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INTRODUCTION

In recent years the methods of nonlinear physics have pro-
moted an essential development of the classical theory of soft
mode in structural phase transitions’/!/. The study of low-dimen-
sional systems has shown that in the region of phase tramsition
at T>T, there appear dynamical clusters of short-range order
preceding an ordered state. Critical behaviour of the system is
determined by the dynamics of virtual domain walls whose diffu-
sion results in a central peak in the scattering function; also
a qualitative change occurs in the behaviour of the soft mode’2/

No unique answer is at present to the question whether there
exist stable formations of the type of clusters of short—-range
order in the real three-dimensional space. The corresponding
nonlinear equations at d = 3 may be solved only numerically,
with considerable difficulties. For this reason, it is rather
difficult to interpret the experimental data many of which point
to the existence of clusters in the real systems’®’

Therefore, it would be very useful to establish a general
criterion for the appearance of clusters of short-range order.
As a criterion of that sort one can take the non-ergodic beha-
viour of the system for which the isolated susceptibility can
possess the zero-frequency anomaly’4/, In this case the isolated
susceptibility does not coincide with the isothermal one measured
experimentally. Such a state of the system is analogous to the
state in low-symmetric phase where the order parameter is a non-
ergodic quantity’5/ with the only difference that this state is
due to the clusters with finite lifetime.

This idea, to our knowledge, was first put forward by Feder’®’
and developed by many physicists (see the discussion in the re-
view article 'Y sec.3.3). However, it has not been completed
since the most consistent consideration of the dynamical beha-
viour in the region of phase transition within the methods of
renormalization group deals with a narrow vicinity of the cri-
tical point/1/,

In this paper, we apply a recently developed technique of
projection operators in the method of double-time Green func-
tion’?/ to study the conditions of appearance of the non-ergo-
dic behaviour in a particular model of the structural phase
transition in dependence on the model parameters and anisotropy
of the s?ectrum of fluctuations of order parameter. The method
of ref.’"” allows,in principle, a consistent calculation of the
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non—ergodicity constant in a wide temperature range; and thus,
it becomes possible to establish a general criterion for the
non-ergodic behaviour of the system, in particular, clusters
of short-range order in the region of phase transition.

As the non-ergodicity is an intrinsic property of phases of
the type of spin glass/8,8/, the cluster state of the system may
be considered as a glass-like phase, in the present case, as
a structural-glass phase. Until now the notion "structural
glass" was used in studying crystals with defects and solid so-
lutions in which there are competing interactions occurring to-
gether with structural disorder’19/ According to our analysis,
the state of structural glass may also occur in the region of
phase transition in ideal (defectless) systems due to strongly
developed nonlinear fluctuations.

1. MODEL AND NONERGODIC CONSTANT

We consider a model of coupled anharmonic oscillators usual-
ly used to study structural phase transit}ons both of the displa-
cive and order-disorder types (see, e.g., I ¥

2 2

H=3G-m - 3AQ) +%BQ€)+%-ng Cpy Qp-Q,)} M
where mp and Qp are canonically conjugated local normal momenta
and coordinates that obey commutation relations: [ #g,Q J==ih&p, .
The single-site potential in (1) desecribes an anharmonic oscilla-
tor with the negative squared harmonic frequency, —v§=h-A<:0,
and the quartic anharmonic interaction of strength B>0. The
harmonic force constants Cp, couple these oscillators on a d -
dimensional lattice, £ = 1...N.

To study relaxation processes in the model we introduce the
isothermal relaxation function’/!!/:

B
‘bgk(t)=(ul(t).uk)= fdr<ul(t—ir)uk> (2)
0

that defines the thermodynamical average<...> of the time-de-
pendent displacement operators ug(t) = Qp(t) - <Qp> at tempera-
ture T=1/8, The initial value of (2) determines the static iso-
thermal susceptibility:

szk =@, (t=0)=(up,u,). (3)

If a system is nonergodic, some correlations in it do not
decay with time t that results in nonzero values of the corres-
ponding correlation functions in the limit t., .. We define the
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nonergodic constant for the model (1) by

= —et”
Loy = lim < up(u,_>= lime [ dt'e <u,(t)u, >.
t- oo ¢ k €=+ 0 t e( k (4)
/12/ . ; §
As was shown by Kubo ~, this constant is equal to the diffe-
rence of the static isothermal (3) and isolated (or Kubo) yf
susceptibilities and can be calculated as: .

