


1. INTRODUCTION

The Jaynes-Cummings model !’ of a two-level atom interacting
with a quantlzed single-mode radiation field is at the core of
many problems in quantum optics, NMR and quantum electronics.
The importance of this model lies in that it is perhaps the
simplest solvabile model that describes the essential physics of
rndxat10n~matter interaction. Recent studies of this model by
Eberly et al.*’ and Knight and Radmore’® have revealed quan-
tum collapse and revival which are clearly a manifestation of
the role of quantum mechanics in the coherence and fluctuation
properties of radiation-matter systems, In a series of paper
Buck and Sukumar/%7and Singh 8/ have proposed three exactly
solvably generations of the Jaynes-Cummings model one 1nvolv1ng
tntenSIty dependent coupling, one involving multiphoton interac-
tion between the field and atom, the other involving few-level
structure of the atom. A generalized model describing a two-
mode process in a three-level atom with one-photon transitions
has been investigated by Li and Bei’? and Bogolubov (Jr.) et
al/10-14/ ap excellent review of the dynamical theory of Jaynes-
Cmnmﬁngs-type models has recently been given by Yoo and Eber-
ly

The possibility of a multiphoton transition, which proceeds
via intermediate states, has first been pointed out by Mayer’18/
Various multiphonon transition processes have been studied
both theoretically and experimentally, AmonE them are two-pho-

on and more general multiphoton lasers’! .tun-pboton de-
cay /83.24/ mult;ehotnn absorption and emission in a two-level
atomic system’® Reman and hyper-Raman processes /27:287,

We wish to present in this paper a rigorous and fully gquan-
tum mechanical treatment of multiphoton two-mode processes in
a three-level atom on the basis of an exactly solvable Jaynes-
Cummings-type model

In §2 we describe the model, Section 3 contains derivations
of general explicit expressions for the time dependence of the
level population and photon number operators. In §4 we study
photon statistics., Section 5 gives a consideration of the quan-
tum dressed states and transition probabilities, In §6 we sum-
marize the results.
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2, DESCRIPTION OF THE MODEL

We consider a three-level atom being at rest in a lossless
cavity and interacting with a resonant quantized two-mode ra-
diation field, The energy operator for the atom is

H, = :tnjau (1)
i=1
Here, the operator Ry =|j><j| describes the population of level

i and f-u is the corresponding level energy. The field Hamil-
tonian 15

HF'-ag:tuuuli;aa : 2)

The photon annihilation and creation operators a, , l; (a=12)
describe mode @ of the quantized radiation field in the cavity,
The ¢’s are the mode frequencies. Let the upper level 3 be
coupled with the level | (level 2) due to the interaction with
the field in mode | (mode 2) via a m;—photen ( mg-photon)
transition, see the figure in which the energy level structure
and transition scheme are sketched for the case m;= 3, my = 1.
The corresponding multiphoton resonance conditions

Qg-0, =mye, , (a=1,2) (3)

are assumed to occur, As is well known, the atom-field inter-
action for a multiphoton process may be described by the effec-
tive Hamiltonian where a summation over intermediate states is
implicit 72830/ 15 the case of a three-level two-mode system con-
sidered here the elfective Hamiltonian in the electric dipole
and rotating wave appruximation takes the form
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Here, the operator Ry = i><}J| describes the atomic transition
from level i to level i(i#j). The mode @ -atom coupling constant
Bq is proportiomal to x ‘™), the dipole matrix element for

a my -photon transition between levels 3 and @ . The operators

Ru=ii><]l (i, § =1,2,3) obey the relations:

RyyR yg= By By (5a)
Ry Rypl =Rygdy; ~Rydy » (5b)
2 R, =1. (5¢)

Thus, the full model Hamiltonian of the "atom-field" system
is .
H=H, +HF4H“_. =
(6)
a' e

aau

2
,1_};11’.03, +=§hm,,- a°+hn§‘gn(nm ‘R

Note, the case m; =my =1 has been considered by Bogolubov (Jr.)
et al /W= 15 rhe apec;al case when the second mode is exclu-
ded from :onslderanon. i.e., when gy-0 we can obtain from
the Hamiltonian (6) that examined by Buck and Sukumar ‘57

and” Singh 8/,

3. TIME-DEPENDENT LEVEL POPULATION
AND PHOTON NUMBER OPERATORS

3.1. Equations of Motion

Starting from the Hamiltonian (6) we write down the Heisen-
berg equations for various operators in the usual way, i.e.,

- (1 %)[H, 01 First of all we define for convenience the sub-
sldun:y operators

+im,
Ei(Bh.':u Eas ﬂ“)- (?)

