

обьединенный
 UHCTMTYT
 ЯдерНых
 ИССЛедований
 дубна

E17-85.800

M.Bobeth , G.Diener *

STATIC ELASTIC AND THERMOELASTIC
FIELD FLUCTUATIONS
IN MULTIPHASE COMPOSITES

[^0]
1．Introduction

The elastic field in a multiphase composite exhibits spatial fluctuations owing to the random spatial variation of the material properties．In a previous work dealing with the characterization and evaluation of these fluctuations／1／，hereafter referred to as I ，we have derived some exact relations between the square means of the field in each phase and the analytic properties of the effective material parameters．Since these relations do not determine the square means completely，a modified effective－medium approximation for calculating them in composites with aggregate topology has been presented．In the present paper the procedure given in I is extended to the evaluation of the atatic thermoelastic field fluctuations． Moreover，we give another representation of our previous reaulte， which is more convenient for applications．

The basic equation of linear thermoelastostatics in the absence of body forces ia given by

$$
\begin{equation*}
\sigma_{i k, x}=0 \tag{1.1}
\end{equation*}
$$

where the stress tensor $\sigma_{i k}$ is related to the strain tensor $\varepsilon_{: k}=\left(u_{i, k}+u_{k, i}\right) / 2, \quad(\underline{u}$ denotes the displacement field）by the local constitutive law

$$
\begin{equation*}
\sigma_{i x}(r)=C_{: h: m}^{r a}(\underline{r})\left[\varepsilon_{l m}(\underline{r})-\hat{\alpha}_{l m}^{r a}(\underline{r}) \theta\right] \tag{1.2}
\end{equation*}
$$

with the elastic moduli tensor $C^{r a}$ and the tensor of themal expan－ sion $\hat{\alpha}^{\text {ra }}$ ．The temperature difference $\hat{\theta}$ is supposed to be homoge－ neous．Purthermore，the considered medium is assumed to possess an aggregate topology in contrast with a matrix－inclusion one．It con－ sists of a random arrangement of homogeneous regions（grains）ν ， and the material parameters take the form

$$
\begin{equation*}
c^{r a}(\underline{r})=\sum_{\nu} c^{\nu} \theta_{\nu}(\underline{r}), \quad \sum_{\nu} \Theta_{\nu}(\underline{r})=1, \tag{1.3}
\end{equation*}
$$

(and analogously for $\hat{\alpha}^{r u}$), where C^{ν} meana the material parameter of grain ν. The step function Θ_{ν} is equal to one inside the grain ν and zero otherwise.

In the case $\forall=0$ the mean fields $\langle\sigma\rangle$, and $\langle\varepsilon\rangle$ defined as enaemble or volume averages are connected by the effective constitutive law $\langle\sigma\rangle=c\langle\varepsilon\rangle$. With this definition of the effective elastic moduli tensor C, the effective thermal expansion teneor $\hat{\alpha}$ can be defined by

$$
\begin{equation*}
\langle\sigma\rangle=C(\langle\varepsilon\rangle-\hat{\alpha} \hat{v}) . \tag{1.4}
\end{equation*}
$$

Some works concerning the evaluation of the effective thermal expansion coefficient have been reviewed in /2/. A recent paper devoted to this problem in the case of anisotropic phases has been published by Hushin $/ 3 /$. However, this is not the subject of the present paper.

Another task of practical importance, which has received growing attention in the last years, is the calculation of the mean values of the field in special phases of the composite as well as its fluctuations. (For some references the reader is referred to I). The mean strain in the phase A can be defined by

$$
\begin{align*}
& \langle\varepsilon\rangle_{A}=\left\langle\Theta_{A}(r) \varepsilon(r)\right\rangle / v_{A} \tag{1.5}\\
& \Theta_{A}(r)=\sum_{r \dot{r}} \Theta_{\nu}(r), \quad v_{D}=\left\langle\theta_{A}\right\rangle \tag{1.5}
\end{align*}
$$

where the sum is over all grains V occupied by the phase A and V_{A} denotes its volume fraction. The field fluctuations in the phase A are characterized by the products

$$
\begin{align*}
& q_{A}=\langle\varepsilon \otimes \varepsilon\rangle_{A}-\langle\varepsilon\rangle_{A} \otimes\langle\varepsilon\rangle_{A}, \tag{1.7}\\
& \langle\varepsilon \otimes \varepsilon\rangle_{A}=\left\langle\Theta_{A}(r) \varepsilon(r) \otimes \varepsilon(r)\right\rangle / \vartheta_{A}
\end{align*}
$$

which represent tensors of fourth rank. A general acheme for calculating the moments of the random elastic field in the case of a composite with matrix-inclusion topology has been presented by Kanaun /4/. This procedure is similar to that proposed in the following. Another approsch to the evaluation of the fluctuations based on information thoory has recently been given by Pompe and Kreher $/ 5 /$.

In the present work the mean fielde (1.5) and the fluctuations (1.7) are calculnted within a self-consistent single-grain approximation including thermal expansion. The procedure is briefly outlined in Section 2. The themoelestic field fluctuations are calculated in Section 3. Explicit results are obtained for phases with isotropic material properties by supposing approximately apherical grains and
homogeneous mean fields $\langle\varepsilon\rangle$ and $\langle\sigma\rangle$. Section 4 is devoted to the derivation of some rigorous relations between the fluctuations and the effective thermal expansion coefficient. They are astiafied by our self-consiatent approximation. Finally, a numerical analysis of the obtained resulta for a two-phase composite ia given in Section 5 .

