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INTRODUCTION 

In recent years the methods of nonlinear physics have pro­
moted an essential development of the classical theory of sof t 
mode in structural phase transitions / !/, The study of low-dimen­
sional systems has shown t hat in the reg i on of phase transition 
a t T > Tc there appear dynamical clusters of short-range order 
preceding an ordered state. Critical behaviour of the system is 
determined by the dynamics of virtual doma i n walls whose dif f u­
sion results i n a central peak i n the scattering function; also 
a qualitative change occurs in the behaviour of the soft mode /2~ 

No unique answer is at present to the question whether there 
exist stable formations of the type of clusters of short-range 
order in the real three-dimensional space. The corresponding 
nonl inear equations a t d = 3 may be solved only numerica l ly, 
with considerable di ff iculties. For this reason, it is rather 
di f ficult to i nterpret the experimental data many of which point 
to the existence of c lusters in the rea l systems/Sf 

Therefore, it would be very usef ul to estab11sh a general 
c riterion for t he appearance of c lusters of short-range order. 
As a criterion of that sort one can t ake the non-ergodic beha­
viour of the system f or which the iso l ated susceptibility can 
possess the zero-frequency anomaly / 4/. In this case the isolated 
susceptibility does not coincide with t he isothermal one measured 
experimentally. Such a state of the system is analogous to the 
state in low-symmetric phase where the order parameter is a non­
ergod i c quant i ty 1&( with the only di ff erence that this state is 
due to the clusters with fin i te l ifetime. 

This idea, to our knowledge. was first put forward by Feder/S/ 
and developed by many physicists (see the discussion in the re­
view ar t icle/1/ sec.3.3). However, it has not been comple ted 
since the most consistent consideration of the dynamical beha­
viour in the region of phase trans i tion within the methods of 
renorma l ization group deals with a narrow vicinity of the cri­
t ical point/l/, 

In this paper, we apply a recently developed technique of 
projection operators in the me thod of double-time Green func­
tion/7/ to study the conditions of appearance of the non-ergo­
dic behaviour in a particular model of the s tructural phase 
trans ition in dependence on the mode l parameters and anisotropy.. of t he sfec trum of f luc tua~ions of order parame t er. The method 
of ref. 1 I all ows , in principle, a cons}stent caJ..c_u.l.a tion of the 
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non-ergodic ity constant in a wide t emperature range; and thus, 
it becomes possib le to estab l ish a general criterion for t he 
non-e r godic behaviour of the system, in part i cular, clus t e r s 
of short-range order i n t he region of phas e t r ansit ion . 

As the non-ergodic ity i s an i nt r i ns ic property of phases 0 

the type of spin glass 18 .9 /. t he cluster state of the sys tem may 
be considered a s a gl a s s-like phase , in t he present case, a s 
a s t r uctur a l - glass phase. Unt i l now the notion " s t ructura l 
gla ss " was used in s tudying cry s t al s wi t h defe c t s and so l id so ­
lu t i ons in wh ich t here are compet i ng i nter actions occurring to ­
gether wi th struc tura l di sord er /10 ( Accor d i ng to our ana l ysis, 
the stat e of struc tural g l a ss may a l s o occur i n the region of 
phase t rans i t i on in ideal (d e f ect les s ) systems due to strong l y 
deve loped nonl inear fluctua t ions . 

I. MODEL AND NONERGODIC CONSTANT 

We consider a model of coupled anharmonic oscillators usua l ­
ly u sed t o s tudy st ruc tur a l phase transitions bOLh of t he d i s pla­
cive and order-d isorder t ype s (s ee, e.g. ,'11 ) : 

1 21 21 41 2
H = I. (-2 110 --2AQe + - BQe ) + - I. elk (Qr - Qk)' ( I ) 

f [ 4 4 f.k 

where "e and Qe are canonical ly con j ugated loca l normal moment a 
and coordina te s tha t obe y commutation relat ions : I " f .Qk)=- ihSfk' 
The singl e-site potent ial in (1) describes an anharmonic osc i l la­
to r with t he negat i ve squared harmonic freque ncy. -vJ=-A < 0, 
and t he quar t i c anharmonic interaction of strength B>O. The 
harmonic force constants eft couple these oscillators on a d ­
dimensional l at tice, f = I ... N. 

To study relaxation pr ocesses in the model we i ntroduce t he 
i so t hermal rel axa tion f uncti on 111 / : 

f3 
~rk (t)=(Ur(t),uk )= f dr < ue(t-ir)u k > (2)


o 


that de f i nes the thermodynamical average < ... > of t he t ime- de ­
pe ndent d i spla cement oper a t ors uf (t) = Qe(t) - <Q f > at t empera ­
t ure T =1/ f3. The in i tial v alue of (2) de t ermines t he static iso­
thermal su scep t i b il i t y: 

Tx = ¢Ie (t=0) = ( u e ,Uk)' (3)ek k . 