Then, the Heisenberg equations for the level- populauon opera-
tors Rge and the photon-number operators Ng =8g8, (a =1,2)
are quickly estahlished

Raa (9 = EgAg (0, (8a)
N, (1) = my R, A ,(1). (8b)
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From these equations it follows that
N (t) — m,R,, () =const =M, , (9)
where M, “s are constants of motion.

By using relations (5) the Heisenberg equations for A, are
found to be

M
Eu alt) =2 2(_:_“1.)_[ 1-R,,(0) —Rge() =R (V)] - g8, B(Y), (10)
a
where
BaRys, ag"0+Rygn; tag®. (11)

The operator B obeys the equation of motion

M+ (M!fnp

i:(;)ql_}__l_;\() By ———A (D). (12)
l

Equations (8a), (10) and (12) form a closed system of linear
equations that has the following integral of motion:

8y By B ~ATRyo (1) = A7 R, (1) =const = K. (13)

Here the notation
(M _+m)1!
e =g (14)
a

has been introduced.

Let us now differentiate each of equations (Ba) with respect
to time. Taking into account egs.(10) and the constant of motion
(13) we get then

(D +@AT + A2 R, +3ATR (0 =22F - K,
(15)
Rgp(M+(AZ+ AZ) Ry () + 3AG R, (1) =227 —K.

Note that egquations (15) are the same as the equations obtained
previously in the paper of Bogolubov (Jr.) et al.”'®/ for the
case m;=my=1. One can consider these second-order differenti-
al equations as a system of equations for bounded quantum os-
cillators /#¥ generating Rabi nonlinear oscillations of level
populations and photon numbers’3®/ in our model. The dependence
of (15) upon the numbers of multiple photons per atomic transi-
tion m; and my is included in the expressions of h and K
only.
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The solutions of the system (15) can easily be found and
represented in the form

Ry, () =u(cosAt—1) + Bsindt+ AT lu(cos2At-1) svein2At) + R, (0),

(16)
Ry (1) =—u(cos At~1) ~BsinAt+ A7 lu(cos2At—1) + vsinZAt| + Ryg0),
where the operator
B, a2 (M, +ml o (Mg +mp)! 4
Ae (A5 eA3)* =188 :“ +85 uﬂzlﬂ-] (17)

describes the Rabi oscillation frequencies. The "amplitude ope-
rators" u , B, 8,V are defined by the initial conditions as
follows:

p= DELAZR, (0 - MR (@) « OF-ADIKI/AS

u=1%[1-2R (0] +K1/@A%),
2 (18)
B= gk A(0) ~ATggAg@1/A%

v =lgA 00+ gy A (0 1/2A%).

By using the conservation laws (5¢) and (9) together with eqs.
(16) we can obtain

Rg (0 =-—A21 u(cos2at =1) + vein2at] + R“ 0,

N, smllp{mt.\t =1) + BainAt 4 )Af{n(mgi\l-lj +\'Bl.n21lt]|+ﬂl(0).{lg)

Nz(t) = nai-u(enlkt-i) —Bllll;\t-l—n\:[ll(cuﬁ A-1) +vein2At]] + N8 (0).

Thus, we have found the solutions of the equations of motion
for the level-population and photon-number operators in the
Heisenberg picture, Since the operataru M, therefore, and the
operators.A, and A are diagonal in the space of the basis
states, we can use the solutions (16), (19) as conventional
means to find the time dependences of the level populations and
photon numbers. By using these solutions we can find also the
statistical characteristics of the photons in the system (see
Bogolubov (Jr.) et al.”!2/ and §4).