2. Self-Conaiatent Approximation

Analogously to the case of electrostatics extensively treated in I, one can tranaform (1.1) into an equation for the displacement field \underline{u}

$$
\begin{equation*}
L_{i l}^{r a} u_{l}:=-\partial_{k} c_{i k l m}^{r a} \partial_{m} u_{l}=-\partial_{k} c_{i k l m}^{r a} \hat{\alpha}_{i m}^{r a} \theta=: q_{i}^{r a} \tag{2.1}
\end{equation*}
$$

The differential operator $L^{r a}$ and the source term $q^{r a}$ depend on the random material parameters $c^{r a}$ and $\hat{\alpha}^{r a}$. Thus, in contrast to I.(3.1), we are dealing here with a linear differential equation that containa a random source term. The mean field $\langle\underline{u}\rangle$ is governed by the effective equation

$$
L_{i l}\left\langle u_{l}\right\rangle:=-\partial_{k} c_{i k \mid m} \partial_{m}\left\langle u_{l}\right\rangle=-\partial_{k} c_{i k l m} \hat{\alpha}_{i m} \theta=: q_{i}
$$

with the corresponding effective material properties c and $\hat{\alpha}$. Choosing the still unknown effective medium as the homogeneous reference medium, we can perform the following decompositions:

$$
\begin{array}{ll}
L^{r a}=L+\sum_{\nu} \delta L^{\nu}, & \delta L_{i L}^{\nu}=-\partial_{k} \delta c_{i n / m}^{\nu} \theta_{\nu}(r) \partial_{m} \\
\underline{q}^{r a}=q+\sum_{\nu} \delta q^{\nu}, & \delta c^{\nu}=c^{\nu}-c \\
\underline{u}=\left\langle q_{i}^{\nu}=-\partial_{k} \delta\left(c_{i k \mid m} \hat{\alpha}_{l m}\right)^{\nu} \theta_{\nu}(r) \dot{u}\right\rangle+\sum_{\nu} \underline{u}^{\nu} & \delta(c \hat{\alpha})^{\nu}=c^{\nu} \hat{\alpha}^{\nu}-c \hat{\alpha}
\end{array}
$$

and the basic equation (2.1) may be split up into an equivalent set of equations

$$
\begin{align*}
& L\langle\underline{u}\rangle=\underline{q} \tag{2.6}\\
& \left(L+\delta L^{v}\right) \underline{u}^{\nu}=-\delta L^{\nu}\left(\langle\underline{u}\rangle+\sum_{\nu^{\prime} \neq \nu} \underline{u}^{\nu^{\prime}}\right)+\delta \underline{q}^{\nu} \tag{2.7}
\end{align*}
$$

After sone formal transformations the following set of equations for the atrain tensor $\varepsilon_{i k}=u_{(i, k)}$ results from (2.5) and (2.7):

$$
\begin{align*}
& \varepsilon=\langle\varepsilon\rangle+\sum_{\nu} \Sigma^{\nu}, \\
& \varepsilon^{\nu}=A^{\nu}\left(\langle\varepsilon\rangle+\sum_{\nu^{\prime} \neq \nu^{\prime}} \Sigma^{\nu^{\prime}}-\psi^{\nu}\right), \tag{2.9}
\end{align*}
$$

where

$$
\begin{align*}
& A^{\nu}=\Gamma \delta c^{\nu} \theta_{\nu}\left(1-\Gamma \delta c^{\nu} \theta_{\nu}\right)^{-1}, \quad \Gamma_{i k l m}=\partial_{(k} G_{i n l} \partial_{m)} \tag{2.10}\\
& \psi^{\nu}=\left(\delta c^{\nu}\right)^{-1} \delta(c \hat{\alpha})^{\nu} \cdot \theta \tag{2.11}
\end{align*}
$$

and G denotes the inverse operator L^{-1}.
Starting from the rigorous system of equations (2.8), (2.9) the first and second moments of the field in each phase of the composite have been calculated in for the case $V=0$ within a self-consistent single-grain approximation. According to (2.9) the results of I may easily be extended to the case $i \nsim 0$ by the replacement

$$
\begin{equation*}
A^{\nu}\langle\varepsilon\rangle \longrightarrow A^{\nu}\left(\langle\varepsilon\rangle-\psi^{\nu}\right) \tag{2.12}
\end{equation*}
$$

For isotropic materials and spherical grain shapes we get inside the grain ν

$$
\begin{equation*}
\left(O_{\nu} A^{\nu}\langle\varepsilon\rangle\right\rangle_{i k}=:\left(\hat{A}^{\nu}\langle\varepsilon\rangle\right)_{i k}=-a_{\nu} \delta_{i k} \operatorname{Tr}\langle\varepsilon\rangle-2 b_{\nu} e_{i k} \tag{2.13}
\end{equation*}
$$

with

$$
\begin{align*}
& a_{\nu}=\left(x_{\nu}-x\right) /\left(3 x_{\nu}+4 \mu\right) \\
& b_{\nu}=3\left(\mu_{\nu}-\mu\right) /\left[6 \mu_{\nu}+\mu(9 x+8 \mu) /(x+2 \mu)\right] \tag{2.14}\\
& e_{i k}=\varepsilon_{i k}-\delta_{i k} \operatorname{Tr} \varepsilon / 3 \tag{2.15}
\end{align*}
$$

where $\mu_{\gamma}, \mathscr{L}_{\nu}, \mu_{\text {and }}$ and are the shoar and bulk moduli of the grains and the effective medium, respectively. Furthermore, the thermal expansion coefficients simplify to scalars

$$
\begin{aligned}
& \hat{\alpha}_{i m}^{\nu}=\alpha_{\nu} \delta_{i m}, \hat{\alpha}_{l m}=\alpha \dot{\delta}_{l m}, \\
& \psi_{\text {im }}^{\nu}=\delta_{\text {Im }}\left(x_{\nu} \alpha_{\nu}-x e \alpha\right) \hat{\beta}\left(x_{\nu}-x\right)
\end{aligned}
$$

and we finally obtain

$$
\begin{align*}
\left(\hat{A}^{\nu}\left(\langle\varepsilon\rangle-\psi^{\nu}\right)\right)_{i k}=-a_{\nu} \delta_{i k}[\operatorname{Tr}\langle\varepsilon\rangle & \left.-3\left(x_{\nu} \alpha_{\nu}-x \alpha\right) g /\left(x_{\nu}-x\right)\right] \\
& -2 b_{\nu} e_{i k} . \tag{2.17}
\end{align*}
$$

