79 101000 Moscow,. USSR






