N 06LEAHREHHbIA
, MHGTHTYT
"N AAEPHbIX
% LU HCCABADBANMM
1YGHa

E17-85-800

M.Bobeth , G.Diener *

STATIC ELASTIC AND THERMOELASTIC

FIELD FLUCTUATIONS
IN MULTIPHASE COMPOSITES

* Department of Physics, Technical University,
Dresden, GDR.
P S S R TS

1985




1. Introduction

The elastic field in a multiphase composite exhibits spatiml
fluctuations owing to the random spatial variation of the materiasl
properties. In a previous work dealing with the characterization and

evaluation of these fluctuations //

, hereafter referred to as I, we
have derived some exact relations between the square means of the
field in each phase and the analytic properties of the effective
material parameters, Since these relations do not determine the
square means completely, a modified effective-medium approximation
for calculating them in composites with aggregate topology has been
presented., In the present paper the procedure given in I is extended
to the evaluation of the static thermoelastic field fluctuations,
Moreover, we give another representation of our previous results,
which is more convenient for applications.

The basic equation of linear thermoelastostatics in the absence

of body forces is given by

T x = 0'_ (1.1)

where the stress tensor G, 1is related to the strain temsor

f4 = (u5k+ uhi)/Z , ( u denotes the displacement field) by the
local constitutive law

G. (n = C™% (p) [Etw(f) - &l':(g)ﬁ] (1.2)

K= i

with the elastic moduli tensor er and the tensor of thermal expan-
sion &ra . The temperature difference J is supposed to be homoge-
neous. Furthermore, the considered medium is gssumed to possess an
aggregate topology in contrast with a matrix-inclusion one, It con-
sists of a random arrangement of homogeneous regions (grains) y
and the material parameters take the form

c(r)= 2 c”O,(r) SO()=41, (1.3)
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(and analogously for & u ), where ¢” means the material parameter
of grain y . The step function e, is equal to one inside the grain
Y and zero otherwise.

In tha case = O the mean fields <UD . and <£)> defined as
ensemble or volume averages are connected by the effective constitu-~
tive law <t> = C<E)>. With this definition of the effective elastic
moduli tensor C , the effective thermal expansion tensor & can
be defined by

o> = c(<g>-ad). (1.4)

Some works concerning the evaluation of the effective thermal expan-
sion coefficient have been reviewed in /2/. A recent paper devoted
to this problem in the case of anisotropic phases has been published
by IHashin /3/, However, this is not the subject of the present paper.
Another task of practical importance, which has received grow-
ing attention in the last years, is the calculaticn of the mean va-
lues of the field in special phases of the composite as well as its
fluctuations, (For some references the reader is referred to I). The
mean strain in the phase A can be defined by

&>, = <0n eln)>/ vy (1.5)

= N (1.5)
Qalr)= Z  0y(0) , v, = <O,
LAY
where the sum is over all graine y occupied by the phase A and
AV, denotes its volume fraction. The field fluctuations in the phase
A are characterized by the products

9, * <E@E>, - <&>, @<L, ’ (1.7

<seeY, = <G (rislv)ieelr) >/

which represent tenscrs of fourth rank. A general scheme for calcu-
lating the moments of the random elastic field in the case of a com-
posite with matrix-inclusion topology has been presented by Kanaun
/4/. This procedure is similar to that proposed in the following.
Another approach to the evaluation of the fluctuations based on in-
formation theory has recently been given by Pompe and Kreher’sl-

In the present work the mean fields (1.5) and the fluctuations
(1.7) are calculnted within a self-consistent single-grain approxi-
mation including thermal expansion. The procedure is briefly outlined
in Section 2, The thermoelestic field fluctuations are calculated in
Section 3. Explicit results are obtained for phases with isotropic
material properties by supposing approximately sphnerical grains and

homogeneous mean fields <£> and <G> . Section 4 is devoted to the
derivation of some rigorous relations between the fluctuations and
the effective thermal expansion coefficlent. They are satisfied by
our gelf-consistent approximation. Finally, a numerical analysis of
the obtained results for a two-phase composite is given in Section 5.