3.2. Time Evolution Operator

We denote the free Hamiltonian of the atom and field by H,
Hy =Hy +Hy . (20)
Then, the full Hamiltonian (6) can be written as

Bl By (21)

It is easily shown that both H; and H, . are constants of mo-
tion, i,e.,

[H.Hg)l <l H.H,g1=[Hy .0, 1=0. (22)

This allows the time evolution operator U(t) to be written as

U(t) = expl—iHt /F]= exp( ~iHt/h) exp ( -iH, . tAl-

(23)
=@ P
xp [ zHotlﬁlum(t).
where
Uinl (t):exp[ —iHA]‘-l;tl (24)
is the time evolution operator in the interaction picture.
By using the identities
N, |
B Bp e —f— . glgim D sbs. (25)
(Na =m)! Ng!
and the relations (5a) we can easily show that
B 2
(H"/t} “KeA%, H K =0, (26)

where the constant operators K and A have been defined in the
previous subsection by eqs.(13) and (17), respectively. From
eqs.(26) it follows that for an integer number m>1

2n_ K+A®  2n 2o+1
H - + ] # 2
( "/t) R (u”_,‘k) -.»(HAF,:fi).\ o (27)

Hence, it is easy to express the time evolution operators U,.®
and U(t) in the form

B
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Ut = exp(—iHgt /Byu, (. (28b)

The time evolution of any operator is now determined by applying
the transformation (28) to its value at the initial time t«0.
In particular, the density operator p(t) of the system "atom-
field" in the Schridinger picture will be given by

pM=0U@® p@OUT () (29)

in terms of its value at time t-=0. The demsity matrix péﬂof
the radiation field and the probahility P(nlmn:t) of finding ny
photons in mode | and Ay photons in mode 2 are found from eq.
(29) to be

P = THLUMpO U] Pl@yagit) =<ngn | p() . (30)

Using eqs.(28)-(30) we can examine photon statistics for a given
initial state of the system in the manner of Singh 78/

On the other hand, the time evolution of the operator {
in the Heisenberg picture is given by

O(n-=u"(m o om. (31)

Using egs.(28) and (31) we can quickly come to the same equa-
tions (16)-(19) and examine the time behaviour of the level
populations and photon numbers for any initial state of the
system,

4. PHOTON STATISTICS

Let us introduce the following operators of the characterisg-
tic function of photon distribution

x(£,.€6,)=exp[ 1€ N (U +1£, N (W], (32)
Using the conservation laws (9) we find

(. ) =exp(ié M +1E6, M) [lexp(iém,)-1TR, ()«

(33)
vlexp(ig my)-11R (1) + 11

Denote by p(0) the density operator describing an initial
state of the "atom-field" system, Then, the characteristic
functien <y(£,, §!)> is defined as

<X(EI-Eg)>’ Tf)"(f;- Eg)P(o)n (34)



It is connected with the photon distribution function P(nl.nz;t.)
by the relation

<x (& ,§2)>=nliaexp(i§1n 1+i¢’2 “2) P(n1 .uz;t) (35)

which allows us to get the latter if the former is known.

Once the characteristic and photon distribution functions
are known, it is easy to find the statistical momentts of photon
number <NJYt)> and the correlations of modes <N:(t)N2(t) > using

the relations

<Ng®>= X ngP,ngt)=
Ri% g

—<x(£, =0, £,=0)>

. (36)
<-‘Nk(t)NE >= %ol P(u o :t) .-.._éi'___.‘: (£. =0, & =0)>
1 2 e 17 1*vg* r?(iflfﬂ(ife)t X "1 'h o "

Equations (33)-(36) together with eqs.(16) allow us to dis-
cuss photon statistics for a given initial state of the system,
A detailed consideration of this problem will be given below.

