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1. Introduction 

The elastic field in a multiphase composite exhibits spatial 
fluctuations owing to the random spatial variation of the material 
properties. In a previous work dealin~ with the characterization and 
evaluation of these fluctuations 111, hereafter referred to as I, we 
have derived some exact relations between the square means of the 
field in each phase and the analytic properties of the effective 
material parameters. Since these relations do not determine the 
square means completely, a modified effective-medium approximation 
for _calculating them in composites with aggr·egate topology has been 
presented. In the present paper the procedure given in I is extended 
to the evaluation of the static thermoelastic field fluctuations. 
Moreover, we give another representation of our previous results, 
which is more convenient for applications. 

The basic equation of linear thermoelastostatics in the absence 
of body forces is ~iven by 

(J.~ 1- : 
lr-1 

0. (1.1) 

where the stress tensor UjJ< is related to the strain tensor 

t,k : ( u;,v. t \.(k,i )/2 1 ( ~ denotes the displacement field) by the 
local constitutive law 

rc. r 
Ci;~ (~) :: C;k~k-. (.c) L Eli.,(!:) - ;_ra(r) J] 

tn-. -
(1.2) 

with the elastic moduli tensor c~"Q and the tensor of thermal expan
sion ~ra • The temperature difference J is supposed to be homoge
neous. Furthermore, the considered medium is assumed to possess an 
aggregate topology in contrast with a matrix-inclusion one. It con
sists of a random arrangement of homogeneous regions (grains) V 
and the material parameters take the form 

C I"Q. ( !: ) "' .r C II ew ( r ) ~G~r)-=1 
)I - ' ~ v 

(~.b,~~e-tim..in- ~-:1 ~r~..;-, .. 
!l ~ flCCJ1C£!llo!l.~•~ ,~ 
1 _Dg~J!Irt_Q]~~r..:!, _j 

(1. 3) 



/\ ru. ll 
(and analogously for ()( ) , where C means the material parameter 
of grain v • The step function 8v is equal to one inside the grain 
)I and zero otherwise. 

In the case J'" 0 the mean fields <tr:> and <~> defined as 
ensemble or volume averages are connected by the effective constitu
tive law <c;>::: c <~>. With this definition of the effective elastic 

1\ 
moduli tensor C , the effective thermal expansion tensor ~ can 
be defined by 

<a>= c(<£>-~-n. ( 1.4) 

Some works concerning the evaluation of the effective thermal expan
sion coefficient have be~n reviewed in 121. A recent paper devoted 
to this problem in the case of anisotropic phases has been published 
by Ilashin IJI. However, this iD not the subject of the present paper. 

Another task of practical importance, which has received grow
ing attention in the last years, is the calculation of the mean va
lues of the field in special phases of the composite as well as its 
fluctuations. (For some references the reader is referred to I). The 
mean strain in the phase A can be defined by 

<~>1-\ = <84\t::l£\~l>/v-A ( 1. 5) 

0A(r)-= 2.. . 8\1\r:) , \r, ::: <G"'). • 
(1. 5) 

V'-f'"\ 

where the sUm is over all grains V occupied by the phase A and 
\rA denotes its volume fraction. The field fluctuations in the phase 

A are characterized by the products 

9-::. <~&~>A- <~>A0<~>A' 
I\ 

-<:~~£\ -= <EJA(!:l£\!:)&~(rl>/vA 
( 1. 7) 

which represent tensors of fourth rank. A general scheme for calcu
lating the moments of the random elastic field in the case of a com
posite with matrix-inclusion topology has been presented by Kanaun 
141. This procerture is similar to that proposed in the following. 
Another approach to the evaluation of the fluctuations based on in
formation theory has recently been given by Pompe and Kreher/5/. 

