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At present the growing interest is abserved to the study of
the liguid-crystalline (EC) state of polymers in different meso—
rhases b « The method of selected deuteratfor allaws ane to
obtain direct informatior of the structure of the conformation of
the macromolaecule in the block from the neutron scattering data.

First measurements- of the projectlons of the radius of gyra-
tion of the main chain of the comb-like macromolesule in the nema-
tic and smeetlic mesophases performed by the small angle neutron
aca.ﬁterin;g techntque (SANS) are presented fn 445/

In " the interpretatiomr of the neutron scattering data for
the EC pokymer in the nematic phase is given. «

This paper deals with the interpretation of presently aval-
lable data on neutron scatfering on the smectfo polymer fram 5/.

In the paper/5/by SANS and the neutrom diffraction (ND}
methods the comb-Iike LC potymer -has dbeen Investigated with the
chain of the type

Q_HS )

b
+ erp—c -
4 . —_—
CO—(CH )= 0— L~ Qs ~ L5 - 064 Hg

with the molecular weight 310 % Dalton.

The macromolecule of such- polymer contains €80 momomers and
has the contour length 1700 & ,

Measured values of the prol-ctions of the radius ef gyration
for the macromolecule in the smectiec phase are

Ro= 21434 ; Ry=486+9A, @

where sz and Q} are the projectiond of the radius of gyraticm
on the directrons perpendtcular {xJ and parallel (y)} to the smeetic
fayer plane.

The total radtus of gyration of the macromolecule in the smec-
tic phase can be expressed by projections:

12
ngc’faf+2/€}2) ) @3

1 .
BEIC K ildl BECTHTYR |
AREBRE BCcrenoRanng ;
¢ Po B AP CIH R T il A




The measured value of the radius of gyration in the isotropiec phase
P __O
Rr = 105 A . (3

The comparison between (2) and (3) shows that the rigidity of
the macromolecule in the smectic phase is greater than in the iso-
tropic phase.

The thickness of the smactic layer D is measu}ed by the ND‘
method

D=29,64. W

Besides the peak oorresponding to the interplane'ﬁistance, the
diffractogram displays diffuse spots in the small angle reglon with a
smoothed maximum which relates to the Bragg distances 56A and JBA
along the X -axis and -axis, respectively.

Interpreting these data the authors in suppose that the mac-
romolecular chain locates in one smectic layer crossing it many times.
Evidently, the proposed conformation is based on the very large ani-
sotropy of, the projections of the radius of gyration. However, the
radius of gyration of the macromolecule is its integral characterlis—
tic, and therefore, different conformations with the same radius of
gyration are possible.In the present paper it is supposed that the
macromolecule has the conformation of anisotropic statistical coil
with parameters determined on the basls of available experimental
data.

2, The Model of Anisotropic Freely Joint Chain

The large anisotropy of the projections of the radius of gyra-
tion of the LC polymer macromolecular chain in the smectic phase is
the result of the difficulties in crossing through the mesogenic la-
yer. It is natural since the smectic phase can be considered as a
microphase separation of mesogenics and alyphatic parts /7/.

Let us refer to the part of the chain intersecting the .smectic
layer as the crossing segment. It is reasonthe to suppose that the
crossing segment will straighten and so will be praotically perpendi—
oular to the smectic layer. The crossing segment forms a defect in
the smectlc layer on the molecular level. The detalled structure of
this defect 1s unknown, though the SANS method ad sﬁown below allows
one to evaluate the number of such defects.

Let us construct the model of freely joint chain with the
following properties:?

1. The chain performs random walks in the smectic layer plane

2

so that the backbone of the macromolecule 1s located in the glyphatic
layer. let us describe the flexibility of such a two~dimensional
chain by the Kuhn segment @L .

2. The chain performs random walks between the intermediate
layers with the step equal to the inter layer thickness D .

3, Since the transition through the smectic layer i1s quite
difficult, it must be accounted by introducing different probabili-
ties for the steps of the freely joint chain in the plane and between
the layers.

The simplest way to do it 1is to use the lattice model.

In this case the space distribution function for one segment of the
freely Jjoint chain is

gm%z),: iH(I-D)Jr f(x+b”)]§(y)g(z){j+
* %N(y'gihM;ﬁ&)“&x)é‘fz)i_:BJr
b A1SG-b) + 8B 0 43R

(5)

where J is the Dirac delta function and f is the normalized
prebability of the interlayer transition. If P = 1/3, then the step
probabllity is equal for all three directions.

