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1. Introduction

Green functions (GF) have been applied very successfully in stati-
stical physics, However, the application of GF to spin models is
confronted with the difficulties due to the commutation relation

of spin operators and the vanishing of the (2S + 1)-th power of

the ladder operators, A diagram technique for GF containing spin
operators is needed not only for the direct calculation of thermo-
dynamic or dynamic quantities for spin systems but also for the
repregsentation of the partition function in terms of functional in-
tegrals /1/. In this connection it is necassary for a microscopic
foundation of the application of the 3-component PA model for the
Heisenberg ferromagnet in the framework of renormalization group

in the theory of critical phenomena,

Recently, ‘a paper by van Hemmen et al. /2/ indicated that an energy
gap between the physical ground state and the improper (unphysical)
ptates does not exist in the Dyson fqrmaliem /3/. This statement
again raises the question about the actual temperature dependence

of the low temperature magnetization of a Heisenberg ferromagnet.

On the other hand a book by Baryakhtar, Krivoruchko, and Yablonski
(BKY) /4/ appeared recently proposing a new diagram technique for
GF containing spin operators based an the diagram technique by
Izyumov and Keesan-Ogly /5/, The results for the GF obtained for a
Heisenberg ferromagnet by BKY applying their diagram technique do
not agree with those of earlier papers on that problem using diffe-
rent diagram techniques /6,7,8/, decoupling the equations of motion
for the GF /9,10,11/ or using a formal solution of the equations of
motion /12,13/. In this paper, we answer the question about the ori-
gin of the just mentioned discrepancy in the resulting GF for a Hei-
senberg ferromagnet.

There is now no doubt, how the analytic expressions for ‘the perturba-
tion expansion of the GF for a Heisenberg ferromagnet do look like
up to second order, In some earlier papers /14,15,16/, we could

show that the perturﬁation series up to second order agree with

each other as they were calculated by Lewis and Stinchcombe /17/,

by Spencer using the drone-fermion representation /18/, by Izyumov
and Kassan-Ogly /5/ (IKO) and by the present author et al. /6,8/.
However, each of the mentioned authors obtains different results

for the GF by summing certain classes of diagrams. Therefore, the
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main problem is to find a proper diagrammatic representation allo-
wing to recognize how one has to sum suitable partial series of the
perturbation series., We could show /19/ that IKO /5/ were not able

to find a summation of their diagrams free from internal contra-
dictions,

The diagram technique of BKY /4/ is a further development of the

one proposed by IKO avoiding the unusual ovals for indicating coin-
ciding lattice sites., BKY apply Dyson’s equation for the summation

of diagrams, and therefore, a direct comparison with our approach

is possible,

The paper is organized as follows. In'2 we shortly explain the diffi-
culties of a diagrammatic representation for GF containing spin ope-
rators and present the diagram technique by Kithnel and Haberlandt.
Then, we introduce the diagram techmique by BKY and compare different
diagrams, It turns out that some diagrams are not drawn appropriately,
and, as a consequence, BKY are not able to distinguish which diagrams
must be included into the self-energy part of Dyson’s equation and
which must not. In Sec.4 we show explicitly the origin of the disc-
repancy between the result of BKY and the commonly accepted result
for the GF by calculating one of the crucial terms., The conclusions
in Sec. 5 are devoted to the problem of the low temperature magne-
tigation and contain some remarks about the representation of spin
operators in terms of boson operators.

2, Diagram technique proposed by Haberlandt and Kihnel
Spin operators obey the commutation rules

+ - 2 kg R - t

[5,%]‘8\&25@ )[SF,_({]_+§(€S‘Q. 1)
The commutator of two spin operators is again an operator. Therefore,
Wick'’s theorem is not valid in the usual form as for boson or fermion
operators. An analogue to Wick's theorem for spin operators has been
formulated by Jager and Kihnel /6/ in the case of spin 1/2 and by
Izyumov and Kassan-Ogly /5/ and by Haberlandt and Kuhnel /8/ in the
cagse of arbitrary spin:
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We use the usual Matsubara technique /20/. The operators have to be
taken in the interaction representation:
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where Ho is the free part of the Hamiltonian., The index o at the
bracket indicates that the trace has to be performed with the help
of - - . . 0 _

g, = exp( ﬁ”o) In equation (2) Gy (¥, - ¢, ) is the zeroth
order GF
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Eauation (2) is written down for the case S:’ = S; s the case

S1‘ = S; comes out simply by an immediately evident change in the
argument of the zeroth order GF. The model we are dealing with is
the isotropic Heisenberg ferromagnet.

This model encounters all the difficulties appearing in the diagram
technique for a spin model., The Hamiltonian is

H =H +H, (5)

where
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No intra-atomic exchange shall be present: Jff = 0,
The GF to be calculeted is defined as
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where 6 (1/T) is the usual S operator the Taylor expansion of which
resulte in the perturbation series; the single terms of that series
have to be represented properly by diagrams.