In the present work the mean fields (1.5) and the fluctuations 
(1.7) are calcul~ted within a self-consistent single-grain approxi
mation including thermal expansion. The procedure is briefly outlined 
in Section 2. The thermoelastic field fluctuations are calculated in 
Section J. Explicit results are obtained for phases with isotropic 
material properties by supposing approximately spherical grains and 
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homogeneous mean fields <£> and < G > . Section 4 is devoted to the 
derivation of some rigorous relations between the fluctuations and 
the effective thermal expansion coefficient. They are satisfied by 
our self-consistent approximation. Fir~lly, a numerical analysis of 
the obtained results for a two-phase composite is given in Section 5. 

2. Self-Consistent Approximation 

Analogously to the case of electrostatics extensively treated 
in I, one can transform (1.1) into an equation for the displacement 
field ~ 

(~ UL := 
rq ;,. 

- (\ ( Lk[V\-> UWJ '\Al : 
" rQ 1\ rc.\ n 

- 0 k ciklw. C{li'n"' 
ra 

-· 9t (2 .1 ) 

.~ ~ The differential operator ~ and the source term q depend on 
the random material parameters era and ~ r~ • Thus, in contrast to 
I.(J.1), we are dealing here with a linear differential equation that 
contains a random source term, The mean field <(~> is governed by 
the effective equation 

" Lil <-uL> := -<lkciklw."dWt{uL'> = -'dkciklr..~tw.,J ::-: 9l (2.2) 
1\ 

with the corresponding effective material properties C and ~ 

Choosing the still unknown effective medium as the homogeneous 
reference medium, we can perform tbe following decompositions: 

L."a = L + ~ dlv 
v 

fQ = ~ + ~ Jqv 

'U-= <'lA'> +2 1-l\1 
- - II -

&l~L = -dv_dc~~tW10v(':')o~ 
Jc11 = c17 -c. 

J qr = -rak d'(ci~o-.tw.~Lw.)v 8)1\rl ~ 
,.., II -.; II"' )I A 

0\ Co(.) = C rL - C CX, 

(2.3) 

(2.4) 

(2.5) 

and the basic equation (2.1) may be split up into an equivalent set 
of equations 

L <t.i'> ~ 9 (2.6) 

( L + OLY ) \..1 11 = &C'(<y> +~ tt) + d'av 
~~··)I - ' (2. 7) 
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After some formal transformations the following set of equations for 
the strain tensor h -= 'U.. results from (2.5) and (2.1): 

JK ~l 1 1-\' 

~ -= <z.> T ~ z:V l 

)l 

£.)I -= A v \ < ~ > + 'L £ V' - 't j) ) • 

y',.y 

whe:ce 

A.J-== fk"G"\11-r'c\c"G,r'~ 

t 11 "' \8c"r~ J\cl/.J 

rikLVto-= ~r.v,Gil\t'()~) , 

and G 
-~ 

denotes the inverse operator l . 

(2.8) 

(2.9) 

(2 .10) 

(2.11 ) 

Starting from the rigorous system of equations (2.8), (2.9) the 
first and second moments of the field in each phase of the composite 
have been calculated in I for the case J= 0 within a self-consistent 
single-grain approximation. According to (2.9) the results of I may 
easily be extended to the case J~ 0 by the replacement 

Av~£> ---'> Av\ <~> _ y-v ). (2 .12) 

For isotropic materials and spherical grain shapes we get inside the 

grain V 

\OvA~<'£>.=== \A"<£>),= -Q,d;,.Tr\z.'>-2b~e·" 
,~, lil, " '" 

(2.13) 

with 

' ) I' a11 -= \~v-£ !\St-y+4f), 

6, = s(fv}A)/[Gp, +f(9ae+8)A)/(xt2p)1 (2.14) 

e;k ·::: £tk - <f,k Tr £ /3 , (2.15) 

where ,MI", ~v , }Jt and d€ are the shear and bulk moduli of the 
grains and the effective medium, respectively. Furthermore, the ther

mal expansion coefficients simplify to scalars 

ft v r 
o<. ·:: d" G ~v.. \ 

LlM ' 

A ~ 

oLL., -= d.. il ll-\.\ (2 .16) 