We first assume that the atom is initially on a definite
level i, i.e.,

PO =1><i| ® p, , (37)
where the density matrix pg describes the initial state of
the field. Then, by using egs.(33), (16) and (37) the charac-

teristic function (34) is found to be

<y(£,€ég)>= L P 1'"2] expl i‘fx (l:ll —mifi“) *i‘fz(nz-’”zazl |

aghs
(38)
exp(i& m) ‘I]RI("“V%: t) +lexp(ifm)-1IR (.0 0,0 1]
Here P (n,ny) is the initial distribution of photon numbers
Plo ng)=<ng.my|pping 0>, (39)
The functions R, (i nyngit) in eq.(38) are determined as
A(i,n, o )t
R 4.0 y0git)==2p (1.0 ynp) sicf —— 22— .
(40)

—2a¥(imy mg)uln np)sif A (o )t s 5y, .

8

A(i,n, 0 o)t
Ro(i,ny,ng;t) =2u(i.n,,n,)sin? (—21—?-)— -

—2A%G.0, m ) uli,n m,)ein®A (Lo 0 )t a5, |

where
. . B =88+ )
Ra(1,n,-.n2)=ga\ (ng—mg 8 gy}

(41)

Ali,n 0= \/-)?;(i.nl.ng) +A2 @.n .n,),
u(,n,n,) 'P’Aﬁ(i'"‘l'"z) ’\g(i'ni )18, -8, }/'\4("“1 Mg,
u(iayng =INGho 0 )8, 3oy ng) 8, -Fan )8, MekGa m)l.

Comparing eq.(38) with eq.(35) we obtain
P(ny.np;t) =

=P{n 1’"'1811 - my .n2+m282,)R1(i: n1+m15n -mg,0y+m, 5ﬂ Y%

+Plag +m 8, ,ny+me8y ~my)Ry (150 +m 5, ,n,+my So=mgit) + “2)
+P(ny+m 8y, ng+ mzamma (i:nl m,ﬁu . n2+m252i;t],

where

R 4 .nl,ne:t)-zAg(i.nl.ng)u(l.nl ) sit AG,n n,)t 4 By, . (43)

The statistical moments of photom number and the correlations
of modes are found from eqs.(36) and (38) to be

<N:'(t)\ =n2*‘. P(m3 ,nz)l(na——maﬁm s
1%e

(44)
+[(nllI -m 38 + ma)m =, -m 3, )m]Rn(i.ﬂl.nL,:t)L

Koy nf : {
<NIONz (0> 2 P@5,) 1, ~m,0,, Fay-ms,) +

+ (n_l.-mlau)' [(n 2'“‘2821 + mgl' —(na—m2821 )E]Fla(i.u1 Mg it)+

+(0g-mydy, )! [(ny ~m; 3, +m, " -, -m 8, )kml“-“v“e?”'



In particular, we find

<N, () > - 'll}‘;lzP(npna)lncl —mb o+ m Ry (i.ngngit)l,

<NF(®)> = X P, n, )i -m, r‘im)e rIama(na—maﬁm)+m:]Ra(i.n1.n2:t)l.
n!n! ("5)
<N1(t)N2(t)>=n XuP(nl,nB)l(nl-mlauj(ngﬂngsm)+
192

o w3 I mR G ngt) vn-mp, )m R (.ngnyt).

Note, in the case i = 1, m =my=1 equations (45) reduce
to the results obtained by Bogolubov (Jr.) et al.’'2?/ Equations
(42) for the distribution function of photon numbers can easily
be found by other ways using either the time evolution operators
(28) and eqs.(30) in the Schrédinger picture or the dressed
state formalism (see section 5)., With the aid of the above-ob-
tained eqs.(42), (44) and (45) we can examine the time beha-
viour of various photon statistical characteristics, mean photon
numbers and mean atomic level populations 13.14/ Iy particular,
the interesting effects such as quantum collapse and revi-
val 2313 qyantum chaos33.34' photon antibunching’}/ in exact-
ly soluble models can be investigated.