We do not repeat all the details of diagrammatic rules -~ which are
the standard ones- but indicate only the peculiarities resulting
from the commutation relations (1) of the spin operators, The trans-
verse interaction (first term in H1) will be denoted by a dot;and
the longitudinal interactior (second term in H1),by a wavy line.,



Besides these two dynamic vertex parts and the zeroth order GF,
which we represent by a solid line, there appear further elements
in the diagrams coming from the commutation relations (1), from

the so-called kinematic interactiom An open circle stands for
zz (o

b4 : . ) 2
LS7y o° A broken line corresponds to Klm {Sls >0 32 > .

& broken double line means the connected part ngz(o) f(SiSéSz:>

The end of a wavy line may be connected with two solid lines getting
an additional factor '1/(2 <SZ>°), with an open circle or with a
broken line. The connection of a broken line with a solid line gets
a factor 1/(S ) . The triangle stands for a factor 1/(2¢s% ) ) and
it gets an additlonal factor 1/<:Sz o if one edge is parallel to

a so0lid line; all three angles belong to the same lattice site.

Two parts of a diagram (including disconnected diagrams) may be
connected by means of triangles or broken lines if they do not
belong a priori to the same lattice site and if Jep = 0 does not
rule out the connected term., Three parts of a diagram may be connec-
ted by a broken double line,

The resulting terms up to second order of perturbation theory are
represented by the diagrams in Fig.1.

In the course of disentangling the traces of several operators ST?
there result traces of more and more operators Sl . Those traces are
calculated as follows:
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The connected longitudinal correlation functions are defined as
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We are now concerned with the summation of the diagrams shown in
Fig, 1, Some diagrams may be summed immediately with the help of
Dyson'’s equation (1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 18, 19, 20, 21,
24, 25). Other diagrams contain only one single zeroth order GF and
canpot be summed by means of Dyson’s equation, Those diagrams
are 4, 8, 9, 15, 16, 17 in Pig. 1. We have established earlier
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Fig, 1. Disgrams up to second order of perturbation theory

/6,8/ that those diagrams correspond’ just to the expansion of
S%y (Pig.2). One can see this fact very simply if one calculates
the trace in the numerator of (7) by means of relation (2)
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Fig. 2, First diagrams in the expansion of £SZ» .




The trace explicitly written down is just the expression for < SZ>
(except for the omitted denominator)., Therefore, the summation of
the diagrams 4, 8, 9, 15, 16, 17 and similar diagrams result in

a factor < S%> in the numerator of the GF instead of < SZ%>
After performing this summation the remaining diagrams 14, 22, 23
in Fig. 1 may be summed with the help of Dyson’s equation,

The resulting GF is after Fourier transformation
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where ¢ S%yand slua.,é) are to be taken in the corresponding
approximations, Taking into account the vertex parts -shown in Fig.3
in the self-energy part of Dyson’s equation the standard spin wave
energy /10, 11, 12, 13, 8/ results (first order theory neglecting
the damping of the spin waves) .
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Fig. 3. Diagrams in the self-energy-part in the first order theory

In the case of spin 1/2, ¢8%> can be calculated according to
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where ¢ = (4/N) Z'%(q) . In the case of arbitrary spin, one uses
the relation given by Callen /9/ to calculate < S%> :
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3., The diagram technique proposed by BKY'

The diagram technique proposed by BKY is based on that developed

by IKO. BKY do not use the ovals introduced by IKO for indicating

the same lattice site, Fig. 4 shows the diagrams of BKY in the same
sequence as in Fig,1, The zeroth order GF is represented by a solid
line, a wavy line with one open circle stands for the transverse
interaction and a wavy line with two open circles means the longi-
tudinal interaction, A dotted line has different meaning depending

on the number of different symbols, which it connects with each
other: If it connects n otherwise unconnected symbols it means thé
n-th derivative b(n of the Brillotin function b = <g%> 0° The

open circle does not have a unique meaning. The additional kinematic
diagrams containing the tranaverse interaction, in which we introdu-
ced the triangle, are represented by diagrams the number of incoming
s80lid lines in which is not equal to the number of outgoing solid lines
(diagrams 6 and 8 in Fig, 4),

\There is a one-to-one correspondence between the diagrams introduced

by HK (in the case of spin 1/2 already introduced in /6/) and by BKY
(after correction of some misprints: in Fig. 1, 2, 3, in /19/ the
diagram 13 is missing, in Fig. 26.1 in /4/ the diagram 14 is absent,
in Fig. 4 in /8/ the second line with diagrams 15, 16, 17 was omitted).