~ 

~Lw. = J'ly,., (£)1~))- .)€c{) J h.~~- 'J._) 
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and we finally obtain 

(A 11 \<~>-'i'JJ));k-= -QyOLv_[Tr-<£>- 3\~,((. 11 -Je~)~/(Mv-.t)) 
lb)lea,_ · (2 .17) 

As has been noted in I an analysis of the self-consistency con
dition <:£vu">• 0 (cf. eq.(2.5)) for J • 0 leads to the condition 

2: '\J'A AA <£) = 0 that yields the two equations 
A 

( bA) = ~ '\}-A b,~ "' Q ! 
A 

< QA) ""' 2_ 'I} A Qli -= Q 
A 

(2.18) 

determining the effective elastic moduli~ and )A • The sums run 
over all phases A of the composite and \rA denotes the phase volume 
fraction. (Here and in the following the quantities with the phase 
index A are obtained from those with the grain index V by replac
ing Y by A). For ~ ~ 0, according to the substitution (2.12), we 
get the additional condition 

~\t\'AA'fJ\)k = -sJ;k )._'lj-A(~AIJ.A-~ri)~/(?,JtA-tf.tjJo)"" Q, 
A A I A 

(2.19) 

By the use of (2.18) equation (2.19~ yields the effective thermal 
expansion coefficient oL given by Budiansky/6/ 

I,.._ '\I!""- Jt- ' 

OC = \5+'1/JI/d€)2...VAIY..AJI(.A/\5£A+'tfAJ• 
iO, 

\.::::.£U} 

After this short rederivation of the effective-medium approxi
mations of the effective material parameters let us now discuss the 
mean fields and the fluctuations of the field in the phases defined 
by (1.5) and (1.7}, respectively. According to the substitution 
(2.12), instead of the former result <(1~==\'ltAA)<~>, (cf. I. 
(4.4)), the mean strain in the phase A is now given by 

<~ili'>A = \-1-2bA)<eit .. '> + (.-1-sQ1J a;~,Tr<£'>/3 (2.20 

+ 3 tl;k (~A~A- Xii_)J' /( SXA -t 4jA ), 

By the use of the constitutive laws (1.2) and (1.4) the strains may 
be replaced by the more relevant stresses. Then, we obtain 

<c;-it.\ = ~A(M)('1-2bA)<s;k> + \~A/¥)(-1-3uA) Oik Tr<cr>/3 

+ -12 d'iK )A dtA (ot. -ciA) .9 I ( ~Je.A-+ 4fd ' (2 .22) 
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·uhere the deviator S£k of 6i..J, is defined analogously to (2.15). 

In the case J • 0 the fluctuations qA ( 1. 7) of the strain in 
the phase A were given by I.(4.18) 

iA == GA(~- f..j)"""H <r.> ~ (£) 

with 

H = < ~ ( ~ -e" ( ~J ) Ay ( w::) ® A" co:) > , 
" " GA= U+AA)®(-1+A'-I). 

For~~ 0, according to (2.12), we have to replace 

(2 .23) 

(2.24) 

(2.25) 

H<£'>®<~>--"> <~(~-8v)[X(<f'>-'flJ)®A11((t).-~v)J>. (2.26) 

By splitting up the mean field <~> into 

-~ 
(£Lk>-: tLk tO[kD(JJ til<. := Ci.~lW~ < \ILW! '> 

and inserting (2.26) and (2.27) into (2.23) one gets finally 

with 

qA;: GA(~-1-0-1 { H {W> t ~~t~~t + ~t tt t 

\<1 WI -
tiVJ~ 

'f ~t -
't, tklWI 

HMt : 

Ht = 

Wll -:: 

'e;k £1~-~o 
t t 2. dtt~ -= div. JiM 4 

( ~;~~ ~l.._, t ~ ik J[~) J I 

< 'i (if- 0r~J Av ® Av w)J >, 
)J 

< ~ (-1- (::\,) N' ® A)J l.'J/ > ' 
v 

~y \ti-r:~..., )/(atv-:Je.L 

(2 .27) 

(2.28) 

(2 .29) 

Equation (2.28) represents a general expression for the fluctuations 
of thr strain field in the case of a simultaneous mechanical load 
and thermal expansion. Let us now turn to a detailed analysis of this 

equation. 
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3. Thermoelastic Field Fluctuations 

The field fluctuations ~A (2.23) for the case J • 0 have been 
presented in I by means of a representation based on a special set 
of orthonormal base tensors. In the following we give an alt~rnative 
representation of the obtained final result which is probably more 
convenient for direct applications. 