As has been noted in I an analysis of the self-consistency condition $\left\langle\sum_{\nu} u^{\nu}\right\rangle=0$ (cf.eq.(2.5)) for $\hat{V}=0$ leads to the condition $\sum_{A} v_{A} \hat{A}^{A}\langle\Sigma\rangle=0$ that yielde the two equations

$$
\begin{equation*}
\left\langle b_{A}\right\rangle=\sum_{A} v_{A} b_{A}=0, \quad\left\langle a_{A}\right\rangle=\sum_{A} v_{A} a_{A}=0 \tag{2.18}
\end{equation*}
$$

determining the effective elastic moduli x and μ. The sums run over all phases A of the composite and v_{A} denotes the phase volume fraction. (Here and in the following the quantities with the phase index A are obtained from those with the grain index ν by replacing ν by A). For $\vartheta \neq 0$, according to the substitution (2.12), we get the additional condition

$$
\begin{equation*}
\sum_{A} v_{A}\left(\hat{A}^{A} \psi^{A}\right)_{i k}=-3 \delta_{i k} \sum_{A} v_{A}\left(x_{A} \alpha_{A}-x \alpha\right) \vartheta /\left(3 x_{A}+4 \mu\right)=0 . \tag{2.19}
\end{equation*}
$$

By the use of (2.18) equation (2.19) yields the effective thermal expansion coefficient α given by Budiansky/6/

$$
\alpha=(\bar{s}+4 \mu / x) \sum_{A} v_{A} \alpha_{A} x_{A} \prime\left(\bar{S} x_{A}+4 \mu\right)
$$

After this short rederivation of the effectivemedium approximations of the effective material parameters let us now discuss the mean fields and the fluctuations of the field in the phases defined by (1.5) and (1.7), respectively. According to the substitution (2.12), inatead of the former result $\langle\varepsilon\rangle_{A}=\left(1+\hat{A}^{A}\right)\langle\varepsilon\rangle$, (cf. I. (4.4)), the mean strain in the phase A is now given by

$$
\begin{align*}
\left\langle\varepsilon \varepsilon_{i k}\right\rangle_{A}=\left(1-2 b_{A}\right)\left\langle e_{i k}\right\rangle & +\left(1-3 a_{A}\right) \delta_{i k} \operatorname{Tr}\langle\varepsilon\rangle / 3 \tag{2.21}\\
& +3 \delta_{i k}\left(x \alpha_{A} \alpha_{A}-x \alpha\right) \vartheta /\left(3 x_{A}+4 \mu\right)
\end{align*}
$$

By the use of the constitutive laws (1.2) and (1.4) the straine may be replaced by the more relevant otresses. Then, we obtain

$$
\begin{gather*}
\left\langle\sigma_{i k}\right\rangle_{A}=\left(\mu_{A} / \mu\right)\left(1-2 b_{A}\right)\left\langle s_{i k}\right\rangle+\left(x_{A} / x\right)\left(1-3 a_{A}\right) \delta_{i k} \operatorname{Tr}\langle\sigma\rangle / 3 \\
+12 \delta_{i k} \mu x_{A}\left(\alpha-\alpha_{A}\right) 9 /\left(3 x_{A}+4 \mu\right) \tag{2.22}
\end{gather*}
$$

where the deviator $S_{i k}$ of $\sigma_{i k}$ is defined analogously to (2.15).
In the case $\mathscr{N}=0$ the fluctuations $q_{A}(1.7)$ of the strain in
the phase A were given by I. (4.18)

$$
\begin{equation*}
q_{A}=G^{A}(1-H)^{-1} H\langle\varepsilon\rangle \otimes\langle\varepsilon\rangle \tag{2.23}
\end{equation*}
$$

with

$$
\begin{align*}
& H=\left\langle\sum_{\nu}\left(1-\Theta_{\nu}(\underline{r})\right) A^{\nu}(\underline{r}) \otimes A^{\nu}(\underline{r})\right\rangle \tag{2.24}\\
& G^{A}=\left(1+\hat{A}^{A}\right) \otimes\left(1+\hat{A}^{A}\right) \tag{2.25}
\end{align*}
$$

For $\mathcal{A} \neq 0$, according to (2.12), we have to replace

$$
H\langle\varepsilon\rangle \otimes\langle\varepsilon\rangle \rightarrow\left\langle\sum_{\nu}\left(1-\Theta_{\nu}\right)\left[A^{\nu}\left(\langle\varepsilon\rangle-\psi^{\nu}\right) \otimes A^{\nu}(\langle\varepsilon\rangle-\psi \nu)\right]\right\rangle .(2.26
$$

By splitting up the mean field $\langle\varepsilon\rangle$ into

$$
\begin{equation*}
\left\langle\varepsilon_{i k}\right\rangle=\bar{\varepsilon}_{i k}+\delta_{i k} \alpha N, \quad \bar{\varepsilon}_{i k}:=C_{i h l m}^{-1}\left\langle\sigma_{i m}\right\rangle \tag{2.27}
\end{equation*}
$$

and inserting (2.26) and (2.27) into (2.23) one geta finally

$$
\begin{equation*}
q^{A}=G^{A}(1-H)^{-1}\left\{H t^{m}+H^{m t} t^{m t}+H^{t} t^{t}\right\} \tag{2.28}
\end{equation*}
$$

with

$$
\begin{align*}
& \mathcal{E}_{i k l m}^{m}=\bar{\varepsilon}_{i k} \bar{\varepsilon}_{l m}, \quad t_{i k m}^{t}=\delta_{i k} \delta_{l m} \psi^{2} \\
& t_{i k l m}^{m t}=\left(\delta_{i k} \bar{\varepsilon}_{l m}+\bar{\varepsilon}_{i k} \delta_{l m}\right) \xi_{1} \tag{2.29}\\
& H^{m t}=\left\langle\sum_{\nu}\left(1-\theta_{\nu}\right) A^{\nu} \otimes A^{\nu} \omega_{\nu}\right\rangle \\
& H^{t}=\left\langle\sum_{\nu}\left(1-\theta_{\gamma}\right) A^{\nu} \otimes A^{\nu} \omega_{\nu}^{2}\right\rangle \\
& \omega \nu
\end{align*}
$$

Equation (2.28) represents a general expression for the fluctuations of the atrain field in the case of a aimultaneous mechanical load and thermal expanaion. Let us now turn to a detailed analysis of this equation.