BLyp, = “T‘o "q’lk(‘)‘x'gk _xg‘;l . )
Z

where the Laplace transform is given by

{ "= izt 1
q’fk (z) =-i—-0[ dte ¢fk (t) ;((ue !uk))z . Imz>0, (6)

By applying the projection-operator technique proposed by Tser-
kovnikov/?/ that is equivalent to the continued fraction expan-
sion of Mori, one obtains for the relaxation function (6) in
the q -representation:

i 1
!‘l)q(z)zxq 7 %T ' 7)
z—Mq@)

where
1q(f —x)

1
U@ - I O @e (8)

The relaxation kernel M (z), or the self-energy operator, is gi-
ven by the irreducible part of second order (see’?/)

M& (z) = Bz((ughii ))(2) ¢ (9)

The static limit for the relaxation function (7) yields the non-
ergodic constant (5) in the form

BLy = lim [z ®_ (2) = lmy T L
2+ 10 1 Y1/ T+ sM (@)
Xq q (10)
- T _ T -1
Xq (1/)(q +nq) "
where
5, ==);int|0:Mq(z). (n



If we assume the system (1) to undergo a structural phase
transition of the ferrodistortive type, at some temperature T, ,
then its susceptibility at 7=T/T,-1-0 and q+0 can be written
in the - form:

1

Y s (12)

T_ y _
xq—(alfl + 0, C,

where Cg -=E‘2 Coleiqz s Co=Cq-_io’ In this case from eqs. FS) and
(10) the following expression for the Kubo susceptibility can
be obtained:

—~1
x%:(a[qy +sq+CO—Cq) . (13)

It becomes divergent at some temperature T; lower than T¢:
1/
Ty =T, [1-(s,4/3) ") (14)

provided that sq-o is finite at T-T, .
To estimate the relaxation kernel (9), we employ the mode-
mode approximation’8/ in the form:

2 o B 3
My, (2) = B fae™ [ar6<uyt-inu, >, (15)
% i o 0

where the correlation function is given by:

o —iwt
<u€(l)uk>a_.;'1.._£;%g—‘:’—l-e . Im@lk(w). (16)

The singular part of (15) is defined by the non-ergodic contri-
bution (4) of the correlation function (16) and after integra-
tion the q-representation of eq.(15) can be written as

M@=t6p8°L 5 L, L, L rMgE
q z P“l-qs q9; 'ag'q;+q59

(2). (17)

Now after the calculation of the static limit in eq.(11) with
the function (17) one obtains a closed system of equations (10),
(12), (17) for the non—ergodic constant Lg .

2., NON-ERGODIC BEHAVIOUR OF THE MODEL

For a qualitative discussion we may further simplify the
relaxation kernel (15) by adopting a single-site approxlmat%og:
"My, (2) -8 My, (2) that results in the ¢ —independent 8=6BB"L},
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in eq. (11) and the following self-consistent equation for
L=L,:

B " T 1
BL=—2 Lq= 2()( - ).
N g g l/x':»rSBBELs

(18)

To solve eq.(18) for L one should also calculate self-con-—
sistently the static susceptibility X‘;I‘ in eq. (3). In the pre-
sent investigation, however, we have adopted a model approach
by introducing in eq. (I18) the susceptibility in the form of
eq.(12). In this way, one obtains a non-linear equation for L(T).

For integration over q in eq.(18) we will describe the spect-
rum of order parameter fluctuations in the following model form:

2
Cy —Cy=C(« qf+qf:') (19)
and choose in eq.(12) y = 1,2=A forr>0. Approximating the
Brillouin zone by a cylinder (diameter 2qq, height 2q, ) the q-
integrations are performed according to

1
b p[co_cq]=2fldpp fdz F[Afo(x2p2 +2z2 )], (20)
q 0

L
N 0

where F{x]is an arbitrary function and f0=q2°C/A. By the use of
the dimensionless variables

€=BL/A, ©=BT/A%, A-pr|/t, . A¥=(lr|+8L° /@) /1, 1)

we obtain from (18) the following transcendental equation for ¢

E=(29/t0x2)[g(Ao) - 8(A))] (22)

with it

g(A) = El-ln(l+x2/(1+A2)) + (A2+ k2% arctan(AZix®) -
—Aaretan(1/A). (23)

Investigation of eq.(22) shows that besides the trivial solution
f = 0 in the vicinity of T, there are two nonzero solutionsf, ,
£ in some temperature interval @.<® < ©, and for the coup-
ling parameter f,<f; at a fixed anisotropy parameter x.