The fluctuations 9A are fourth rank tensors which, in the 
isotropic case, have to be built up from the unit tensor I of second 
rank ( Itk = dik) and the tensor ~ up to quadratic order. Taking 
into account the symmetries of the tensor 9A with respect to an 
interchange of the indices we can construct the following tensors1 

E
0

-= I~ I , 
E 

1 
-= e (lJI T + T ® e , e -= £ - I Tr ~ 13 , o · 1 > 

- -2. I T -2 (-2) - -t: 'l = e <& t - (ib e , e ik = eLl elk , 

E
3

:e®e, _ 
as well as the corresponding symmetri&ed tensors E.., (Y! •0,1,2,3) 

( EVI )tklvv. = ( El-1 )LV,[Vv1 t- ( fn )LL~w: t (En >:~lk • (3.2) 

With these tensors the quantities t in (2.29) may be written as 

tn., = (Tr£/~)z.Eo + (TrUsJE 1 + E3 

t"'t = 2 (. Td./ 3 ) ~ Eo + ~ E" 
(3.3) 

tt ;::: .82 Eo. 

If the result of I for the_ contribution of l:~ to qA is rewritten 
in our new representation (3.1), (3.2), one obtains 

91'1-1 
A. 

= 

= 

GA ( -1-1-1 r,., H tWI 

[ F11 \"Tr£/3 i· + ( F~2/{5) Tr e2 /3] Eo 

- ........ 2 2 "' ) +L(F2~/2l!>)(~·~/3) + (F22/10)Tre /31\3fo-5Eo 

+ (F1:?/21) [2Tre2 E0 /5"" t 7F3 -2F2 ] . 
+f44 (Tr"{/3)E1 + (4F45"/~)[\Tre1/3)E0 -E212] 
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(3.4) 



( F54 I -{i;4 H 'id: /3) (.3 E-t - 1 E1 ) 

- \ Fs-511) [ 2\ Tre2/3)\3 Eo -1 Eo) - (3 E2 - 1 E2 ) J. 

For abbreviation the phase index A at the quantities Fik has been 
omitted. The expressions for F;k are listed in the appendix. 

The contributions of ~~t and ~t to qA may easily be ob
tained from (3.4) by means of suitable replacements. From (2.28) we 
get H tYI'l --+ HMt tMt and the comparison of ~1111 and ~ Yht in 
(3.3) yields the following substitutions which have to be performed 
in (3.4): (Tr~~~)2 ~ 2~1 ~Tr-~3 and Trt/3- 51

1J. The quad
ratic terms in e have to be omitted. Thus, we obtain 

91\-\t = GA(J!-Hr'~ HY\'ltrn.t 
A 

== [ '2~1 ~1 \Tr£/3JEo + \Fz1~/IS)(T,.~/3)(3E0 -5"E0 ) (3. 5) 

·+ F4'l ~1' E1 - { F5~ ~~ /j-:ji;) (3E1 -1E1)] .8-
with 

·-<2 )/2 S1- O.A(JA /<...QA>J ~: = (o.AbA(;jA?/<o.AbA';>, (3.6) 

The angle brackets denote an average with respect to the phases 
(cf. (2 .18)). The addi tiona! factors ~ 1 , Y 1 in (3. 5) arise from 
the replacement H _. H ""t • 1 

The contribution of tt is obtained analogously from (3.4) by 
the replacement (.T,.£/3) 2~ S, ~2 and the ;mission of all other 

- 2 terms containing e : 