3. Thermoelastic Field Fluctuations

The field fluctuations $q^{A}(2.23)$ for the case $f=0$ have been presented in I by means of a representation based on a special set of orthonormal base tensors. In the following we give an alternative representation of the obtained final reault which ia probably more convenient for direct applications.

The fluctuations q^{A} are fourth rank tensors which, in the isotropic case, have to be built up from the unit tensor I of second $\operatorname{rank}\left(I_{i k}=\delta_{i k}\right)$ and the tensor $\bar{\varepsilon}$ up to quadratic order. Taking into account the symmetries of the tensor q^{A} with respect to an interchange of the indices we can construct the following tensors:

$$
\begin{array}{ll}
E_{0}=I \otimes I, \\
E_{1}=\bar{e} \otimes I+I \otimes \bar{e}, & \bar{e}=\bar{\varepsilon}-I \operatorname{Tr} \bar{\varepsilon} / 3 \\
E_{2}=\bar{e}^{2} \otimes I+I \otimes \bar{e}^{2}, & \left(\bar{e}^{2}\right)_{i k}=\bar{e}_{\|} \bar{e}_{\| k} \\
E_{3}=\bar{e} \otimes \bar{e}, & \simeq
\end{array}
$$

as well as the corresponding symmetrised tensors $\tilde{E}_{n}(n=0,1,2,3)$

$$
\begin{equation*}
\left(\tilde{E}_{n}\right)_{i k l m}=\left(E_{n}\right)_{i k i m}+\left(E_{n}\right)_{i l k m}+\left(E_{n}\right)_{i m l k} . \tag{3.2}
\end{equation*}
$$

With these tensors the quantities \mathcal{G} in (2.29) may be written as

$$
\begin{align*}
& \epsilon^{m}=(\operatorname{Tr} \bar{\varepsilon} / 3)^{2} E_{0}+(\operatorname{Tr} \bar{\varepsilon} / 3) E_{1}+E_{3} \\
& \epsilon^{m t}=2(\operatorname{Tr} \bar{\varepsilon} / 3) \hat{q} E_{0}+\theta E_{1}, \tag{3.3}\\
& t^{t}=9^{2} E_{0}
\end{align*}
$$

If the result of I for the contribution of f^{m} to q_{A} is rewritten in our new representation (3.1), (3.2), one obtains

$$
\begin{align*}
& q_{A}^{m}=G^{A}(1-H)^{-1} H \varepsilon^{m} \\
&=\left[F_{11}(\operatorname{Tr} \bar{\varepsilon} / 3)^{2}+\left(F_{12} / \sqrt{5}\right) \operatorname{Tr} \bar{e}^{-2} / 3\right] E_{0} \\
&+\left[\left(F_{21} / 2 \sqrt{5}\right)(\operatorname{Tr} \bar{\varepsilon} / 3)^{2}+\left(F_{22} / 10\right) \operatorname{Tr} \bar{e}^{2} / 3\right]\left(3 \widetilde{E}_{0}-5 E_{0}\right) \\
&+\left(F_{33} / 21\right)\left[2 \operatorname{Tr} \bar{e}^{-2} \tilde{E}_{0} / 5+7 \tilde{E}_{3}-2 \tilde{E}_{2}\right] \tag{3.4}\\
&+F_{44}(\operatorname{Tr} \bar{\varepsilon} / 3) E_{1}+\left(4 F_{45} / \sqrt{14}\right)\left[\left(\operatorname{Tr} \bar{e}^{-2} / 3\right) E_{0}-E_{2} / 2\right]
\end{align*}
$$

$$
\begin{aligned}
& -\left(F_{54} / \sqrt{14}\right)(\operatorname{Tr} \bar{\varepsilon} / 3)\left(3 \tilde{E}_{1}-7 E_{1}\right) \\
& -\left(F_{55} / 7\right)\left[2\left(\operatorname{Tr} \bar{e}^{-2} / 3\right)\left(3 \tilde{E}_{0}-7 E_{0}\right)-\left(3 \tilde{E}_{2}-7 E_{2}\right)\right]
\end{aligned}
$$

Por abbreviation the phase index A at the quantities $F_{i k}$ has been omitted. The expreasions for $F_{i k}$ are listed in the appendix.

The contributions of $\epsilon^{m t}$ and t^{t} to q_{A} may easily be obtained from (3.4) by meana of suitable replacements. From (2.28) we get $H E^{m} \rightarrow H^{m t} \epsilon^{m t}$ and the comparison of ϵ^{m} and $E^{m t}$ in (3.3) yields the following aubstitutions which have to be performed in (3.4): $(\operatorname{Tr} \bar{\varepsilon} / 3)^{2} \rightarrow 2 \xi_{1} \vartheta \operatorname{Tr} \bar{\varepsilon} / 3$ and $\operatorname{Tr} \bar{\varepsilon} / 3 \rightarrow \xi_{1}^{\prime} \vartheta$. The quadratic terms in \bar{e} have to be omitted. Thus, we obtain

$$
\begin{aligned}
q_{A}^{m t}= & G^{A}(1-H)^{-1} H^{m t} \epsilon^{m t} \\
= & {\left[2 F_{11} \xi_{1}(\operatorname{Tr} \bar{\varepsilon} / 3) E_{0}+\left(F_{21} \xi_{1} / \sqrt{5}\right)(\operatorname{Tr} \bar{\varepsilon} / 3)\left(3 \tilde{E}_{0}-5 E_{0}\right)\right.} \\
& \left.+F_{44} \xi_{1}^{\prime} E_{1}-\left(F_{54} \xi_{1}^{\prime} / \sqrt{14}\right)\left(3 \tilde{E}_{1}-7 E_{1}\right)\right] g
\end{aligned}
$$

with

$$
\begin{equation*}
\dot{\xi}_{1}=\left\langle a_{A}^{2} \omega_{A}\right\rangle /\left\langle a_{A}^{2}\right\rangle, \quad \xi_{1}^{\prime}=\left\langle a_{A} b_{A} \omega_{A}\right\rangle /\left\langle a_{A} b_{A}\right\rangle \tag{3.6}
\end{equation*}
$$

The angle bracketa denote an average with respect to the phases (cf. (2.18)). The additional factors $\xi_{1}, \xi_{1}^{\prime}$ in (3.5) arise from the replacement $H \longrightarrow H^{m t}$.