For a numerical analysis of (22) the critical temperature
®, =BT, /A® has been related to the parameters of our model
using the self-consistent phonon approximation’13/ Corresponding-
ly, the ferrodistortive phase transition takes place at 2E e =
=A/3B with <u2>c =(Tc/N)qu§ .  which gives ec=:<2t°/(3ln(l+£2)+

+ 6« arctan (1/«)).
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The solutions of (22) have been plotted in Fig.l for special pa-
rameters f, and «. At r=Tg (fg. <) they appear discontinuously
(first-order transition to a non-ergodic state) with l’l=l2= Eg
and for 7 <r we have fy<fg,<fy. From the point of view of
thermodynamic stability, in correspondence with ordinary phase

transitiors, solution fy(T)

seems to be the physical one.
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a2 Fig.1. Dependence of the
i non-ergodieity constant £
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r=(T<T,)/T,: a) the
i8otropte case (x=1), f5=
= 0.1 (dotted linel), fg =
o1l = 0.5 (solid eurve), b)the
anisotropic case (x=0.1),
fo = 2 and fy = 10 dotted
and solid curves, respec-
tively.
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The case r <0 has been treated as 7>0 but with 8=2A in the
susceptibility (12). Correspondingly, r in eqs.(21) has been
replaced by2r. The results are, of course, analogous to the
case r > 0.
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Fig.2. Dependence of the criti-
cal value of the coupling cons-—
tant g on the anisotropy para-
meter . For fy<f_  the system
is specified by the non-ergodic
behaviour.

Let us emphasize that nonzero
solutions exist only for certain

values of fg:fg<f;, and as one
can see from Fig.2, the value
of fy increases as the anisotro-
py of the system increases (or
as the parameter « decreases).
The line in Fig.2 has been ob-
tained by calculating the maxi-
mum of the rhs of (22) divided
by f as a function of f for r=0
and fixed f; and x. If this maximum is lower than one, there
are no nonzero solutions. It is interesting to point out that
the result on non-ergodic behaviour of the model can even be
obtained if one employs a more crude approximation in (I8) by
performing the q -integration in the following manner

001 0 4. !

F e
T Aty

xT-Lsy (24)
N q

This mean-field type approximation when order parameter fluc-—

tuations are neglected results in a simple equation for

pred- 8 __ ot sdo(r+tl=0 (25)
[rl+tg 6

that can be solved analytically. Its nonzero solutions appear
again at a temperature 8=8_, (or rer Jwhere z,(e‘)-!z(e,) =
iy » (r‘+fo)/\/7 and rg 18 given by

ro= (=a) € [(14@a/ty -D/1-a)) " 1], a=v2/9. (26)

This expression has been derived using the MFA @,=f;/8 obtained
from the estimation <u2>c- =TG;T=A/GB. From (26) it follows
that also in this simple approximation solutions exist only for
f <f8 = 2a = 0.31 although this result is considerably smaller
t?:an the corresponding value f_~ 0.85 calculated from (22).

The critical value of £ is [ = " = 2/9. Equation (26) allows



us to obtain also the estimation for rg at YO: rg:

=%(rg—r0). (27)

So, the non-ergodic behaviour of the model is defined by
the model character and its parameters, i.e., it is a qualita-
tive property of the model. Taking account of fluctuations may
lead only to a quantitative change of critical values though
highly considerable. -

Let us note that in paper’ it has been shown in the mean-
field approximation that the system (1) becomes Ising-like at
the parameter f, close to f; (at fgy =~ 0.25).

DISCUSSIONS

The main result of the present investigation of the well-
known model (1) for structural phase transition is the occur-
rence of non-ergodic behaviour of the system of anharmonic os-—
cillators in the vicinity of the temperature of phase transi-
tion T,.This non-ergodic behaviour with the constant Lo #0 (4)
appears as a consequence of a pole at z = 0 in the relaxation
kernel (11). The non-ergodic behaviour physically results in the
difference of static isothermal (12) and isolated (13) suscep-
tibilities (see eqs.(5), (10)) that diverge in the case at dif-
ferent temperatures given by eq.(14). There is also a static
central peak in the van Hove scattering function

1

s S e O = S
(q0) = ”Im¢q(w+lc) Lq8(w)+

reg (4r @), (28)

where the last term is the regular part of the function.