If a system is nonergodic, some corre l a t ions i n it do not 
dec ay wi t h time t that result s i n nonzer o val ues of the corres ­
ponding corre lat ion f unct i ons i n t he limi t t -.~. We define t he 
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nonergodic constant for the model (I) by 

-tt 
Lek = lim < ue(t)u k > = lim ( [dt'e < u e(t' )u > . (4 ) 


t-+ 00 ( ~O k
 

b 1 12 , h' . d' f f As was shown by Ku 0 • t 1S constant 1S equal to the 1 e­
rence of the static isothermal (3) and i so l ated (or Kubo) Xl~ 
susceptibilities and can be calculated as: 

f3 L fk = 11m z ~fk(z) = X Ik - ')(f~ (5) 

z ... 10 


where the Laplace transform is given by 

1 Izt 

~ ~ (z) = -:- r 00 

dte ~ f (t) = «u eIUk» 1m z > 0'. (6 )

tk 1 O · k z 

By applying the projection-operator technique proposed by Tser ­
kovnikov l11 that is equivalent to the continued fraction expan­
sion of Mori, one obtains for the relaxation function (6) in 
the q -representation: 

T 1 
~ (z) = Xq 1/ XgT (7) 

q E - Z _ Mq(z) 

where 

41tk (z) =.!.. I qI (E) e Iq (t -k) 
N qq' (8) 

The relaxation kernel Mq(z) , or the self-energy operator, is gi­
ven by the i rreducible part of second order (see /?/) 

Mtk (z) = 8
2 (cut Iu: »(2) (9) 

The static limit for the relaxation function (7) yields the non­
ergodic constant (5) in the form 

T z~(z)t3 Lq .. 11m [z qI (E)] - 11m ')( 
q q T 

E .. 10 1/ )( + EM (E)
q q ( 10) 

T T -1 
- ')( - (1 / )( +.) • q q q 

where 

I!Iq m lim EMq(z), (11 )z... 10 
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If we assume the system (I) to under go a struc tural pha se 
transition of the ferrodistortive type, at some temper ature Tc . 
then its susceptibil ity at 'r= T/ Tc-l-.O and q -.. O can be written 
in the ' f orm : 

X T = ( a IT IY + C -C ) -1 	 (12)q 0 q • 

. e 
where Cq '= 'f Cot e Iq , C = C - . In this case from eqs . (5 ) and 

o q= 0 

(10) the 	fol lowi ng expr e ssion for the Kubo susceptibil i ty can 
be 	obtained: 

Y -1 
x~ =(a l rl +Bq +Co-Cq ) • 	 ( 13) 

It become s diver gent at some t emperature To l ower t han Tc : 

l / y 
To =Tc [l -(sq =o / a ) ) 	 (14) 

provided t hat Sq=o is fini t e a t T -. Tc . 
To est imat e the relaxa tion kernel (9), we employ t he mode ­

mode a ppr oxi mation !S! i n t he f orm : 

B2 "" izt (3 S 

Mfk(z) '" -,- r dt e r dr 6< uf (t-Ir) Uk > ' (15 ) 


1 0 0 

wher e the cor re lat i on function is given by: 

1 d w w -iw t 
< u£ (t) Uk > = - - J

00 fk e 1m <1J t (w). ( 16 ) 
7T ...,., e -1 k 

The singul ar par t of (1 5) is defined by t he non- er godic cont ri ­
but i on (4) of the cor relat i on funct ion ( 16) and a ft er i ntegra­
t i on the q-repre s entat ion of eq . ( IS) can be wr i t ten as 

1 2 1 	 reg
M (z) = -	 6 {3 B ~ I Lq L q L q + q _ q + M q (z) . ( 17)q Z N qq 1 212 

l ' .2 

Now af t er the cal cu l a t ion of t he static limit in eq .(II) with 
the f unct i on ( 17) one ob tains a closed system of equa tions ( 10), 
(12 ), (1 7) fo r the non-e r godic cons tan t L q . 