2, Self-Consistent Approximation

Analogously to the case of electrostatics extensively treated
in I, one can transfom (1.1) into an equation for the displacement
field U

v ra ra A rd
Li? U=~ Cin O W = = iy, X d = % - 2.1
The differential operator Lra and the source term qra depend on
the random material parameters c™ ang & ra « Thus, in contrast to
I.(3.1), we are dealing here with a linear differential equation that
contains a random source term. The mean field <ﬁ§> is governed by
the effective equation

. 2 A
L <u> = =3 I US> = = CiptmX b =1 9 22
with the corresponding effective material properties C and &

Choosing the 8till unknown effective medium as the homogeneous
reference medium, we can perform the following decompositionss

L"O = L + EV SLV y &L\:L = ",ak 5C:‘k[w. Qy(r)/am (2.3)
J(;v = Cﬂ’- C
j”‘ il E“ % &jv ! 5‘1}’ = -aké(ciklmalw)v Q,(c) & (2.4)
§lex) = P& - e
U= <ud4+s (2.5)
& U

and the basic equation (2.1) may be split up into an equivalent set
of equations

L<ud> = 9 (2.6)

(L+80)w = - Sl (Ku>+3 ") + dq” . (2.7)
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After some formal tranaformations the following set of equations for

the strain tensor SM = U\“” results from (2.5) and (2.7):
¢ = <>+ 38, (2.8)
v
= AV (<> + 2 e -yY), (2.9)
Ve
where A
Av: FSCPGVKA-PSCVGV\) 3 PLKLVh = B(kGi)\tf(}W) s (2.10)
r - ALY
Yo () 18 ¥ (2.11)

. -4
and G denotes the inverse operator | I

Starting from the rigorous system of equations (2.8), (2.9) the
first and second moments of the field in each phase of the composite
have been calculated in I for the case 49= 0 within a self-consistent
single-grain approximation. According to (2.9) the results of I may
easily be extended to the case 0’% 0 by the replacement

AVe> > AV(Le> - V), (2.12)

For isotropic materials and spherical grain shapes we get inside the

grain V
. A
(O, A s> L (A”<g>)w = -0y G, Trée> = 2b, ey (2.13)

with
a, = (p-0)/(Raey+lm)

b, = 3, -m)/ [om 2B+ 8 )/ () 1 (2.14)

ey = £ - § Tre/3, (2.15)

where My, #, , M and 3 are the shear and bulk moduli of the

grains and the effective medium, respectively., Furthermore, the ther-

mal expansion coefficients simplify to scalars
Ay Iy ” -

(2 = oy Cie oy g = X O,

i (2416)

yy o= 4, (ae,at),-aeo()ﬁ/ﬁx,,-x.)

and we finally obtain

(A” <oy ) Dy = =0 S [ Trde> = 3 Q0= 2a) 1))
- Zbyeik \ (2.17)
As has been noted in I an analysis of the self-conaistency con-

dition <2 ,14” D= 0 (cf. eq.(2.5)) for 4 = O leads to the condition
AA »
T 9, A" (g> = 0 that yields the two equations
2 Va

{b> = %«yAbA =0, <a>= %quA =0 (2.18)

determining the effective elastic moduli 3¢ and M. The sums run
over all phases A of the composite and 1y, denotes the phase volume
fraction. (Here and in the following the quantities with the phase
index A are obtained from those with the grain index V by replac-
ing V by A). For # # 0, according to the substitution (2.12), we
get the additioral condition

%vAKAW‘*),k = -3dy %vA(xAdA~xo()a9/(2xA+ hu) = 0, (2.19)

By the use of (2,18) equation (2,19) yields the effective thermal
expahsion coefficient oL given by Budiansky 6

o= (S+dpm/e) %vAaA&A/I\S&A"'LW)' (Ze2U)
After this short rederivation of the effective-medium approxi-
mations of the effective material parameters let us now discuss the
mean fields and the fluctuations of the field in the phases defined
by (1.5) and (1.7), respectively. According to the substitution

(2.12), instead of the former result <&, = (’HAA) <£> 4 (cf. I.
(4.4)), the mean strain in the phase A 1is now given by

e >, = (12200 <> + (430, ) §y, Trde> /3 (2.21)
+ 34, (MAdA-xd)ﬁ/(Zx,,fé/u).

By the use of the constitutive laws (1.2) and (1.4) the strains may
be replaced by the more relevant stresses. Then, we obtain

<T > = () (-20) <5 >+ (Re/ae)(U-3a,) Gy Tr<o>/3
+ A2 &y M*y ("“iA)ﬁ/(’s’aeA+ )y (2.22)




where the deviator Sk of G;; is defined analogously to (2.15).