9~ = GA(,1-~-n-'~ Ht tl: 
(3.7) 

= [ F1-1 Eo+ (F21 /215)(3E0 ·-5"E 0 )]~2 J2 . 
The factor 

~2 = < o..; <-a}'> I< a./'> (3.8) 

is due to the replacement H--. Ht. For an analysis of equations 
(3.4), (3.5) and (3.7) the components of the occurring tensors are 
listed in the Table where the system of principal axes of the strain 
tensor ~ is chosen as coordinate system. All non-indicated compo
nents vanish. 
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~· Components of the tensors occurring in (3.4) 
relative to the system of principal axes of 
the tensor e (e;k-= e;O'ik). 

iiii iikk(iokl ikik-ikki (i-.1<1 
Eo I I 0 

l1£o-SE8 4 -2 3 
Eo 3 1 1 

?E-~ 9ef 7e,e. -21e;2·ell 7e, e..- 2(e2 •e2l 
E 2e, e,. e~c 0 
E, 2e'! e1· e! 0 

3E,-7E, 4eo ·411!; •e. l 3(e,•e.l 
~-7Eo 2 -4 3 
JE,-1E, 4el -4le;'o~!~l lle;'·e~ l 

Finally, instead of the strain fluctuations, let us consider 
the practically more important fluctuations of.the stress. With the 
constitutive law of phase A, ~=cA(~-~Aj) , we get 

qr;:r :::: <C'®<J> -<IJ>®<~> = (cA~cA)o ::: (Aa (3.9) 
A A 1\ A lA lA • 

Thus, the transition from qA to qr is performed by simply replac
ing F;l<.-+ [AFik in (3.4), (3.5) and (3.7), where 

[
1
A.: (3,lt_All (: = 3~A· 2f'A, ct:: (2fA)

2 
otherwise. (3.10) 

Furthermore. the strain ~ may be replaced by the mean stress: 

~= c·"'<\1'> ::.: c-t~o: . This gives 

Tr~-= Tr(T/3~ I e = s/?f. = (Q-- lTr~/3)/2)4 (3.11 ) 

which has to be inserted into the definitions (3.1}. In this way we 
may express the stress fluctuations by the mean stress. 

4. Exact Relations for the Thermoelastic Fluctuations 

In our previous work exact relations between the scalar invari
ants of the fluctuation tensor qA~ and the effective elastic mo
duli ae and ~ have been established. These relations are satis
fied by our self-consistent single-grain approximation. In an analo
gous manner we can derive exact relations between the fluctuations 
qA~t and the effective thermal expansion coefficient. 

To this end the displacement field and strain are split up 
into 

U = '\A.IM +- \.(t - - - ' t.,-:::~IM+~t, (4.1) 
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where £VIr. is caused by a mechanical load only, i.e. it depends 
linearly on <tr> whereas ~t is proportional to J . According to 
(2.1) and (2.2) they obey the following equations: 

l cra.£Wl = 2 IJ = :2 <v-> == } c <£w.> <~""> = ~ 
r;)~ -ov:: u!:_ 'J!: , 

':2_ C.rc1 Et = ·:£ Cr~~ru Jj < z.l:>-= ~ 2, 
ill~ '()!:_ ' 

Now let ue carry out a simultaneous variation of era. and 
that crA~r~ remains unchanged. Then (4.J) yields 

~!: ( J'crCA£t + era. 8~!:) = 0. 
Further we consider the scalar expression 

( EWI Scr~~t) = _ <'!:!WI II" (,_dc.ra.~t )'> 

= < 'Ltl'\1 'Q (c.rD. d£t J> -= - < z:w.cr£1. d£t > 
- 'o'C 

=<Jut2 (cm~w.)) = <Jut. 2 c£ >-=- <8£t:>c~. 
- 0~ - ~!: 

~ 
D(_NI 

(4.2) 

(4. 3) 

so 

(4.4) 

(4.5) 