The non-ergodic behaviour of the system is possible when its
susceptibility ¥y is sufficiently high: as it follows from the
general eq.(10) or its approx1mated version (18), a nonzero so-
lution, L # O, appears when (xT )™ <<S ~6BB%L3. 1In this 1li-
mit L= (IAV)qur which shows that the main contribution for
the fluctuatlons in the system comes from the non-ergodic (sta-
tic) fluctuations and not from the dynamlcal ones described by
the Kubo susceptibility (13): xX =((xT)'+ 8g)7F « g

The estimations in §2 reveal hat non—ergodlc behaviour ap-
pears in some temperature range Tg<T < T} where the values
Tg < Te & i depend malnly on the dimensionless coupling cons-
tantfo_ Ct /A there is only a zero solution, L = 0, for
fo>1 an& % X =T, for fo_.f . The absolute value fg
crltlcally depends on the approx1mat1ons for the fluctuatlon
spectrum of the model: for isotropic spectrum (x= 1 in eq. (19))
fg ~ 0.85, but at the same time at x = 0.1, fz= 20. This re-
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sult completed with comments made in the Introduction suggests
that non-ergodic behaviour of the model originates from the clus-
ters of short-range order. Therefore, the non-ergodic behaviour
of the model specified by the constant of non-ergodicity L may
serve as a criterion of the clusters of short-range order or
crossover from the displacive regime to the order-disorder re-
gime. This criterion is an alternative criterion of transition

of the system into a cluster state proposed in refs./15-17/,

As to the latter comment, we note the following: it is usual-
ly assumed’'’ that the clusters of short-range order appear
owing to critical fluctuations. In our opinion, it is not so.
This 1s, in particular, testified by our result in the mean-
field approximation. The appearance of clusters leading the sys-—
tem to a non-ergodic state is caused by nonlinearity of the
system that can be strong and beyond the critical region.

From the standpoint of non-ergodic behaviour of the system
its state in the presence of clusters of short-range order may
be identified with the phase of structural glass, and the con-
stant of non-ergodicity may be treated as a sign of that phase.
The connection between the dynamical transition from ergodic
to non-ergodic behaviour and transition to thg phase of spin
glass has recently been studied in papers ‘. Note also that
the investigation of the structural glass phase within the mo-
del’Y for solid solutions of components with ferro- and anti-
ferrodistortive interactions’/!8/ and for the system with compe-
ting interactions between the nearest and next neighbours’1%/
shows in fact that the phase of structural glass appears when
the mean coupling constant in the system (isotropic) fg tends
to zero. In the main our consideration was of a qualitative na-
ture. A more rigorous description of non-ergodic behaviour of
the model requires a self-consistent calculation of the suscep~
tibility xq? without model representation (12). Results of such
a more consistent approach will be published in a subsequent
paper.
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B 06veauHEeHHOM WMHCTUTYTE AQEepPHBX MCCNegoBaHuW Hadan
euxoauTh cbopHuuk "Hpamrxue coobwyenus OHAH", B Hem
6yayT NOMEWaTbLCA CTaTbU, COAEPKAWME OPUTUHANbLHLIE HAYUHWE,
HayuHO-TEXHUUECKME, METOAMYECKHE M NPUKNAnHHe pes3ynbTaTu,
Tpebyoume cpouHon nybnukaumm. Byayun uacTeio ''CoobueHum
OMAU'", cTaTbu, Boweguue B8 COOPHUK, MMEOT, Kak U Apyrue
uananua OMAKU, ctatyc oduumanbHeix nybnuxauwmii,

CHopHuk '""KpaTtkue coobuexun OUAU'' Eyper BuxoguTs
perynspHo.

The Joint Institute for Nuclear Research begins publi-
shing a collection of papers entitled JINR Rapid Communi-
cations which is a section of the JINR Communications
and is intended for the accelerated publication of impor-
tant results on the following subjects:

Physics of elementary particles and atomic nuclei.
Theoretical physics.

Experimental techniques and methods.

Accelerators.

Cryogenics.

Computing mathematics and methods.

Solid state physics. Liquids.

Theory of condensed matter.

Applied researches.

Being a part of the JINR Communications, the articles
of new collection 1ike all other publications of
the Joint Institute for Nuclear Research have the status
of official publications.

JINR Rapid Communications will be issued regularly.
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