5. QUANTUM DRESSED STATES
AND TRANSITION PROBABILITIES

We represent an eigenstate vector of the free Hamiltonian
Hy by [f;n,mg>, where [i> is an atomic eigenstate vector cor-
responding to level 1, and [n,n > denotes a Fock state with n,
photons in mode | and ng photons in mode 2. This vector desc-
ribes the so-called undressed state of the system’35-37 The
eigenstates of the full Hamiltonian are easily found by solving
the stationary Schridinger equation

Hy =Ey. (46)

Their expressions in terms of the undressed states H;nl,ne‘;
are given by

e i -_—tl-("—k)-—il:nlm,.nz‘v + :ﬁtﬂﬂ)—ia;nlmg +m,> +-L;3;n,n2>.
P12 B 0y V2 Mo vE

=_.’f.1|:_|1.12.__i1;n +M 0> 4 —'\ggE')_w: S 4Mm D> - —l--.lan no(47)
~ibplg \/.E_X(nl.ng) R V‘-E_A(n:vngj ul % i VT - e.

10

u_hﬂ(_nﬁql;nlrm n >—-h(—nL) 2in;.0

' m >,
Oingng  A(nyn ) e An,.n,) e’

2

b -i1:n 5 i o = y =
and also by Ul:ﬂl.ng ling,ng with oy sm, -1 and ¢ s =

=|2:n, 05> with Eggmg-l. Here for convenience we have denoted

ll(ﬂl)E‘l\,‘f _1__1_-(‘1 s )! ] Ag(nz)ﬁ B, \:“I_'La‘—(n £ )Iv
©omyl 2 %

(48)

i AR fe(mpm)t -, @y em, )
Amyy ) =V AT ) ¢ ASm,) = Vi = & 5 »

The eigenenergies E"’“r“z(u =0, 4,0,2) of the full Hamiltonian

H that correspond to the eigenstates ld:y_n > are found to be
e S

EO:nl.ng utma«-nlml thg ),

3 (49)
Et:nl.u2= Eo;n"ng * A(nl.nz)-
and
E1:E‘l,n2=tm1+ﬁf"1+“2“e) iy <m; -1

= _ (50)
Ez:nl'ﬁ_2='b(92+nlml+n2@2) nzsmz_l'

Thus, the spectrum of the Hamiltonian H consists of a lattice

of triplets of closely spaced eigenstates (s=0,%*) and
Singnp

two sets of equally spaced undressed states |l.f ,n,> with
D,<m,-1 and |2;nl,ﬁg> with ':':‘25 my-1. Each tripfet is cha-
racterized by a pair of indices (n;,n;) that indicates that those
triplet states are linear combinations of the three degenerate
states Il;n‘ﬂnl.nz). 12;n, ;g +m > and |3;n‘.n >, see (33). The
energy splittings +Hae dig> within the triplet (n .n,) are of
course due to the coupling of the atom to the [ieid and are re-
ferred to as the resonant Stark effect, The triplet eigenstates
""'inx-ne (8 =0, ;) are called quantum dressed states of the
system /85-37.40/ It js interesting to note that the dressed

states "I’O-nl .. See the last eq. in (47), are the coherent su-

perpositions of only the undressed states ‘Lingmyng> and
|2iny.mg+mg>  but mot |3:0m>. The existence of such dressed
states uncoupled with the upper level 3 plays the important
role in the mechanism of the population trapping effect /37-40/
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due to which the decay channels in multiphoton excitation
can be turned off,

We now proceed to calculate the probabilities for the multi-
photon transitions of the atom. Let us denote by ¢(t) the wave
funcrion of the total system "atom+field" in the Schrddinger
picture. Then, the probability of finding the atom on its J~th
level at time t as a result of the transition i- | initiated
by n, photons in mode | and ny, photons in mode 2 of the field
is defined by the formula

' 2
Pit;ii-))= X |<¢ ®l)ind.ag>". 51)
nl'n; nyng i ¢

Here, the initial condition

has been assumed, By expanding ¢ - (0) in terms of the dres-
o

sed eigenstates (47) we can easily find the time dependent wave
functions ét (t). They read

nyhg
@

1n14m1n2(0m[ Qg 400, +ngwy)t] =

=|1;n, +m,,n> Iaf(n,)coa[A(nl.ng!t]+ Ai(na)lz'hg(n, ny) 4

+12; 0y ,npemg> foos[ Aln . )tl-1 1A, (0, ) Aglng) /A% (0 i, ) -

-1]8; nl.ngvhl(n‘}um[.\(nl.ng)tlf'h(n‘.ne}.