Here we have used equations (4.4)and (4.2). The remaininp, steps are 
only ir1tegrations by parts with respect to the volume integral: 
< ... > = ( 1 IV >JdV... • The appearing surf~ce integrals 

~JS [~W!(krQ£.ttc~"Cld£t)- d~t\Cru~no-c~)] 

= ~ d ~ [ ~WI J( cr" £ l:) _ J ~ t ( <J _ ~ ~ ] 

(4.6) 

may be omitted because they vanish for a suitable choice of the boun
dary conditions for 'VIw. and tit (e.g. d~CJ::dS~ asboundarycon
dition for ~>'~'~ and -d~cra.£1: -"' 0 for ~t ). -

Inserting the laet equation of (4.3) into (4.5) we obtain 

<~Wlsc.mEt> = _ J&. J c ~ 

For isotropic phases this leads to 

~ 'IJA [ J~A <Tr~""' Tr£!:>A + 

::: - 3~ &x. JJ TY'~ 

10 

for J(cr"~rL\) = 0, 

2. oJ"A < e~k e1 >A 1 
tor d(~A!iA) = 0, 

(4.7) 

(4.8) 

r 
( 

I 

If the effective thermal expansion is considered as a function of 

the variables ~A• J.AA and ~A , i.e. rf.."' IX\ ~A 1/"A 1 ~A)AA) • 
equation (4.8) may be split up into 

2. IMt b ( '()oc_ ) tL ·;- -< \lr~) > = 2 < Trt~'~-~ Tn:t':> = - - ,;;:;- dt if 11"~, 
A A 'I:TA•vdf.A4t.Ar:J..A (4.9) 

<Tre2 )~t = 2<e~e.t> =- ~ ~ ,. J -\"'c 
A '" L.. A "'A I'J rr<- 1 <. • 

.IJAA 
The index dE:. A~ at the derivation refers to the condition 
d(~AcLA) .. o. Equations (4.9) represent rigorous relations between 
the square means and the effective thermal expansion. They are valid 
for an arbitrary topology of the multiphase composite. 

Let us apply them now to our self-consistent approximation. 
From the definition of 9A (1.7) and equations (2.21) and (2.27) we 
obtair 

mt _ 2<£~£1; '> - 2<~~'><£~k>A 9A~Lkk - n kk A A 

t~(a<( 1 l31lt+~ttK3~~t~}AcL) }JTr£ -b-- + 2 ) 
- - -.:JA V()~A1 ~ArJ..A (. '3cl€A + 4)1t) 

(4.10) 

Wit 2 ( Wl t '> q. . = e <k e ik A + " ~v~t. ~ 9A;,t.~ 
1'\U\LV.. 

t " Wit. 3 'ac<. Q ·r -w. --q = --~-"' n:. 
9A(k;t<. 3 AiLkk "A rap.A ' 

The results (2.20), (3.5) together with (2.18) can be shown to sa
tisfy these exact relations. 

5. Numerical Examples and Discussion 

An analysis of the final result for the fluctuations qA has 
been perforned numerically for a two-phase composite. According to 
our general treatment the effective elastic moduli and thermal ex
pansion have been calculated in the effective-medium approximations 
(2.18), (2.20). 

For the case <~> • 0 the thermal stress fluctuations are com
pared with the mean thermal stress in each phase in Fig. 1. The cur
ves are similar to those found by Pompa and Kreher 151. For the spe
cial example of moderate heterogeneity ( '*" /l(2 .. 5) the mean quad
ratic deviations of the stress defined as usually by the square 
roots of the fluctuations 
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cr 
s ALklw. 

l9\J· )tl/2 
ALklw, = 

are of the order of the mean stress. At the maximum of I<G'.,.'>4 1ts~~Wt 
• 0:0 I I I at "&~ ::: '\)".:. ~ 0.18 (cf. FJ.g. 1} we find S~1 ~1~1 1<~~'>, ~ 0.36. 