In the case Al = O the fluctuations q, (1.7) of the strain in
the phase A were given by I.(4.18)

3, = GMU-HIH <e> @ Ce> (2.23)
with

H= <% (4-0,(0)) A(r) @ A"()>, (2.24)

GA = <4+AA)®(4+AA>. (2.25)

For 3’# 0, according to (2.12), we have to replace

Hes>@de> —> (S (1-0) [AKe>-¥) @A Ke>-yv) [ D, (2-26)
1%
By splitting up the mean field <€> into
= - -4
<ggd> = Tyt o= Cim <S> (2.27)

and inserting (2.26) and (2.27) into (2.23) one gets finally

ql-\ = GA(4‘H)-4 { H{W‘ + lettmt + '_.lt tt} (2.28)

with

wm -~ - t 2
tikLm = E z‘tlﬂw. = é\ik Jlma 1

t - -
%VLVI‘«LM = (g r Edp) 4y (2.29)
H™t = <EU-0,)A" @A 0>,

Ht <%(4<@Y)A”®Ava2>,

1

1]

Wy 2y Qd.“‘dy )/(ly'&)-

Equation (2.28) represents a general expression for the fluctuations
of the atrain field in the case of a simultaneous mechanical load

and thermal expansion., Let us now turn to a detailed analysis of this
equation.

3, Thermoelastic Field Fluctuations

The field fluctuations qA (2.23) for the case J= O have been
presented in I by means of a representation based on a special set
of orthonormal base tensors. In the following we give an alternative
representation of the obtained final result which is probably more
convenient for direct applicationsa.

The fluctuations qA are fourth rank tensors which, in the
isotropic case, have to be built up from the unit tensor I of second
rank (Iik= &k) and the tensor & up to quadratic order. Taking
into account the symmetries of the tensor qA with respect to an
interchange of the indices we can construct the following tensors:

E,=Ie1,
Ey=2el +Tee, g =t-1Trg/3, G.1)
- - -2 - = -
tz=eZ®I + Tee y (ez)ik= euew\ ’
E3 =é®é, ~
as well as the corresponding symmetriszed tensors Eh (n =0,1,2,3)
N - , T (B .2)
(En )Lkly\,. - QEV“)LWJM *_(E“)lem * Kt")m.lk . G

With these tensors the quantities t, in (2.29) may be written as
g™ = (Tez/3)7E, + (WE/2)E, + Eq
et = 2(Ti/3)4 B, + YE, (3.3)
gt = 9% E,.

If the result of I for the contribution of ?fh to q is rewritten
in our new representation (3.1), (3.2), one obtains

g = GAU-HY T
= [ Fu(wi/3)% + (FuHE) Tra?/2] Eo
+ L2 (Tr2 /3% + (5, 0) Trg?/3 1 (3Eo-5E)
- ~ ~ ~ (314)
+ (Fpp/2D [ 2T &2 Eo/§ + 7E;-2E, ]

+ Fy (WE/3)Ey + (4Fs /1) [(TvE*/3)Eo - Ey/2]]




- KF5‘,/W)(Tr§/3)(3"§4 - E,)
= (Fee /D) [2(eY3) (3, - 7E,) - (3F,- 75 1,

Por abbreviation the phase index A at the quantities Fik has been
omitted., The expressions for Fik are listed in the appendix.

The contributions of EMt and tt to q may easily be ob-
tained from (3.4) by means of suitable replacements. From (2.28) we
get H¥" —» Hmt €"‘t and the comparison of ¥" and {"‘t in
(3.3) yields the follow1ng substitutions which have to be performed
in (3.4): (Tr‘i,/?)‘—-b 7_% »\9TV‘£,/3 and Trg/3 —» § 49’ . The quad-

ratic terms in e have to be omitted, Thus, we obtain
q:\t GA (4- )~ gt pret
[ 28,5, (Tr/3) Eo + (Rf /B (W 3)(3E, - 5E,) O
+Fu 8 By~ (Foy§/70) (3E,-1E) ] 4

i

with
§1 = <Q§ UA>/<Q,3\> j] ?4, = <QAbAw/\.>/<QAbA> ! (3.6)

The angle brackets denote an average with respect to the phases
(cf. (2.18)). The additional factors ? ?’ in (3.5) arise from
the replacement H —» H"‘ 1