¢2nlng+mg (l)ﬁlp{i(ﬂn l'nlml. ‘nzmz)t]t

={1in; +m 0> lcos[A(n, .0 )t]-11A/(n ) »\e(n,h’«\g(n, Mo+ A3

+ lz:n‘.n +mg>IA:(ng)coll h(nl.ngl!]w\hal(nl) |;‘A'(nl.ne) -

e
=130 0,52 (@ Jsin[ Ao 0 )t]/A(n 00,

é gnyn M @PLI(0g 40, @, tngwtls
=-1[1;n, +m 0> A (n ) sin| Alpyng)tl/A(m,my) -

~1|2;n, ng+m> ha(ne)ain[ AMogng)t]/Amy mg) +(3;n ne>cos{ Mnyngtl.
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Hence, the expressions of the probabilities (51) for the mulri-
photon transitions are found to be
P(t:i-j)-Rl(i,nl,ng;t). (54)
where the functions R (i.n n,t) have been defined by egs.(40)
and (43). Equation (Si) implies that the transition probability
P(t;i+j) 1is equal to the population of level j under the ini-
tial state (52). Using eq.(54) and the detailed balance prin-

ciple, and under the initial condition (37) we can easily obtain
the same eq.(42) for the photon distribution function P(njng,t).

6. SUMMARY

In this paper we have presented and studied a soluble Jaynes-
Cummings-type model. The model considered consists of a lambda
configuration three-level atom interacting with a two-mode re-
sonant radiation field through the multiphoton transition mecha-
nism. The general explicit expressions for the time-dependent
level population and pheton number operators have been derived
by various ways using either equations of motion or time evo-—
lution operators. The quantum electrodynamic expression of Rabi
oscillation frequencies has been obtained. Photon statistics in
the model has been studied. Expressions for the photon distri-
bution, characteristic function, mean photon numbers, statis-
tical moments and correlations of photon numbers in the modes
are presented for various initial conditions. The quantum dres-
sed eigenstates and the energy spectrum have been found., The
probabilities for multiphoton transitions from a level to a le-
vel of the atom have been calculated. Application of the model
to the study of multiphoton two-mode laser will be discussed
in a future work, '

REFERENCES
i, Jaynes E,T., Cummings F.W. Proc.lEEE, 1963, 51, p.89,
2, Therly J.H., Narozhny N.B., Sanchez-Mongragon J.J. Phys.

Rev., 1981, A23, p.236,

Knight P.L., Radmore P.M. Phys,Lett., 1982, 90A, p.342,
Buck B., Sukumar C.V. Phys.Lett., 1981, 81A, p.132,
Buck B., Sukumar C.V. Phys.Lett., 1981, 83A, p.211,
Buck B,, Sukumar C.V. J.Phys.A:Math.Gen., 1984, 17, p.877,
Buck B., Sukumar C.V. J.Phys.A: Math.Gen., 1984, 17, p.885,
Singh S, Phys,Rev., 1982, A25, p.3206.

Li X., Bei N. Phys,Lett,, 1984, 101A, p.169,
Bogolubov N.N.(Jr,), Fam Le Kien, Shumovsky A.S. Phys.
Lett., 1984, 101A, p.201,

. .

OV E~NWmE W
e »

13


http:present.ed
http:A("1.0.lt

11. Bogolubov N.N. (Jr.), Fam Le Kien, Shumovskv A.S. Phys.
Lett., 1985, 107A, p.173.

12, Bogolubov N.N. (Jr.), ¥am Le Kien, Shumovsky A.S. Phys.
Lett., 1985, 107A, p.456.

13, Bogolubov N.N, (Jr.), Fam Le Kien, Shumovsky A.S, J,Phys.A:
Math.Gen., 1985, to be published.