The contribution of \mathcal{Z}^{t} is obtained analogously from (3.4) by the replacement $(\operatorname{Tr} \bar{\varepsilon} / 3)^{2} \rightarrow \xi_{2} \vartheta^{2}$ and the omiseion of all other terms containing \bar{e} :

$$
\begin{align*}
q_{A}^{t} & =G^{A}(1-H)^{-1} H^{t} \varepsilon^{t} \tag{3.7}\\
& =\left[F_{11} E_{0}+\left(F_{21} / 2 \sqrt{5}\right)\left(3 \tilde{E}_{0}-5 E_{0}\right)\right] \xi_{2} g^{2}
\end{align*}
$$

The factor

$$
\begin{equation*}
\xi_{2}=\left\langle a_{A}^{2} \omega_{A}^{2}\right\rangle /\left\langle a_{A}^{2}\right\rangle \tag{3.8}
\end{equation*}
$$

is due to the replacement $H \rightarrow H t$. For an analysis of equations (3.4), (3.5) and (3.7) the components of the occurring tensors are listed in the Table where the system of principal axes of the strain tensor $\bar{\varepsilon}$ is chosen as coordinate aystem. All non-indicated components vanish.

Table. Components of the tensors occurring in (3.4) relative to the syatem of principal axes of the tensor $\bar{e}\left(\bar{e}_{i k}=e_{i} \delta_{i k}\right)$.

	iiii	iikk,(iok)	ikik =ikki lisk)
E	1	1	0
3 $\underline{E}_{0}-5 E_{0}$	4	-2	3
E_{0}	3	1	1
	$9 e_{i}^{2}$	$7 e_{i} e_{k}-2\left(e_{i}^{2} \cdot e_{k}^{2}\right)$	$7 e_{1} e_{k}-2\left(e_{1}^{2} \cdot e_{k}^{2}\right)$
E_{1}	$2 \mathrm{e}_{\mathrm{i}}$	$e_{1} \cdot e_{x}$	0
E_{3}	$2 e_{1}^{2}$	$e_{i}^{2}+e_{1}^{2}$	0
3E, $-7 E_{1}$	$4{ }_{1}$	$-4\left(e_{1}+e_{k}\right)$	$3\left(e_{i}+e_{k}\right)$
3E, $7 \mathrm{E}_{0}$	2	- 4	3
${ }^{3} E_{2}-7 E_{2}$	$4 \mathrm{e}_{1}^{2}$	$-4\left(e_{i}^{2}+e_{2}^{2}\right)$	$3\left(e^{2}+e_{k}^{2}\right)$

Pinally, instead of the strain fluctuations, let us consider the practically more important fluctuations of the stress. With the conatitutive law of phase $A, \sigma=C^{A}\left(\varepsilon-\hat{\alpha}^{A} \hat{V}\right)$, we get

$$
\begin{equation*}
q_{A}^{\sigma}:=\langle\sigma \otimes \sigma\rangle_{A}-\langle\sigma\rangle_{A} \otimes\langle\sigma\rangle_{A}=\left(c^{A} \otimes c^{A}\right) q_{A}=: C^{A} q_{A} \tag{3.9}
\end{equation*}
$$

Thus, the transition from q_{A} to q_{A}^{σ} is performed by simply replacing $F_{i k} \rightarrow C^{A} F_{i k}$ in (3.4), (3.5) and (3.7), where

$$
C_{1}^{A}=\left(3 x_{A}\right)^{2}, \quad C_{4}^{A}=3 x_{A}: 2 \mu_{A}, \quad C_{i}^{A}=\left(2 \mu_{A}\right)^{2} \text { otherwise. (3.10) }
$$

Furthermore, the strain $\bar{\Sigma}$ may be replaced by the mean strese: $\bar{\varepsilon}=c^{-1}\langle\sigma\rangle=: c^{-1} \bar{\sigma}$. This gives

$$
\begin{equation*}
\operatorname{Tr} \bar{\varepsilon}=\operatorname{Tr} \bar{\sigma} / 3 x, \quad \bar{e}=\bar{s} / 2 \mu=(\bar{\sigma}-\operatorname{I} \operatorname{Tr} \bar{\sigma} / 3) / 2 \mu \tag{3.11}
\end{equation*}
$$

which has to be inserted into the definitions (3.1). In this way we may express the atress fluctuations by the mean stress.

4. Exact Relations for the Thermoelastic Fluctuatione

In our previous work exact relations between the acalar invariants of the fluctuation tensor q_{A}^{m} and the effective elastic moduli de and μ have been established. These relations are satisfied by our self-consistent single-grain approximation. In an analogous manner we can derive exact relations between the fluctuations $q_{A}^{m t}$ and the effective thermal expansion coefficient.