The contribution of {t is obtained analogously from (3.4) by
the replacement \Trg/3)2———b-'f 32- and the omission of all other
terms containing & :

ge = GhUH)TIHE g (3.7)
= [FuB+ (P /2950 (3F,-SENTE, §2.
The factor
§, = <apwl>/<ad> (3.8)

is due to the replacement H —» Ht. Por an analysis of equations
(3.4), (3.5) and (3,7) the components of the occurring temsors are
listed in the Table where the system of principal axes of the strain
tensor € 18 chosen as coordinate system. All non-indicated compo-~
nents vanish,

Table. Components of the tensors occurring in (3.4)
relative to the system of principal axes of
the tensor € (& = e; §ik).

iii | ik fiek) Jikiksikii fisk)

[ 1 1 0
3,564 ¢ -2 3

E, 3 1 1
76,-2E, [ 9¢] [7ee, -21e’-€?)|7e, e - 2e? €l

E 2e €+ @ 0

E; | 2¢ & el 0
3,7, [ 4o | -tiee) 3le;vey)
3E76,] 2 -4 3
%,-76, [ e | -dieleed) | eleel)

Pinally, instead of the strain fluctuations, let us consider
the practically more important fluctuations of the stress. With the
congtitutive law of phase A, T =c (g-adAY) , we get

A
= <Faw, - <8<y, = (Rect)q, = Cq, . (3.9)

Thus, the transition from q, to qq is performed by simply replac-
ing FK —» C F in (3.4), (3 $) and (3.7), where

[4 =(3&A) , C:: 3, 2/‘4/“ [f‘: (z/uA)z otherwise. (3.10)

Furthermore. the strain ¢ may be replaced by the mean stress:
¢ = C'4(3> = C'46— . This gives

Tr-;: = TrG—/S’a(, ’ e = §/2,u = (6'* I—TV‘E‘/S)/Z/M .11)

which has to be inserted into the definitions (3.1)., In thie way we
may express the stress fluctuations by the mean stress.

4, Exact Relations for the Thermoelastic Pluctuations

In our previous work exact relations between the scalar invari-
ants of the fluctuation tensor q'“ and the effective elastic mo-~
duli 3¢ and W have been established, These relaticns are satis-
fied by our self-consistent single~grain approximation, In an analo-
gous manner we can derive exact relations between the fluctuations

qML and the effective thermal expansion coefficient.

To this end the displacement field and strain are split up

t
)

into

U= U+ u e=s"+ st (4.1)



where £ is caused by a mechanical load only, i.e, it depends
linearly on <g)> whereas gt e proportional to 4 . According to
(2.1) and (2.2) they obey the following equations:

9 O 2 _ 9 L) =

A e’ = T ’3[<v> = §rc<€m>; <> =€, (4.2)
; A A

%c“‘ st - %r crore s, <st>= A, (4.3)

A

Wow let ue carry out a simultaneous variation of c¢™ and «™ so
A

that ¢"™y"™ remains unchanged. Then (4.3) yields

%r (Scragt 4 cradst) = 0, (4.4)
Further we consider the scalar expression
< 3 Scragt\> = - < Em%vf\scrait >
= <un D (rafet)> = - <M st

lby_‘

r, - (4.
=<53t3§r(Cm2W)> = <Jgf’,b%_c;;> = -<dst>ez, &

Here we have used equations (4.4 )and (4.2). The remaining steps are
only integrations by parts with respect to the volume integral:
<D - (’7/\/)‘fdv... . The appearing surface integrale

Sds [um(dcroet 4 cradst) - Jut (g™ - cE)]

= $ds [umdlcst) -~ Jut(s-9)]

(4.6)

may be omitted because they vanish for a suitable choice of the boun-
dary conditions for U™ and ‘gé (e.g. dST=d{T as boundary con-
dition for U™ and §cl§c'"°‘gt =0 for ut ),

Inserting the last equation of (4.3) into (4.5) we obtain

dsmlcragts =~ §& dcE for  d(cTu™) = 0, (4.7)

For isotropic phases this leads to
— = - W
% I\}A l_ JXA<TTEW lTSE>A + 7-&/0\,\ <eike|{|:\>A]

(4.8)
= - 306 &X_ 49 TTE ‘FOP (;()QA&A) = O.
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If the effective thermal expansion is considered as a function of

the variables 24, My and W i, » 1.0 o= d(xm/"‘;. ,XA/MA) ’
equation (4.8) may be split up into

ot NS § Tz
{(Tre) >A = 2<Tre" T it>A A vaaCA)btAdA& (4’.9)
2 \Mt - W1 { - - 3 Qd. —_
<Tr‘e >A = 2<e‘k elk>A I\’A @AX'\? “‘i.