2. NON-ERG9DIC BEHAVIOUR OF THE MODEL 

For a qua l ita t i ve d i scussion we may further simpl ify the 

re l axa t i on ke r ne l (15 ) by adopt ing a s i ngle-s ite approximatl.0n : 


. Mek(z) -8tkMkk(z) t ha t r esul t s i n t he q -independent 8 =6I3B L!k 
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in eq. (II) and the following self-consi s tent equa t i on [or 

L = Lkk : 

f3 	 .l.. T 1(3 L = - I 	 L q = I ()( - ) . ( 18)N q 	 N q q 1/ )( T -~6I3B2 LS 
q 

~ 
To solve eq. (18) for L one should also calculate sel f - con­

sistent ly the s tatic suscep t ibility X T in e q. (3). In the pre ­
sent investiga t ion, however, we have ~dopted a model approach 
by introducing in eq. (18) the susceptibi l ity in the f orm of 
eq. (12). In this way, one obtains a non- linear equation for L(T). 

For integration over q in eq. (18) we will descr i be the spect ­
rum of order parameter fluctuations in the following model fo rm : 

Co - C = C(1(2q2 + q2 ) q	 .L z (1 9 ) 

and choose in eq . (J 2) y = I , a =A f or r > O. Approximat ing the 
Brillouin zone by a cylinder (d iame ter 2Qo' height 2qo ) the Q ­
integrat ions are perf ormed accord i ng to 

111 

- I F(C -C ] = 2Jdpp ( dzF ( Af (K2 p 2+ z2)J.
o q	 (20)N q 	 0 0 0 

where F[ x]i s an arbitra ry f unction and ro = q~C/A. By the use of 
t he dimensionle ss variables 

2 2 2 I 3f=BL/A. 	 8 = BT/A . tio= ir l /fo • til = (ir + 6l / 8) :l Co ( 21 ) 

we obtain f r om (18) t he f ollowing transcendental equation for e 

f = (28/ r0 K 2 )[ g(ti 0) - g(ti 1) ] 	 ( 22) 

with 
~ -~ g(~) = 1- In (1 +1(2 / (1 + ti 2 ) ) + (6. 2 + I( 2) - arctan (ti2+/C 2) -_ 

2 (23)
-ti arctan (1 / ti). 

Investigation of eq.(22) shows t hat besides the trivial solution 
ta O in the v i cinity of Tc there are two nonzero solutions fl , 
£ 2 in some temper ature interva l 8c~ ® ~ 8, and f or the coup­
ling parameter !o < r, at a fixed anisotropy parameter K . 

For a numerical analysis of (22) the critical t emperature 
8 c =BTc /A 2 has been r elated t o the parameters of our model 
using the sel f - consistent phonon approximation ! lS ~ Corresponding­
l y, the f errodi s t or t i ve phase transition takes place at <u.2 > = 
= A!3 B with < u2 ~ =(Tc IN) Iq x:. which giv e s 8 '" 1(2fo/ (3ln(1+~2)+c 

+ 6 Ie arotan (1/ I( ) ) • 
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The solutions of (22) have been plot ted i n Fig . J fo r specia l pa­ Fig . 2. Dependence of the cr'iti­
rame ters fo and 1<. At T= Ta (fo ,l<) they appear d iscont inuou sly fg I cal va l ue of the coupling cons­
(fi r s t-order trans i tion t o a non-ergodic stat e ) with fl = f2 .. fa tant fa on the anisotl'opy par'a­

100and [ or T < T J; we have f 1 < eg < f 2 ' From the po int of view of meter' For' f 0 < f g the systemK. 

thermodynam~ c s t ab ili t y, in correspondenc e with or d inary pha se is specified by tne non-er'godic 
transi tiop.s, so lut ion f2(T) seems to be the phy s i cal one. behaviour' . 

0.32 L a) \ Let us emphasize that nonze r o 
s o lutions exi st only for certa i n 

10 ~ values of (0: ( 0< (g' and as one 
can see from Fig .2, t he val ue 
of fg increases as t he anisotro­

0.18 L IJ\ ~ 
IOU. 

py of t he system increases (or 
as the parameter K dec r ea ses) .

0.10 .. :-, The l ine in Fig .2 has been ob­I ,I , tained by calcul a t ing the maxi ­,L~~ .. =,
0.16 L I 

I 

mum of the r hs of (22) div i ded/ " " ..... 001 0.1 
I ..... ~ - • d 0 .... by f a s a func t ~on of [ for T = / ....O.l2l / " .... and f i xed fo and 1<. If this maximum is lower than one , there ... ,,I " ...., ar e no non ze ro solutions . It is i nt e rest i ng to point ou t t hat 

ooa l I J th e r esult on non-ergodic behaviour of the model can even be 
\ , -.- ... " obtained if one employs a more crude approx imation in (18) by.....

b ) .... performing the q -integration in the following manner... 
~ ---03L ....Q:"t 

... 