To this end the displacement field and strain are aplit up into

$$
\begin{equation*}
\underline{u}=\underline{u}^{m}+\underline{u}^{t}, \quad \varepsilon=\varepsilon^{m}+\varepsilon^{t} \tag{4.1}
\end{equation*}
$$

where ε^{m} is caused by a mechanical load only, i.e. It depends linearly on $\langle\sigma\rangle$ whereas ε^{t} is proportional to \mathcal{N}. According to (2.1) and (2.2) they obey the following equations:

$$
\begin{align*}
& \frac{\partial}{\partial r} c^{r a} \varepsilon^{m}=\frac{\partial}{\partial r} \sigma=\frac{\partial}{\partial r}\langle\sigma\rangle=\frac{\partial}{\partial \underline{r}} c\left\langle\varepsilon^{m}\right\rangle,\left\langle\varepsilon^{m}\right\rangle=\bar{\varepsilon} \tag{4.2}\\
& \frac{\partial}{\partial \underline{r}} c^{r a} \varepsilon^{t}=\frac{\partial}{\partial r} c^{r a} \hat{\alpha} r a N^{q}, \quad\left\langle\varepsilon^{t}\right\rangle=\hat{\alpha} \hat{v} \tag{4.3}
\end{align*}
$$

Now let ue carry out a aimultaneous variation of $c^{\text {ra }}$ and $\hat{\alpha}^{\text {ra }}$ so that $c^{r a} \hat{\alpha}^{r a}$ remains unchanged. Then (4.3) yielde

$$
\begin{equation*}
\frac{\partial}{\partial r}\left(\delta c^{r a} \varepsilon^{t}+c^{r a} \delta \varepsilon^{t}\right)=0 \tag{4.4}
\end{equation*}
$$

Further we consider the acalar expreseion

$$
\begin{align*}
& \left\langle\varepsilon^{m} \delta c^{r a} \varepsilon^{t}\right\rangle=-\left\langle\underline{u}^{m} \frac{\partial}{\partial \underline{r}}\left(\delta c^{r a} \varepsilon^{t}\right)\right\rangle \\
& =\left\langle\underline{u}^{m} \frac{\partial}{\partial \underline{r}}\left(c^{r a} \delta \varepsilon^{t}\right)\right\rangle=-\left\langle\varepsilon^{m} c^{r a} \delta \varepsilon^{t}\right\rangle \\
& =\left\langle\delta u^{t} \frac{\partial}{\partial \underline{r}}\left(c^{r a} \varepsilon^{m}\right)\right\rangle=\left\langle\delta \underline{u}^{t} \frac{\partial}{\partial \underline{r}} c \bar{\varepsilon}\right\rangle=-\left\langle\delta \varepsilon^{t}\right\rangle c \bar{\varepsilon} \tag{4.5}
\end{align*}
$$

Here we have used equations (4.4)and (4.2). The remaining steps are only irtegrations by parts with respect to the volume integral: $\langle\ldots\rangle=(1 / V) \int d V \ldots$. The appearing, surface integrals

$$
\begin{gather*}
\oiint d S\left[\underline{u}^{m}\left(d c^{r a} \varepsilon^{t}+c^{r a} \delta \varepsilon^{t}\right)-\delta \underline{u}^{t}\left(c^{r a} \varepsilon^{m}-c \bar{\varepsilon}\right)\right] \\
=\oiint d S\left[\underline{u}^{m} \delta\left(c^{r u} \varepsilon^{t}\right)-\delta \underline{u}^{t}(\sigma-\bar{\sigma})\right] \tag{4.6}
\end{gather*}
$$

may be omitted because they vanieh for a auitable choice of the boundary conditions for \underline{u}^{m} and \underline{u}^{t} (e.g. $d S G=d S \bar{\sigma}$ as boundary condition for \underline{u}^{m} and $d S c^{r a} \varepsilon^{t}=0$ for \underline{u}^{t}).

Inserting the lavt equation of (4.3) into (4.5) we obtain

$$
\begin{equation*}
\left\langle\varepsilon^{m} \delta c^{r r a} \varepsilon^{t}\right\rangle=-\delta \hat{\alpha} \hat{l} c \bar{\varepsilon} \quad \text { for } \quad \delta\left(c^{r a} \hat{\alpha}{ }^{r a}\right)=0 . \tag{4.7}
\end{equation*}
$$

Por isotropic phases this leads to

$$
\begin{array}{r}
\sum_{A} v_{A}\left[\delta x_{A}\left\langle\operatorname{Tr} \varepsilon^{m} \operatorname{Tr} \varepsilon^{t}\right\rangle_{A}+2 \delta \mu_{A}\left\langle e_{i k}^{m} e_{i k}^{t}\right\rangle_{A}\right] \\
=-3 x \delta \alpha \theta \operatorname{Tr} \bar{\varepsilon} \quad \text { for } \quad \delta\left(x_{A} \alpha_{A}\right)=0 . \tag{4.8}
\end{array}
$$

If the effective thermal expanaion is considered as a function of the variables $x e_{A}, \mu_{A}$ and $x_{A} \mu_{A}$, i.e. $\alpha=\alpha\left(x_{A}, \mu_{A}, x_{A} \mu_{A}\right)$, equation (4.8) may be eplit up into

$$
\begin{align*}
& \left\langle(\operatorname{Tr} \varepsilon)^{2}\right\rangle_{A}^{m t}=2\left\langle\operatorname{Tr} \varepsilon^{m} \operatorname{Tr} \varepsilon^{t}\right\rangle_{A}=-\frac{6}{v_{A}}\left(\frac{\partial x}{\partial x_{A}}\right)_{x_{A} \alpha_{A}} x d \operatorname{Tr} \bar{\varepsilon}, \tag{4.9}\\
& \left\langle\operatorname{Tr} e^{2}\right\rangle_{A}^{m t}=2\left\langle e_{i k}^{m} e_{i k}^{t}\right\rangle_{A}=-\frac{3}{v_{A}} \frac{\partial \alpha}{\partial \mu_{A}} x \delta \operatorname{Tr} \bar{\varepsilon} .
\end{align*}
$$

The index $\mathscr{R}_{A} \alpha_{A}$ at the derivation refers to the condition $\delta\left(x_{A} \alpha_{A}\right)=0$. Equations (4.9) represent rigorous relations between the square means and the effective thermal expansion. They are valid for an arbitrary topology of the multiphase composite.