The index xﬁdﬂ at the derivation refers +to the condition
J(xAdA) = 0, Equations (4.9) represent rigorous relations between
the square means and the effective thermal expansion. They are valid
for an arbitrary topology of the multiphase composite.

Let us apply them now to our self-consistent approximation,
From the definition of qA (1.7) and equations (2.21) and (2.27) we
obtainr

mt m ot m t
Yo = 2 <8 8>~ 2 <ER <
v 3 ( -
s-6{2(%) 4 BetpdSxat i) 952 (4109
Vs VOt (30, + 4m)
A mt

qmt = 2<ew\eti’/~$4 o3 QA
ALKLKA

to_agmt O3 LW g
Yo~ 3 Taiikk op /apAs Tre.

The results (2.20), (3.5) together with (2.18) can be shown to sa-
tisfy these exact relations,

5. Numerical Examples and Discussion

An analysis of the final result for the fluctuations qA has
been performed numerically for a two-phase composite. According to
our general treatment the effective elastic moduli and thermal ex~
pansion have been calculated in the effective-medium approximations
(2.18), (2,20).

For the case <&> = 0 the thermal stress fluctuations are com-
pared with the mean thermal stress in each phase in Fig., 1. The cur-
ves are similar to those found by Pompe and Kreher /5/. For the spe~
cial example of moderate heterogeneity ( ae4/;¢2 = 5) the mean quad-
ratic deviations of the stress defined as usually by the square
roots of the fluctuations

11



T = (q, Y
Atklm  ~ QA ikim
are of the order of the mean stress., At the maximum ofl(%)|+szuﬂ
st Uy = .~ 0.18 (cf. Fig. 1) we find 57, /1<%l ~ 0.36,
The dependence of this characteristic ratio on the heterogeneity ra-
tio 34/, is plotted in Fig. 2a. It can easily be shown within our
approximation that for a two-phase composite this ratio does not de-
pend on the ratio N4/u2 o In the 1imit Mg/xzeun the fluctuations
increase up to infinity if the volume fraction Uy goes to the per-
colation threshold ﬁE = 0.5 (cf, Fig. 2b), This quantitative analy-
8is clearly shows that the fluctuations are of great importance for
an estimation of thermal stresses in a strongly heterogeneous com-
poaite,

The case of a simultaneous mechanical load and thermal expan-
sion is considered in Fig. 3 where the stress fluctuations are com-

pared with its mean value as a function of the macroscopic mean
stress <G>.

phase?

05

-2l s
4
/ .
: e oAy v 2 ¥ -9,:02
Y g x5 [\ A
Vy= vy =02 1 10 ®,/%, w
] Ve 05 v, —

Fig. 2. Ratio of the mean quad-

ratic deviation and the

Fig, 1. fgﬁ?,tggiﬁa;uggigi?gsdgega- mean value of the thermal stress
tions versus volume fraction of Sh4“4/!<0h)q| in phase 1 of a

phase 1 ( <Gy >a /aezoLZ - solid two-phase composite at the maxi-

£ | <oyu> )+ SF,
lines; (<Uy>4t ST ’pp - TUn O M2 |+ Sqaaq
broken lines). Anmaa)/ %2%p (cf, Wy =W in Fig. 1) versus
ratio 3¢,/ %7 (a); Ay versus
X4/&2 (v).

In conclusion, let us emphasige that the formalism given above

is restricted to linear elasticity theory. In many experimental si~-
tuations, however, the local stresses exceed the 1limit of linear
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Fig, 3. Mean stress and iis mean quadratic deviation
in phase 1 of a two-phase composite as a func-
tion of the mean load <5-44>/3g20(24}'

( <G> /R, & - solid lines;
(o> = s{MH)/xzazﬁ - broken lines; parameters
as in Fig. 1, W= 0.3).
7
elasticity (compare, e.g., experiments by Hoffmann and Blumenauer/ 4.
The experimental investigation of the spatially fluctuating local
stresses seems to be difficult and has been done mainly by means of
X -ray diffraction, Moreover, the measurement of the stress fluctua-
tions requires obviously a high accuracy and statistics of the expe-
riment exceeding that of the measurement of the mean value. These
- + - P A toim b nvmna AP dhhnawmatiand nn+imntic:: i:l:_
vilLUMiiD valivoo T VAMD MU vy v A N W Mg e v e
luding more realistic material laws than linear elasticity.
The formalism presented may be extended to the case where,
additionally to the thermal expansion, spontanecus internal deforma-
tinns due to a structural phase transition occur.