4, Summation of diagrams

BKY try to sum their diagrams with the help of Dyson’s equation

and, therefore, a direct comparison of BKY approach of our summation
of diagrams /6,8/ is possible, BKY divide the diagrams into two
classes: one class may be summed by introducing them into the self-
energy part of Dyson’s equation, the other class does not fit into
Dyson'’s equation and is summed to give a new numerator of the GF,
However, the diviaibn of diagrams into those two classes is not
correctly done by BKY. The diagrams introduced by BKY have the
following drawback: the dotted lines are connected always with

the end of a solid line, not with the solid line as a'whole, This
erroneous prescription results from the fact that BKY allways give
an argument T to any Sz, while S? 1is independent of T 1in the
interaction representation to be used in the perturbation series.
This inadequate diagrammatic representation provides BKY from recog-
nizing that, e.g., their diagrams 7, 12, 21, 25 (diagrams 15, 16,
20, 22 in PFig. 26,1 in /4/) must be introduced into the gelf-energy
part of Dyson’s equation and do not contribute to the so-called
force part.
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§ , N, S -E The terms omitted in equation (17) correspond to the diagrams 18,
i t i } ' 19, 20, 22, 23 which are treated likewise according to the summati-
_*_J. —pOn e : on procedures of BKY and of HK, respectively. The terms in the
18 14 20 21

first line on the right-hand side in (17) are represented by the
diagram 24 in Pig, 1 and Pig, 4;they -are included into the self-
energy part., The terms in the second line have the same analytical
e _.,,__15. —y—ge —T‘l shape like the terms in the first line., However, BKY represent

E } i ______ those terms by a diagrgm (diagram 25 in Fig. 4) which apparently
] ' 25 1 cannot be included into the self-energy part. Of course, the analy-
. 2 3 24 ‘ tic expressions in the second line (17) have to be summed in the
self-energy part of Dyson’s equation, and our diagram 25 exhibits
. this property evidently, As concerns diagram 25, the statement that

Fig.4. Diagrams introduced by BKY

ther hand, BKY notice that some of the diagrams which 1 it contributes to the so-called force part of the GF is eveén wrongs
On the othe d ;ith the help of Dyson’s equation yield a full in a diagram contributing to the force part it must be possible to
OBDEOt :9 2;mmZumerator of the GF. However, BKY get the GF in the ' isolate GF G{m’ what is impossible for diagram 25 (and also for
<57> in ® y diagram 21) since there is l=f#g=m. This discrepancy does not affect
form 2 Al &) \ the spin wave energy (12) because the diagram 25 contributes only to

G% (w &) j!f;g_z_t__jf:L? | a second order theory taking into account the damping of the spin

o My = {w, - f{w,._' &) waves,
- (15) }

The last two temms written down in equation (17) correspond to the
here just those four diagrams 7, 12, 21, 25 contribute to A(w, ,2 ) diagram 21, It is immediately evident that they may be summed with
whe

h not erroneously included by BKY into the self-energy part the help of Dyson®s equation since they are products of two GF connec-
whic ar? o1 ccording to their unfavourable diagrammatic ted by a vertex part. The product of the two correlation functions
O hton. won aw ive a simple argument for our point of view. | k22 (0 is contained in the first order of the expansion of K22 /8/.
;iizei;::aZi:n;e za?zulite oxplicitly the trace . Using the symbols of BKY one should represent the last four terms
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in equation (17) by the diagrems 21 and 25 in Fig.5. showing clearly
that they are to be included into the pelf-energy part. Similarly, one
can draw the diagrams 7 and 12, as it was done in Fig.5. Having drawn
diagrams T, 12, 21, 25, as 1t was done in Fig. 5, one never would
think of a force part giving an additional term in the numerator of

24 7 12

Fig.5. Proper shape of diagrams contributing apperently to the force.
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part using symbols of BKY

Further, BKY do not notice that the series expansion of the correla-
tion function k%% ig contained in the perturbation geries, too /8/.
Due to that observation the expreasion b’ coming from the molecular
field approximation has to be substituted Dby k%% in subsequent appro-
ximations. This ie the Treason why BKY are not able to reproduce the
commonly accepted result (12) for the spin wave energy at low tempe-