As is well known,the mean square distance between the ends of
the freely joint chain is

? — 2

o= N, (6)
o

where N is the number of chain segments, 7 1s the radius vector

of one Kuhn segment and (%’) is glven by

(:\Z)Z: lg(.'(’xdg Clig(x’g7z)(x2quﬁ ,22)' 0

Accounting (5) and (7) for the anisotropic chain we obtain

h o= N[Zi&*PDl (8)

For the mean square projections of the distance between the
ends of the chain we obtain

_2"__/_ 2 _ a4 Z.TZJ\(L__BZ.



It is well known that any real chain (without effects of
excluded volume) can be approximated by equivalent freely Jjoint
chain which has the same contour length and the average distance
between the ends as those of the real chain.

The quantity of the Kuhn segment A and their number N in
the chain are defined as i

T2 ~ . — * Q1o
2o LA N = e (10)
where /. is the contour length of the chain.

In the case when the chain is characterized by two segments €¢
and D , we find N from

J R,

L= 2\?;\:N!’ZL|~ (11)

i=1

Ang using (5) and (7) we obtain
L, = N][(4-p)BL+ pD]. (12)

The radius of gyration depends on the distance between the ends of
the chain as 2
2 _  h

Ry = & (13)
Therefore, for the projections of the radius of gyration we have
2 N o~ 2
R- = NpD, (14)
X 6 P
2 A — 2
Ry = %14_23)_ &r - (15)

In equations (12), (14) and (15) the quantities Rx ﬁ?j
and D are determined experimentally, the contour length LJ is
the known gquantity, and unknown quantities are the chain parameters

J\/oglandp.

_

It must be taken into account that the real chain performs ran-
dom walks not strictly in the plane, but within the whole intermedia-
te layer having a finite thickness.

These random walks will not affect Fﬂtvalue because of the small
thickness of the intermediate layer, but they must be accounted in
the expression for the contour length (12).

Let us denote by A L;x,the contour length of the chain looca-
ted outside the plane. It is reasonable to suppose that

AlLa = NO=P)B. a6

where A is the mean contour length per one Kuhn segment of the
freely Jjoint chain in the intermediate layer.

With (16) taken into account equation (12) becomes
L, = NLU-p)EL+a)+p DY, an

/A 1is unknown quantity. Let us suppose that it is of an order
of the thickness of the intermediate layer (5-10A).
For convenience introduce in eguations (14), (15) ana (17)
the following notation:?

J‘/u = J\I/‘P ) J\/_L:N‘J\fll 9 'LN :J\///D 5 L{_L: L“Lll (18)
then the equations become
6
2 _ 1 N pE (20)
. Ry 6 2 *t’
ki = N +A), (21)

JVH and JVL are average numbers of the chaln segments oriented
normally to the smectic layer and parallel to it, respeotively. For .
the isotropio distribution

N o N
Ny = 5 N =2 3 (22 )

The quantities Qa: and D are measured experimentally, there~
fore JV; oan be defined from (19) as

2
. 6Rx
N, = 2 (23 )

IV” that is the number of crossing segments (defects) for one
macromoleoular chain., The quantity

I - L 665 (24 )

L DL
is a characteristic of the smectic phase.

Now let us estimate the accuracy of the quantity A: o Expres-
sion (24) is obtained under the assumption that fhe orossing seg—
ment 1s stretohed as far as possible, i.e., it has transconformation.
Another inaccuracy in (24) reflects the indefinite thickness of in—

termediate and mesogenio layers, Nevertheless, all this does not
influence the quantity W, .




Using equations (20) and (21) we d&fine
by =8, [1+4 (&) - (L2

Ni= k14~ 2Ly 5
=l S

» (25)
A \2
('g‘i s e

where
o]

g_l_:

12 Qi
Ly (27)

The quantities GL and $(L are defined with an accuracy of
the second order of the parameter 4§//gi_ . At last, let us express
p in terms of new variables: -

Ni

(28)

*

3. Calculation of the Parameters for the Model Chain

U§1ng experimental data from /5/ and (23) we obtain
Ny, = 3,04. (29)
It is the number of orossing segments accounted for one macro-

molegular chain of the polymer with a given molecular welght. From
(24) we obtain for Kk

k = 0, 06 (30)

that is, crossing segment amount to approximately 6% of the whole
chain length,

JVU crossing segments divide the chain into ,fdﬂ+1 quasi-
~two-dimensional subcoils. The typical conformation of the macro-
molecular chain of the smectic LC polymer is shown in Fig.l.
____The mean square distance between the ends of such a subcoill

<}33) i3 independent of its internal structure and we can write

. }Qj _ (N + 1 ¢ K. )2 ,

. ¢ +(31)
where ﬂ2# is the experimentally measured projection of the radius
of gyration for the whole poil. Using (31) and from (1) we obtain

. y . o
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Fig.l. Typical conformation of the macromolecules backbone.