The dependence of this characteristic ratio on the heterogeneity ra
tio ~~~~2 is plotted in Fig. 2a. It can easily be shown within our 
approximation that for a two-phase composite this ratio does not de
pend on the ratio nt.-1/ocz. • In the limit ~/i/"iK.2.--">00 the fluctuations 
increase up to infinity if the volume fraction tr~ goes to the per
colation threshold ~c • 0.5 (cf. Fig. 2b}. This quantitative analy
sis clearly shows that the fluctuations are of great importance for 
an estimation of thermal stresses in a strongly heterogeneous com
posite. 

The case of a simultaneous mechanical load and thermal expan
sion is considered in Fig. 3 where the stress fluctuations are com
pared with its mean value as a function of the macroscopic mean 
stress <u>. 

phose 2 

-3l"' ... _____ ... ~" 

,/ 

,/ 
/ 

//,/ 
atl#2• 2 
1l.t11z• s 
.,,. v1 -o1 

Vc 05 v1 -

~. Mean thermal stresses and 
their mean quadratic devia

tions versus volume frac,ion of 
phase 1 ( < <r~1 >A I ~2. 01..2. .J - solid 
lines; ( (G"11)>A ± S~..,H'\)/ ~2.0(l ~ -
broken lines • 

"~ 
m I 

! 

05t -/~ 

.~ .;::~··~ , 

~. Ratio of the mean quad-
ratic deviation and the 

mean value of the thermal stress 
s~ ~11~ I 1<~-f >~I in phase 1 of a 
two-phase composite at the maxi-
mum of I <<r~1'>1 1 t- s1~~~ 11 
(cf. 'lJ'~::: '\tc in Fig. 1 ) versus 
ratio~~/ ;)tt (a); 'I'C_ versus 
'M"/~2. (bJ. 

In conclusion, let us emphasize that the formalism given above 
is restricted to linear elasticity theory. In many experimental si
tuations, however, the local stresses exceed the limit of linear 
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Fig. ). Mean stress and its mean quadratic deviation 

in phase 1 of a two-phase composite as a func
tion of the mean load < v-,11 > J <le2 ()(2. ~ 
( < \!~1 >1 /il€2 ()(2. J- - solid lines; 
<<cr~1>1:t sz~411)/dezlk2~- broken lines; parameters 
as in Fig. 1, "'1 • 0.3 ). 

elasticity (compare, e.g., experiments by Hoffmann and Blumenauer/7~. 
The experimental investigation of the spatially fluctuating local 
stresses seems to be difficult and has been done mainly by means of 
X -ray diffraction. Moreover, the measurement of the stress fluctua
tions requires obviously a high accuracy and statistics of the expe
riment exceeding that of the measurement of the mean value. These 

~ J ---L L~- ~-----L---- -~ ~~----~~~~1 ~~+f~~+4~~n 4"A-
\j~J.\..olo4111tJliQ.lJ."''CID 0"'-.t-'.1-'V"'""' ..,.,"'J ..._....,.,..,.,._ .. ...._ ... ..,..,.'-' ..,..,. ""'"'"""" ___ .,. ____ -- ~-···-------

luding more realistic material laws than linear elasticity. 
The formalism presented may be extended to the case where, 

additionally to the thermal expansion, spontaneous internal deforma
tions due to a structural phase transition occur. 

Appendix 

The coefficients J:ik 

For completeness we list here the coefficients Flk occurring 
in (3.4}. They have been derived in I. 

f~~ = f1 i-1~2.\-124/D~z • 

f1! = fl \-!~1 /'iJ~2 

F2.1-= ~~ l-121 /'Du 

h?. = ~; ( ~ -1)-u) /1)12 

f33:: ~1~-~35 /l1-~33)' 

ftt~: fA~A (~-HI),- -·'Dil.i)/TJ4b-' 

f4~ = fA~~ 1-1.16' /D4!>, 

F51f ~ ~; HH /"D45, (A.1) 

F 5!> .. ~; ( 1 -!-/If~-'J>Iffi )([)45 , 
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1)"1'2. ""'- 1- 1-121 - H12 H21 t "D115 = ( 1- H~4 H-1- Hs-5") - 1-1'1~ l-ls4 , 
(A,2) 