ratures.
5. Conclusions

We have shown that the GF has the shape (11) and that no additional
term (force part) does appear in the numerator of the GF if one does
sum the terms in the perturbationrseries according to thelr analytical
gtructure. It is important to state /8,6/ that the longitudinal cor-
relation function k%2 will as well become & full %2 py summation
of partial series as <s?> in the numerator of the GF becomes
a full £S%> . This fact leads to the substitution of the input
quantities b, b’yeee in molecular field approximation (MFA) by the
quantities .(Sz> , Kzz,...‘in the corresponding approximations.
This fact was not recognized by BKY and JKO. As a consequence,
quantities of MFA survive in the ex%ressions for the GF. At low
femperature we have b = S, b’ = b(n = 0., Therefore, BKY are not
able to obtain the commonly accepted expression (12) for the spin
wave energy in a first order theory. Calculating the damping of the
spin waves in a gecond order theory the reault will be still poorer.
We are now going to discuss the low temperature magnetization and
confine ourselves to the case S = 1/2, since the essential features
;an be seen most transparently in that case., According to equation
(13) the low temperature magnetization ig calculated from
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2(4+2¢4) §(4-24 14470 ). (18)
This relation follows from the commutation relations of the spin
operators and from the shape (11) of the GF, The term ¢ 2
a term T3 in distincti : D s
A Py nction to ;he low temperature magnetization obtai-
yson . The term T was the subj
ject of many investigations
;see /2;/ and references therein). If one uses the series expansion
or £S”3» according to BKY, one gets at low temperatures

_s = 41 4-
<> = 4(4-24)
in cont icti . o
contond:adlct;on to equation (18), but avoiding the term T3. This
(Sziac c:i?n doe: not appear in our approach since the series for
ontain < S>> itself, and the resulting implicit equation
corresponds approximately to (18).
W .
;e ztlll add some remarks on a paper by BKY /22/ in which the state-
e? was‘made that the calculation of the GF gives the same results
:alng ?pln operators or performing first the Dyson-Maleyev trans-
Aormatlon to boson operators. This statement is valid only in MFA
8 soon as one passes beyond M iti .
< Sz> B . Yy ?A, the quantities b, b’,... become
Lo f. seee aN o not differ only by an exponentially small
- : rom the corresponding quantities obtained after bosonizatioh
c:r an'to Dyson-Maleyev, However, even if the single terms in the
fer urbation series would differ only by exponentially smll amounts
he summati infini i
e ation of infinite series may give strongly different results,
is obviously the case according to the results given abd
above.

There is now doubt in the fact that the GF for a HelsellbeIg ferro-
g he ( ) 4
magnet has t shape 11 and the Iesultlng mean occu tio numbers
pa n
of 8pln wave states Obey a Bose distribution modified by the tem

erature d 2
P e dependent factor o« S%» in the numerator.
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Kionens A,
0 muarpaMMHON TexHuKe gns dyHKmuit 'puHa
reiizseHbeproBCckoro deppoMarHeTuka

E17-86-275

PasBuTHe pgHarpaMMHON TexXHHUKH misa byHkuuit 'puHa, no-
CTpPOEHHHX H3 CHHHOBHIX OMNEpaTopoB, CJIOXHO H3—3a llepecTaHOBOU—
HbIX COOTHOmMEHHH 3THX omeparopoB. HemasBHo Bapbaxrap, KpnBo—
pyuko u f6moumckmii /BKA/ MPEJIOKHIIN HOBYW [HATPDAMMHYI TEeXHHKY
s byuxkuuit 'pHHa, colepxampx CIIHHOBBIE OlepaTopsl, Mel cpaB—
HHJIH 5Ty [UarpaMMHyK TeXHHKY C npepajioxeHHoH Xa6epllaHOTOM
u KioHesteM. BuIMCIIAs IJIaBHble WieHbl, Mbl [MOKasajlH, UTO OuHarpaMm-—
Msl BKl He ompemessiioT BKIajg NPH CYMMHPDOBAHHH DsAfa BO3MYWEHH .
O6Ccyx[eHsl pes3yNbTaThl AJIi SHEPTHUH CIHHOBHIX BOIH H MarHeTHsa-
HUH TIPH HU3KHX TeMIepaTypaxX. ‘

PabGora BhIonHeHa B JlaGopaTopuH TeopeTHUeckoi &usuku OUAH,

[pempuut O6beNHHEHHOTO HHCTHTYTa AOEPHBIX HCCIELOBAHMIA. 11y6i!a 1986

of Theoretical Physics, JINR.

Kiihnel A,

On .the Diagram Technique for Green Functions
of the Heisenberg Ferromagnet

E17-86-275

The Green function approach to the Heisenberg ferro-
magnet is confrontod with the difficulties connected with
the commutation rolations of spin operators. Recently,
Baryakhtar, Krivoruchko, and-Yablonski (BKY) proposed a new
diagram technique for Groon functions containing spin ope-
rators based on the corresponding tochnique by Izyumov
and Kassan-Ogly. We comparod tho now approach with that
proposed earlier by Haberlandt and Kilhnol, Calculating some
crucial terms we could show why the diagrams of BKY do not
represent the corresponding analytical terms properly if
kinematic interaction due to the peculiar commutation rela-
tions is involved. The results for the low temperature spin
wave energy and magnetization are discussed.

The Investigation has been performed at the Laboratory
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