Quasi-two-dimensional subcoils 3 placed in the intermedia-
te layer 1, are connected with crossing segments 4, These
segments create defects in 7?7 mesogenic layer 2, Experi-
mental date are taken from .

Correspondingly, for the projection-of the radius of gyration
and the chain Iength of o¢ne subcoil we obtain

' /22, = 4z3A 5 L = 400A, (33)

where /fi is the averagé length of tHe subéoil ¢hain. {In general,
for the real subcoil / and L{L largely variate since crossing
segments appear oocasionally). Note that the gquantites in (32) and
(33) are independent of the uncertainty in A , while ., N

and P as seen from (25); (26) and (28) depénd on A , These
quantities Zfor two values of /A  are!
o o c -
Bl = 55,14 5 Ny =29.2; p°=0.094 for A =0 (34)
B =63 4 ; | Ny =23.45 p =0,114 for A =104, (35)

As is seen from (34) end (35),values ofB, , N and p are rather
weakly dependent on the parameter A o

Let us take the quantity gi_ = 60 A , The comparison between B
and the Kuhn segment for the coil in the isotropic phase (39 )
points out the considerablé increase of the chaln rigidity of the
two~dimensional subecoil., It is caused primarily by the decreasing
number of goshisomers in quasi-two-dimensional chain and by effects
of excluded volume appearing in this case /8/ . In the three—dimen—
sional case aocording to the Flory theorem the chain behaves as an
ideal one and effects of gxcluded volume can be negleocted.



From all the above, it follows that it 1s desiragble to measure
the XKuhn segment directly by the Kratky technique . Measuring
only /Qg 1s not sufficient for a precise definition of &L becau~
se of uncertainty in A and the influence of excuded volume effects.

4. Average Distance between Defects

Let us estimate the average dilstance between the crossing

segnents in one smectic layer using
M - /2
Y= (5w )

which can be obtained from simple considerations. Here 7; is the
projection of the distance between defects on the -axlis, M 18
the polymer molecular weight, JVA is the Avogadro number and N 1is
the polymer density. Assuming 1 =1 g-om™ and taking J) and JVZ
from (4) and (29) we obtain

(36)

Q

1w FH A G

It is easy to show that the average distance between the
projections of two crossing segments 1gcated in different smectic
layers will be twice as small,i.e., 37 A , It can be assumed that
the small ang%e peak 12 diffractogram in which relates to Bragg
distances 56 A and 38 A in directions X and Y respeot%vely,
results from the socattering on defeots located in different smectic
layers (Fig.2).

5. Temperature Effects i

9tudies of the temperature dependence of the projections of the
macromolecule main chain radius of gyration can give information on
the nature of defects of smectic comb-like LG polymers.

Suppose that the smectloc phase 1s in equilibrium state, l.e.,
there is a dynamical balance in processes of the appearance and
disappearance of smeotic defects at the given temperature., In this
case the probabllity of defeot appearance P can be written as
follows A c

_ e RT , (38)
R

where + £  is the molar gas constant, 7" 1is the temperature and
- A€71271 is the statistical welght of appearance of the crossing
segment. Bstimating with (38) the energy of smeotio defect & (A’T“’E?