.... --­V 
I 

- T 1 I. T _ 1 
(24 )

,2 )( ~ N q )( q - A ( IT I+ ( 0)-3 -1 0 2 3 l. 5 


lOO T ­ Th i s mean- fi eld type approxi mation when order paramete r f luc­
Fig. ]. Dependence of the t uations are neglected resu lts i n a simple equat ion for e0 2 non- er'godicity cons tant e 
on t he r'educed t emper'atur'e f [f 3 _ S e2 +..l..S( ITI+f ) 1=0I 

I .... o (25)..... , r = (T-T() )/T c ; a) t he I rl + ( 0 6I 

I .... isotr'opic case (It = 1), f 0 = .....I 
;' " "' ... = 0.] (dotted line) , ( 0 = that can be solved analyt i c a lly. Its nonzero solu tions appe ar ...0.1 L I 

;' ... =0.5 (so lid curve), b )the agai n a t a tempera t ur e 8 =8 ~ (or T er g )where e1(8,) . £2(8,)
I " " \, aniso t l'opic case (I< = 0.1), = I, = (T, + f o)/.,J2 and T, 1S gi ven byI 

\ _ / fa = 2 and (0 = ]0 dotted 
\ .... .... I~... 

oL 
... and so l i d curves, l'espec­ r,,= (1- a) f [ (1+ (2a / f o - l)/(l-a) ' -1 1. a = ..)2/9. (26).... ---­ -- tive l y. o 

-1 2 This expression has been derived usi ng t he MFA 8 c .. to/3 obtained 
lOOT - j from the estimation <u2 >. =TcXT :. A/3B. From (26) i t fo ll ows 

that a l so in t his simpl : approxi mation sol utions exist only f orThe cas e T < 0 ha s been treat ed as 1" > 0 bu t with a ... 2A j n the 
suscepti bi l ity (12). Correspondingl y, T in eqs.(21) has been ,\ to < r = 2a '" 0.31 although th i s resu lt i s considerably smaller 

than 'the corresponding value t IJ'" 0.85 calculated f rom (22).repl aced by2T. The result s are , of cours e , analogous to t he 
case T "> 0, The cri t ica l value of f i s t = f , = 2/ 9 . Equation (26) a llows 
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us 	 to obtain a lso t he estimat i on fo r rg at to"" rg : 

r ""..t. (f - t o ) . 	 (27)g 	 2 g 

So, the non-ergodic behav i our of t he mod e l is defined by 
the mode l character and i t s parameters, i.e., i t i s a qualita­
t ive pr operty of the model . Taking account of f luctuations may 
l ead only t o a quantitat i ve change of cr itical values t hough 
highly considerable . 

· / 14/. h b h ' hLet us note t ha t 1n paper 1t as een s own 1n t e mean-
field approxi mation that t he sys tem (I) becomes I sing-l ike at 
the parameter fo close to r, (a t fo '" 0.25) . 

DISCUSS IONS 

The main re sult of the present inves t i gat i on of the we l l ­
known model (I) for stru ctural phase trans ition is t he oc cur­
r ence of non-ergod ic behaviour of the sys tem of anharmoni c os ­
c i l lat ors i n the vic ini t y of the temperature of pha s e trans i ­
tion Tc. This non-ergodic behaviour with t he constant Ltk ;' 0 (4) 
appears as a consequence o f a pole at z = 0 in the relaxat ion 
ker ne l (I I) . The non-er godic behavi our physica lly r e sults in the 
difference of s tat ic iso t herma l (12) and isol ated ( 13) suscep­
tibi li t i e s (see eqs . (5) , ( 10» t hat dive rge i n t he case at di f ­
fer ent temperatures given by eq . ( 14 ). There is al so a static 
central peak in the van Hove s cat tering function 

S(q,cu) = - 1 {3w ~lmcJI (cu + l l) = L 8(cu) + Sre ( q .w).
q a 	 (28)

1 	 - fT q •-e 

where t he last t erm is the regular part of t he function . 
The non- ergodic behav iour of t he sys tem is poss ible when its 

susceptib ility~: i s suf ficiently high: a s it f ollows f rom the 
gener al eq.(IO) or its a pprox imated vers ion (IS), a nonzero so­
l u tion , L '" 0, appears when (XT)-l«Sq '" 6tJB2L3 . In this li ­
mi t L =(l/N) Iq ~ ~ which shows that the main contribu t i on for 
t he f l u c tua t ions in t he s ystem come s from the non-ergodi c (s ta ­
tic ) fl uc t uations and not from the dynamical ones described by 
the Kubo suscep tibility (13): XK "" «X~Jl+Sq)-l « X~ • 