Let us apply them now to our self-consiatent approximation. From the definition of $q_{A}(1.7)$ and equations (2.21) and (2.27) we obtain

$$
\begin{aligned}
q_{A_{i i k k}}^{m t} & =2\left\langle\varepsilon_{i i}^{m} \varepsilon_{k k}^{t}\right\rangle_{A}-2\left\langle\varepsilon_{i i}^{m}\right\rangle_{A}\left\langle\varepsilon_{h k}^{t}\right\rangle_{A} \\
& =-6\left\{\frac{\partial e}{v_{A}}\left(\frac{\partial_{\alpha}}{\partial x_{A}}\right)_{x_{A} \alpha_{A}}+\frac{(3 x+4 \mu)\left(3 x_{A} \alpha_{A}+4 \mu \alpha\right)}{\left(3 x_{A}+4 \mu\right)^{2}}\right\} g \operatorname{Tr} \bar{\varepsilon}, \\
q_{\text {Aikik }}^{m t} & =2\left\langle e_{i k}^{m} e_{i k}^{t}\right\rangle_{A}+\frac{1}{3} q_{A i i n k}^{m t}, \\
q_{A i k i k}^{m t} & -\frac{1}{3} q_{A i i k k}^{m t}=-\frac{3}{v_{A}} \partial \frac{\partial \alpha}{\partial \mu_{A}} g \operatorname{Tr} \bar{\varepsilon}
\end{aligned}
$$

The results (2.20), (3.5) together with (2.18) can be shown to satisfy these exact relations.

5. Numerical Examples and Discuasion

An analysis of the final result for the fluctuations q_{A} has been performed numerically for a two-phase composite. According to our general treatment the effective elastic moduli and thermal expansion have been calculated in the effective-medium approximations (2.18), (2.20).

For the case $\langle\sigma\rangle=0$ the thermal stress fluctuations are compared with the mean thermal etress in each phase in Fig. 1. The curves are similar to those found by Pompe and Kreher $/ 5 /$. For the apecial example of moderate heterogeneity ($\partial e_{1} / x_{2}=5$) the mean quadratic deviations of the stress defined as usually by the square roots of the fluctuations

$$
S_{\text {Aiklm }}^{\sigma}=\left(q_{\text {Aikim }}^{\sigma}\right)^{1 / 2}
$$

are of the order of the mean atress. At the maximum of $\left|\left\langle\sigma_{M}\right\rangle_{1}\right|+S_{1,11 M}^{\sigma}$ at $v_{1}=v_{i} \approx 0.18$ (cf. Fig. 1) we find $s_{1,1111}^{\sigma} /\left|\left\langle\sigma_{11}\right\rangle_{1}\right| \approx 0.36$.
The dependence of this characteriatic ratio on the heterogeneity ratio $\partial R_{1} / \mathscr{L}_{2}$ is plotted in Fig. 2a. It can easily be shown within our approximation that for a two-phase composite this ratio does not depend on the ratio α_{1} / α_{2}. In the limit $x_{1} / x_{2} \rightarrow \infty$ the fluctuations increase up to infinity if the volume fraction ϑ_{A} goes to the percolation threahold $v_{c}=0.5$ (cf. Fig. 2b). This quantitative analysis clearly shows that the fluctuations are of great importance for an estimation of themal atresses in a strongly beterogeneous composite.

The case of a aimultaneous mechanical load and thermal expansion is considered in Fig. 3 where the stress fluctuations are compared with its mean value as a function of the macroscopic mean atrese $\langle\sigma\rangle$.

Fig. 1. Mean thermal stresses and their mean quadratic devia tions vergus $<\sigma_{M}>A m e$ fraction of phase 1 $\left(\left\langle\sigma_{11} \sigma_{A}\right\rangle_{A} / x_{2} \alpha_{2}\right)^{2}-$ solid

Fig. 2. Ratio of the mean quadratic deviation and the mean value of the thermal strese $s_{1,1411}^{-}| |\left\langle\sigma_{11}\right\rangle_{1} \mid$ in phase 1 of a two-phase composite at the maximum of $\left|\left\langle\sigma_{11}\right\rangle_{1}\right|+S_{1,1111}^{\sigma}$
(cf. $v_{1}=v_{c}$ in Fig. 1) versus ratio x_{1} / x_{2} (a); v_{c} versus
$x_{1} / x_{2}(b)$

In conclusion, let us emphasize that the formalism given above is reatricted to linear elasticity theory. In many experimental aituations, however, the local stresses exceed the limit of linear

Fig. 3. Mean stress and its mean quadratic deviation in phase 1 of a two-phase composite as a function of the mean load $\left\langle\sigma_{11}\right\rangle / x_{2} \alpha_{2} v$ $\left(\left\langle\sigma_{14}\right\rangle_{1} / x_{2} \alpha_{2} \theta\right.$ - solid lines; $\left(\left\langle\sigma_{11}\right\rangle_{1} \pm S_{1,1141}^{\top}\right) / \alpha_{2} \alpha_{2}{ }^{q}$ - broken lines; parameters as in Fig. $\left.1, v_{1}=0.3\right)$.
elasticity (compare, e.g., experiments by Hoffmann and Blumenauer ${ }^{\prime 7}$. . The experimental investigation of the spatially fluctuating local stresses seems to be difficult and has been done mainly by means of X-ray diffraction. Moreover, the measurement of the atress fluctuations requires obviously a high accuracy and statistics of the experiment exceeding that of the measurement of the mean value. These
 luding more realistic material lawa than linear elasticity.

The formaliam presented may be extended to the case where, additionally to the thermal expanaion, spontaneous internal deformatinns due to a structural phase transition occur.