8

37A
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Fig.2, Crossing segments in the gmectic ph A
: ase. “verage distance
between projections is 742 + The gragg distance measured in/ﬁ/
is equal to the distance between marked Segments,

at T = 330% for P =0,01 obtained in (34) we have

£ &~ 1000 ¢al/mole - (39)
The temperature dependence of P (with known £ ) is
—Er1_ 1>
P po € e (7~ %) (40)

and using (14) we obtain the temperature dependence of ﬂ?x

/QI(T):QICT))C),—EQE ('7-1 —%) (41)

The considered polymer is in smectic rhase in the temperature

(o]
range from 45°C to 110%C, For this temperature difference we obtain
using (a1)

”Rx (Tmm)‘ /93(. (Thn'n) ~ 0 j (42)
/{)x (TVJHf'h) ’

Thus the equilibrium theory prediots the increase of K?x_ by 10%
in the smectlc temperature range.
Note that the defect energy ~ 1is composed of the energy of



segregation of mesogens and alyphatic parts of the macromolecule and
the energy of the main-chain binding,

6. Conclusiong

According to assumptions of the present paper random walks of a
polymer chain can be divided into two types -~ random walks in the
smectic layer and those between layers. In the latter case the step
of random walks equals to the thickness of the smectic layer. There-
fore, measuring the projection of the radius of gyration of the maero-
molecule in the direction X (Fig.l) and using (23) one can determi-
ne the number of crossing segments (defects) fVu .

The crossing segments divide the macromolecular chain into quasi~
—~two~dimensional parts with the conformation of statistical coil. The
average size of these suboolls can be defined using (31) and measur-
ing the projeotion of the radius of gyratién in the y-direction.

The absence of date on the influence of excluded volume effects
and, besides, the random walks of the main chaln in the x-direction
in the range of the intermediate sublayer prevent a precise defini-
tion of the Kuhn segment EL in the plane. Therefore, it is desirable
to measure the Kuhn segment (or the persistence length) directly in
the smectic layer plane by the Kratky technique.

We hope that the use of the small-angle neutron scattering
and the neutron diffraction techniques along with other methods
(X -ray diffraction, NMR etc) will soon give a complete presenta-
tion of the cob-like LC polymer structure.
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Kyuuenko A.L., CBeroropcku 1.A. E17-86-287
KoudopMmanusa rpebHeoGpasHOH MaKpOMOJIEKYJIbI

B cMeKTHuYecKolt dase; MHTeprnpeTanus LaHHBIX

HeHUTPOHHOrO paccesHHUs

llpocToe TeopeTHUeCKOoe paCCMOTpeHHe MO3BOJsAeT ONpenelluTh
KoHbOpMAIH0 IeHTPalbHOro xpe6Ta MaKpPOMOJIEKYJbl IO OAaHHbM HeHT-—
POHHOTO 3KCIepHMeHTa. MakpoMoJiekyssipHas lienb B CMeKTHYeCKOH
dase paspgensieTcsa Ha KBa3UABYMepHhle KIYOKH, pacCIoOJIOXeHHbIe
cnydyadHeM Oo6pa3oM B pas3JIMYHBIX CMEKTHYECKHX CJIoAX. Pasmepn
KIIyOKOB He 3aBHUCAT OT MONEKYJISpPHOTrO Beca nojuMepa. [IByMepHoe
cyOKINIYyOKH CBA3aHbl Mexny coboil HeGONbHWHM KOIMUYECTBOM Nepexo-—
noB. HUx MOXHO paccMaTpuBAaTh Kak gedeKTH CMeKTHUYeCKOH ¢asbl.
HaMepeHue paauyca HHEpPIHH MAaKpPOMOJIeKyJlbl B CMeKTHYeCKoil ¢dase
C IMMOMOIbK MeTOOa MalloOyrJIOBOTO pacCesHUusA HeNTpOHOB MO3BOsAET
C TIOMOIbI0 TpemIoXeHHOH MOOend onpeneyiuTh KOoJIHuecTBO OedeKTOB.

Pa6GoTra BomonHeHa B JlaBopaTopuH TeopeTnueckoi ¢usuku OUAH

TpenpunT OGbeHHEHHOrO HHCTHTYTa ROEpHBIX HccieRoBaHHii. [ly6Ha 1986
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Kunchenko A.B., Svetogorsky D.A. E17-86-287
Comb-Like Macromolecule Conformation

in Smectic Phase. Interpretation of Neutron-

Scattering Data

Simple theoretical consideration allows one to define
the conformation of the macromolecule main chain from the
neutron experiment data. The macromolecular chain in the
smectic phase is divided into quasi-two-dimensional coils
randomly placed in different smectic layers. The size of
these coils is independent of the polymer molecular weight.
The two-dimensional subcoils are connected with each other
by a number of transitions. They can be considered as defects
of the smectic phase. The proposed model allows one to define
the number of defects measuring the radius of gyration of the
smectic macromolecule by the small angle neutron scattering
technique,

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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