14, Bogolubov N.N, (Jr.), Fam Le Kien, Shumovsky A.S. JINR,

EI7-85-402, Dubna, 1985, . COMMUNICATIONS, JINR RAPID COMMUNICATIONS, PREPRINTS,AND
15. Maria Goeppert-Mayer. Ann.Phys.(Leipzig), 1931, 9, p.273. PROCEEDINGS OF THE CONFERENCES PUBLISHED BY THE JOINT INSTITUTE
16. HcNezl K.J., Walls D.F. J.Phys.A: Math.Gen., 1975, 8, FOR NUCLEAR RESEARCH HAVE THE STATUS OF OFFICIAL PUBLICATIONS.
p.104,
17. Sczaniecky L. Opt.Acta, 1980, 27, p.251. )
18. Gibson A.F., Key M.H. Rep.Prog.Phys., 1980, 43, p.3. JINR Communication and Preprint references should cofitain?

20, Reid M. Mehell Koo, Walis D.F. Phys.Rev., 1981, A26, - names and initials of authors,
. 9.2029:' RE it A o » ’ - §b:reviated name of the Institute (JINR) and publication
a 1nocex
21. Zubairy M.S. Phys.Lett., 1982, B87A, p.162. ) ' .
22, Wang Z.C., Haken H. Z.Phys., 1984, B55, p.361; ibid.56, location of publisher (Dubna),

p.77. - year of publication
23, Tung J.H. et al. Phys.Rev., 1984, A30, p.1175. - page number (if necessary).
24, Florescu V. Phys.Rev., 1984, A30, p.2441, .
25, Shen Y.R. Phys.Rev., 1967, 155, p.921, For example:
26. 2ubairy M.S., Yeh J.J. Phys.Rev., 1980, A2l, p.1624, 1. Pervushin V.N. et al. JINR,P2-84-649,
27. Simaan H.D. J,Phys.A:Math.Gen.,, 1978, 11, p.1799, Dubna, 1984,
28, Sainz de los Terreros L., Santos M., Gonzalez-Diaz P.F.
Phys.Rev., 1985, A3l, p.1598, References to concrete articles, included into the Pro-
29, Aliskenderov E.1., Fam Le Kien, Shumovsky A.S. JINR, ceedings, should contain
P17-85-574, Dubna, 1985, .
30. Walls D.F. J.Phys.A:Math.Gen., 1971, 4, p.813, - hawes dnd Toltials of aathors, 5w
31. Elgin J.N. Phys.Letr., 1980, BOA, p.140. - title of Proceedcngs.lntroduged by wor In:
32, Allen L., Eberly J,H, Optical Resonance and Two-level - abbreviated name of the Institute (JINR) and publication
Atoms, Wiley, New York, 1975. index,
33, Graham R., Hohnerbach M. Z.Phys., 1984, BS7, p.233, - location of publisher (Dubna),
34, Graham R., Hohnerback M. Acta Physica Austriaca, 1984, - year of publication,
56, p.45. - page number.
35. Haroche S. Ann.Phys, Paris, 1971, 6, p.189;p.327.
36. Whitley R.M., Stroud C.R. (Jr.). Phys.Rev., 1976, Al4, For example:
p.1498, Kolpakov I.F. Iny XI Interm. Sympoeium
37, Radmore P.M., Knight P,L. J.Phys,B:At . Mol,Phys., 1982, on Nuelear Electronice, JINR,D13-84-53,
15, p.561. Dubna, 1984, p.26.
38, Dalton B.J., Knight P.L, J.Phys.B: At.Mol.Phys., 1982, ) i
15, p.3997. Savin I.A., Smirnov G.I. In: JINR Rapid
39, Radmore P.M., Knight P.L. Phys.Lett., 1984, 102A, p.180. - Communications, N2-84,Dubna,1964,p.3.

40, Yoo H.I., Eberly J.H. Phys.Rep., 1985, 118, p.239.

Heceived by Publishing Department
on November 1, 1985,

14