Appendix
 The coefficients $F_{i h}$

For completeness we list here the coefficients $F_{i k}$ occurring in (3.4). They have been derived in I.

$$
\begin{array}{ll}
F_{11}=f_{A}^{2} H_{12} H_{21} / D_{12}, & F_{44}=f_{A} g_{A}\left(1-H_{55}-D_{45}\right) / D_{45}, \\
F_{12}=F_{A}^{2} H_{12} / D_{12}, & F_{45}=f_{A} g_{A} H_{45} / D_{45}, \\
F_{21}=g_{A}^{2} H_{21} / D_{12}, & F_{54}=g_{A}^{2} H_{54} / D_{45}, \\
F_{22}=g_{A}^{2}\left(1-D_{12}\right) / D_{12}, & F_{55}=g_{A}^{2}\left(1-H_{44}-D_{45}\right) / D_{45},
\end{array}
$$

$$
\begin{array}{ll}
D_{12}=1-H_{22}-H_{12} H_{21}, & D_{45}=\left(1-H_{44}\right)\left(1-H_{55}\right)-H_{45} H_{54}, \\
H_{12}=50(1-2 \nu)^{2} h_{1} / \sqrt{5}, & H_{44}=2(1-2 \nu) h_{3}, \\
H_{21}=2 h_{2} / \sqrt{5}, & H_{45}=-10(5-7 \nu)(1-2 \nu) h_{1} \sqrt{217}, \\
H_{22}=2\left(23-50 \nu+35 \nu^{2}\right) h_{1}, & H_{54}=-2(5-7 \nu) h_{3} \sqrt{2 / 7}, \\
H_{33}=4\left(18-50 \nu+35 \nu^{2}\right) h_{1} / 7, & H_{55}=-3\left(11-50 \nu+35 \nu^{2}\right) h_{1} / 7,(A .3) \\
h_{1}=\left\langle b_{A}^{2}\right\rangle /(4-5 \nu)^{2}, \quad h_{2}=\left\langle\left(3 a_{A}\right)^{2}\right\rangle, \\
h_{3}=\left\langle 3 a_{A} b_{A}\right\rangle /(4-5 \nu), & \\
\\
f_{A}=1-3 a_{A}, \quad g_{A}=1-2 b_{A} . \tag{A.5}
\end{array}
$$

The angle bracketa in (A.4) are defined in (2.18). The coefficients a_{n}. b_{Δ} are given by (2.14) and ν denotes the Pojeson ratin of the effective medium $\nu=(3 x-2 \mu) / 2(3 x+\mu)$.

Acknowledgements

Thanks are due to Professor W. Pompe (Dresden) and to Dr. W. Kreher (Dresden) for drawing our attention to this eubject and many useful hinte.

Reforences

1. Bobeth M. and Diener G. 1985 J. Mech. Phys. Solids.
2. Christonsen R.M. 1979 Mechanics of Composite Materials, John Wiley \& Sons Inc., New York.
3. Haahin Z. 1984 J.Mech. Phya. Solida 32, 149, 159.
4. Kanaun S.K. 1982 Prikl. Mat. and Mekh. (USSR) 46, 665.
5. Pompe W. and Kreher W. 1984 2.Angew. Math. und Mech. 64, M487.
6. Budiansky B. 1970 J.Comp.Matls. 4, 286.
7. Hoffmann $H_{\text {. }}$ and Blumenauer H. 1980 Wise. Z. Techn. Hochach. Magdeburg 24, 119.

Received by Publishing Department
on November 11, 1985.

of the jinr publications

Index
1. High energy experimental physics
2. High energy theoretical physics
3. Low energy experimental physics
4. Low energy theoretical physics
5. Mathematics
6. Nuclear spectroscopy and radiochemistry
7. Heavy ion physics
8. Cryogenics
9. Accelerators
10. Automatization of data processing
11. Computing mathematics and technique
12. Chemistry
13. Experimental techniques and methods
14. Solid state physics. Liquids
15. Experimental physics of nuclear reactions
at low energies
16. Health physics. Shieldings
17. Theory of condenced matter
18. Applied researches
19. Biophysics

COMMUNICATIONS, JINR RAPID COMMUNICATIONS, PREPRINTS, AND proceedings of the conferences published by the joint institute for nuclear research have the status of official publications.

JINR Communication and Preprint references should contain:

- names and initials of authors,
- abbreviated name of the Institute (JINR) and publication index.
- location of publisher (Dubna),
- year of publication
- page number (if necessary).

For example:

1. Pervushin V.N. et al. JINR,P2-84-649, Dubna, 1984.

References to concrete articles, included into the Proceedings, should contain

- names and initials of authors,
- title of Proceedings,introduced by word "1nz"
- abbreviated name of the Institute (JINR) and publication index,
- location of publisher (Dubna),
- year of publication,
- page number.

For example:

Kolpakov I.F. In: XI Intern. Symposizm on Nuclear Electronic8, JINR,D13-84-53, Dubna, 1984, p.26.

Savin I.A., Smirnov G.I. In: JINR Rapid Commurications, N2-84, Dubna, 1984,p.3.

Бобет М., Динер Г.

Статические упругие и термоупругие флуктуации поля
в многофазных композитах
Пространственно флуктуирующие поля напряжения и деформации в случайно гетерогенной термоупругой среде описываются своими средними значениями и квадратными средними. Вычисление этнх величин, представленное в прежней работе авторов для случая механической нагрузки, обобщается на случай термического расширения. Выводятся строгие отношения между квадратными средними и аналитическими свойствами коэффициента эффективного термического расширения. Найдены флуктуации поля в приближении эффективной среды, в предположении агрегатной топологии композита. Получены результаты в явной форме для изотропных фаз и шарообразных зерен и представлены в более удобной форме, чем в прежней работе авторов.

Работа выполнена в Лаборатории теоретической физики Оияи.
Препринт объединенного ннститута ядернвх исследований. Дубна 1985

Bobeth M., Diener G.
E17-85-800
Static Elastic and Thermoelastic Field Fluctuations
in Multiphase Composites
The spatially fluctuating strain and stress fields in a random heterogeneous thermoelastic medium are characterized by their mean values and square means in each phase. In the present paper the calculation of these quantities, which has been presented in a previous work for the case of a mechanical load only, is extended to include thermal expansion. Besides the derivation of some exact relations between the square means and the analytical properties of the effective thermal expansion coefficient, the field fluctuations are calculated within an effective-medium procedure supposing an aggregate topology of the composite. Explicit results obtained for isotropic phases and spherical grain shapes are given in a more convenient representation than in our former work.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.
Preprint of the Joint Institute for Nuclear Research. Dubna 1985

[^0]: * Department of Physics, Technical University, Dresden, GDR.