The estimat ions in §2 revea l \ hat non-ergodic behaviour ap­
pears i n s ome temperature range T g~ T S; T~ wher e the values 
T;~ To ~ T; depend ma inly on the d imens ionless coupl ing cons­
tant r0 = I j elj f A: there is onl y a zero so l ut ion , L = 0, f or 
(0) rg and T;=T,+= Tc f or fO =!g . The absolute v a lue (g 
cr it i cal l y depends on the approximation s for t he fl uctua t ion 
spec t rum of t he model: for isot r opic spectrum ( /( '" 1 in eq. (19» ) 
Cg .. 0.85, but at the same t i me at /( = O. I, CII '" 20. Thi s re­
g 

suIt completed wi th comments made in the Introduction suggests 
that non-ergodic behaviour of the model originates from the clus­
ters of short-range order. Therefore, the non-ergodic behaviour 
of the model specified by the constant of non-ergodicity L may 
serve as a cr i terion of the clusters of short-range order or 
cros sover from the displacive regime to the or der-disorder re­
gime. This cr i terion is an alternat ive criter ion of transition 
of the sys tem in to a cluster state proposed in r efs./1 5-17/ , 

As to t he la tter comment, we note the foll owing: it is usual­
ly ass umed II I t hat the clu s t ers of short-range order appear 
owing to crit i cal fluctuations. In our opinion , i t is not so. 
Th i s is, i n par t icular, testif i ed by our resu l t in the mean­
field approxima t ion. The appearance of c l uster s leading t b e sys­
tem to a non-ergodic state is caused by nonlineari t y of the 
system that can be strong and beyond t he critical region. 

From the standpoint of non-er god ic behav iour of the system 
its state i n the presence of clusters of s hort-range order may 
be ident if i ed with the phase of struc tu ral glass, and the con ­
stant of non-ergodicity may be treated as a sign of that phase. 
The connection between the dynamical trans ition from er godic 
to non-er godic behaviour and t rans i ti on t o the phase of spin 
glass has recen t ly been studied in papers / S•9 / , Note a lso that 
the investigation of the structura l gl ass phas e withi n the mo ­
del l 11 for solid solutions of component s wi t h fe rro- and an ti ­
ferrodist ortive interactions /lSI and for t he system wi th compe­

/19ting interactions between the nearest and nex t neighbours 
shows in fact that the phase of struc tur al glas s appe~rs when 
the mean coupling constant in the s ys tem (i sotropic ) t o t ends 
t o zero. In t he main our considerat ion was o f a qua l itat ive na­
ture. A more r igorous descr i ption of non-ergod i c behaviour of 
the mode l r equires a se l f-consistent cal cu l a t ion of t he susce p­
tibility X qT wi t hout model r epresentat i on (12), Re sults of such 
a more cons is tent approach will be publish ed i n a sub sequent 
paper. 
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B OfiDeAH He HHoH HHCTHTYTe AAepH~X HccneAoBaHH~ Ha43n 
BblXOAl-fTb c60pHHK " }{pamKu e c o o 6/JJ e HuR OI1HI1". B HeM 
fiYAYT nOHe~aTbCA CTaTbH, cOAep*a~He opHrHHanbHble HaY4Hble, 
HaY4HO-TeXHl-f4eCKHe, HeTOAl-f4eCKHe H npHKn3AHble peaynbTaTW. 
Tpefi YKIlllHe Cp04HOH nyfin HKalil-fH. 6YAY41-f 43CTbIO "CoofiuteHl-fH 
OHlIH", CTaT bl-f, BoweAw He B CfiOPHl-fK, HHe IO T, KaK H APyrHe 
H3AaHHA OHlIH, CT3TYC o~HIIHanbH~X nyfinHKa~H~. 

CfiOPHHK "KpaTKHe coo6~eHHA OHlIH" 6YAeT BblXOAHTb 
perynRpHO. 

The Jo i nt Institute for Nuclear Research begins publi­
shing a collection of papers entitled JINR Rapid Communi­
cat ions which is a sect ion of t he JINR Communications 
and is in tended for the accelerated publication of impor­
ta nt resul ts on the fol l owi ng subjects: 

Phys i cs of el ementary particles and atomic nuclei. 
Theoret ical physi cs. 
Exper imental techn iques and methods . 
Accel erat ors . 
Cryogen ics. 
Comput ing ma themat ics and methods. 
Sol id st ate phys i cs. Liquids. 
Theory of condensed matter. 
Appl ied resea rches. 

Being a par t of t he J INR Commu nications, t he articles 
of new collecti on like all other publications of 
t he Joint Institute for Nuclear Research have the status 
of offi cial publications. 

JINR Rapi d Communicati ons will be issued regularly. 