Appendix

The coefficients Fik

For completeness we list here the coefficients Fik occurring
in (3.4). They have been derived in I,

Fo= 82 HoHa /D Fag = tag, (1= Hss = Dus )/ Dy,

Fns 62 Hn /D Fys = FA ‘3/\ Hus /Dys

Fous 9,:; Hoq/Drz Foy = 92 Hsy /Dys, (A.1)
Fi= 41 (4-D)/Dpy Fs5 = 9a (1= Huy D45 )/ Dys

F3z= 98 Haz/U-Hs3),

13



Dy = 4= Hyy - HizHyy Dys = (1-Hy Y A-Hsg) ~ Hys Hgy

(A.2)
Hy, = 50 (1-20)2 b, /45, Hy, = 2(4-20)hg
Hyp = 2 hy /N5, Hys = ~0(5-70)(4-20) hy V217,
Hyy = 2(23-50v +35y2)h,, Hg, = - 2(5-%2) haV2/7,

4

Hay = 4(13-50v+355% ), /7, Hsg = -3M-50v+3550)h, (¥, (A.3)

h‘l = <bA2>/(4-5V)2, h2= <(3Q,q)2>,
h3 = <3aAbA>/(4—5)’)’

(A.4)

‘FA = 4’3QA ?Af 4‘2bA.

)
(A.5)

The angle brackets in (A.4) are defined in (2.18). The coefficients
Qn b are ziven by (2.14) and VU denotes the Poisson ratin of
the effective medium V = {3~ Z/v- )/2 (33!.-#/0 ),
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CraTH4yecKkHe ymnpyrHe M TepMOynpyrHe (UIYKTyailduH MOJIsA

B MHOTOdba3HBIX KOMMNO3HTAaxX

fIlpocTpaHcTBeHHO QUIYKTYHPYWIHE MMOJiA HaNpsKeHHA H nedopManHu
B CHIy4YailHO reTeporeHHO!! TEepMOYNPYIOHW Cpefe OIMHCHIBAIOTCSA CBOUMH
CpefHUMH 3HAauYeHHAMH M KBajpaTHBIMH CpefHHMHM. BbuucleHHe 3THX
BeJIMYUH, Npe[AcTaBleHHOe B MpexHeH pa6oTe aBTOPOB AnA ciy4das
MeXaHHUeCcKO# Harpy3kd, ofobmaercs Ha ciydal TepMHUeCKOTrOo pac-—
WUpeHHA. BbhlBOOsATCSA CTpOrHe OTHOmMEHHA MeXAy KBaapaTHeIMH cpepa-
HUMH M aHalIUTHYeCKHMH CBOHCTBaMH KosdbdHiMeHTa 3ddeKTHBHOTO
TepMHYeCcKoro pacmupeHus. Haipenn QUyKTyauus NOJjA B NpHGIHKe—
Huu obbeKTHBHOMR cpelbl, B MNpPeANONIOXeHHH arperaTHod TOMOJOTHH
koMnosuTa. IllofiyyeHsl pesyiabTaTel B sABHOH dopMe Ofsd H3O0TPOMNHBIX
da3z ¥ wapoobpa3HeX 3epeH H NpejcTaBreHn B Gonee ypno6HoH dop—
Me, 4yeM B npexHeil paboTe aBTOpOB.

Pab6ora BumonHeHa B JlaGopaTopHd TeopeTHueckoil ¢usuku OUAHU.

NMpenpunt O6beAMHEHHOro HHCTHTYTAa AfEPHHX uccrnenopawu#. [yOHa 1985

Bobeth M., Diener G.
Static Elastic and Thermoelastic Field Fluctuations
in Multiphase Composites

E17-85-800

The spatially fluctuating strain and stress fields in a
random heterogeneous thermoelastic medium are characterized
by their mean values and square means in each phase. In the
present paper the calculation of these quantities, which has
been presented in a previous work for the case of a mechani-
cal load only, is extended to include thermal expansion.
Besides the derivation of some exact relations between the
square means and the analytical properties of the effective
thermal expansion coefficient, the field fluctuations are
calculated within an effective-medium procedure supposing an
aggregate topology of the composite. Explicit results obtain-
ed for isotropic phases and spherical grain shapes are given
in a more convenient representation than in our former work.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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