H'-~ 4 -= 2.(11-211 )h3 , H12 -= !Jo (-1-2v) 2 h., !R, 
H2,-= 2hz Ns) 
Hn "' '2. ( 23- 50 v t 35 vl) ~1 , 

H3-s = 4(11j-.fOv+35;'2.)n,l1, 

H4 5" ""' -!fo(5-1>->)(11-2}>) h_, fiJi, 

Hs4 = - 2(5"-1v) h3 h/1, 
1-/5"5 =- 3(t1'1-50V+3f)l1)h1 /1, (A,J) 

h1 "' < bA
2

'>/(4-5!))
2

, h2 = < (sQA )
2>, 

(A.4) 

h3 -c: < 3 QA bA '> I ( 4- !) I ) ' 

fA"' .1-3QA l Q-= A.-2b 
~A A • 

(A.5) 

The angle brackets in (A.4) are defined in (2.18), The coefficients 
~~~ , b.., are ~~:iven bv (2.14) and V denotes the Poisson 1"Rt1 n nf' 

th~· effective medium V-:: (s.~t-21")/2.(3-ltt)A), 
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Eo6eT M., AHHep r. El7-85-800 
CTaTHqecKHe ynpyrHe H TepMoynpyrHe cPnYKTya~HH nonH 
B MHOro¢ia3HbiX KOMn03HTaX 

llpOCTpaHCTBeHHO $nyKTYHPYID~e non:H Hanp~eHHH H Ae¢lopMaUHH 
B cnyqaHHO reTeporeHHOH TepMoynpyroH cpege OnHC~BaiDTCH CBOHMH 
cpeAHHMH 3HaqeHH:HMH H KBaApaTHbiMH cpeAHHMH. BbNHCneHHe 3THX 
BenHqHH, npeACTaBneHHOe B npe~eH pa60Te aBTOpOB AnH cnyqaH 
MexaHHqecKOH Harpy3KH, o6o6~aeTCH Ha cnyqaH TepMHqecKoro pac
nmpeHHH. BbiBOAHTCH CTpOrHe OTHOWeHHH MelKAY KBaApaTHbiMH cpeA
HHMH H aHanHTHqeCKHMH CBOHCTBaMH K03~HQHeHTa 3~eKTHBHOT0 
TepMHqecKoro pacmHpeHHH. HaHAeHw cPnYKTYaQHH nona B npH6nHEe
HHH 3¢l¢leKTHBHOH cpeAbi, B npeAnOnOJKeHHH arperaTHOH TOnonorHH 
KOMn03HTa. llonyqeHbl pe3ynbTaTbl B HBHOH ¢lopMe Anfl H30Tp0llHWX 
¢1a3 H mapoo6pa3HbiX 3epeH H npeACTaaneHbT a 6onee yp:o6HoH ¢lop
Me, qeM B npelKHeH pa6oTe aBTOpOB. 

Pa6oTa awnonHeHa a na6opaTopHH TeopeTHqecKOH $H3HKH ORHM. 

fipenpHHT O&be~HeHHOrO HHCTHTyTa RAepHWX HCCneAOBaHHA. ~y0Ha 1985 

Bobeth M., Diener G. El7-85-800 
Static Elastic and Thermoelastic Field Fluctuations 
in Multiphase Composites 

The spatially fluctuating strain and stress fields in a 
random heterogeneous thermoelastic medium are characterized 
by their mean values and square means in each phase. In the 
present paper the calculation of these quantities, which has 
been presented in a previous work for the case of a mechani
cal load only, is extended to include thermal expansion. 
Besides the derivation of some exact relations between the 
square means and the analytical properties of the effective 
thermal expansion coefficient, the field fluctuations are 
calculated within an effective-medium procedure supposing an 
aggregate topology of the composite. Explicit results obtain
ed for isotropic phases and spherical grain shapes are given 
in a more convenient representation than in our former work. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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