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1. Introduction

Many theoretical and experimental studtes’2~ 15/ of the coopera-
tive effects in the interaction of atoms and molecules with a laser
field and the vacuum of radiation have been carried out since the
early work on superradiance by Dicke/ v .

In this work the theory of collective resonant Raman scattering
in the presence of intense incident and scattered light waves (fig.1)
has been developed by using the quantum-mechanical master equation
approach and secular approximation/ 3./ The analytic expressions for
the steady state collective spectrum of scattered light are given.
The intensity correlation for the spectrum components of scattered
light is investigated too. In the cooperative limit N> oo the
intensities and normalized intensity correlation functions for each
component of the spectra have a discontinuous behaviour reminiscent
of a typical nonequilibrium first-order phase trm:l.tion/ 23

II. Master Equation

The N three-level molecules are assumed to be concentrated in
a region small compared to the wavelength of all the relevant radi-
ation modes.

Let us label the ground state | 12>, the real excited state
I})md the resonant intermediate state |2> with energies ﬁw, §
he, and fi W, , respectively (fig.1). The real excited state
|3>may be a low~lying vibrational or rotational excitation from the
ground state. In order to keep the discussion general, we will not
specify these states beyond saying that the intermediate state | 2>
can be connected via the electromagnetic interaction Hamiltonian to
both the state |1>and | 3> (in the dipole approximation) but the
states |3> and | 1> are not connected by the dipole Hamiltonian beca=-
use of parity consideration. The transitions |3>-+»[1>and [ 1> »]3>
are caused by an atomic reservoir and assumed to be nonradiative L .
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In treating the external fields classically and using the Born
and Markov approximation with respect to the coupling of the system
with the vacuum field and atomic reservoir, one can obtain a master
equation for the reduced density matrix § for the system alone in
the form
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where R %, and 2 % s are radiative spontaneous transition proba-
bilities per unit time for a single atom to chnngo from the level
]2>to | 1>and |2>to | 3>, respectively. 2V,, and XY, are nonre-
diative rates for transitions |3>to | 1> and |1>to | 3>, respecti-
vely.
Heop = n (cosd.J'u + 3ino£J;$ + H.c.),
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where L = (_n_:’.,.n-: )/x’ and igd: -n-g,/nl-Hore AL, and
fLs are the Rabi frequencies for the atomic transitions from the
level |2>to |1>and | 2> to | 3>, respectively. And J',_‘J- =

g‘ ez <Jl (¢,y =1,2,3) are the collective angular
momenta of the atoms.
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The atomic coherence phonomen.a can parheps be illustrated with
greater licidi/y by 1ntroducing the Schwinger representation for an-
gular momentum 4,14,20,
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where C_; obey boson commutation relation,
+
[c.g] = Jiy-

In the case of sufficiently intense -f)L , so that

ad NV, (@
N> N¥%, , NZ, , NY, - 73 (2)

it is possible to develope an approximation scheme that enables us
to obtain analytic results.

After performing the canonical transformation
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one can find that the Iiouville operator L appearing in equation
(1) splita into two components Lo and L, . The component Lo
is slowly vearying in time whereas L4 contains rapidly oscillating
terms at frequencies 42 and 442 . For intense fields, it is
reasonable to make the secular approximation, i.e., to retain only
the slowly varying part 3 . Corrections to the resulta obtained in
this fashion will be of an order of ( !xq N /1 )2,
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Making the secular approximation, one can find the stationary
solution of master equation
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where (J is & unitary operator representing the canonical transfor-
mation (3)
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1S, M> 1is an eigenstate of the operators R = Ray+ R,

- R - 1
A5 33 R“ and the operatcr of total number of atoms
A
N = Jf-l ’JJL' 33 = Rﬂ-v R‘ + R
- x .
Here Rt'j = QQ; (r ,J = 1,2,3).

The opersators GL gatiafy th¢ boson commutaticn relation
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In the case of N = 1, the solution (4) reduces to the single
atom solution of Agarwal and Jha/16/.

By using eq.(4), the characteristic function can be defined si~

milar to ILouisell
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where y=- zZ.¢ .

Here <B€ indicates the expectation value of an operator B 1in the
steady state (4).

Once the characteristic function is known, it is easy to calcu-
late the statisticel moments
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In particular, we find
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In the case of Z = 1 the relations (7-8) reduce to

N,
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I1XI. Spectrum of Scattered ILight

Due to Agarwal and Jha./16/ the steady state spectrum of the
Spontaneous emission corresponding to transition ]2> ->}3 > (Stokes
lines) is proportional to the Fourier tramsform of the atomic cor-
relation function

KTyl 2 = fx«'m ST (24T, (20>
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Using the secular approximation and the quantum regression theorem’,
one can find the equations of motion for the correlation functions

< Ri,j(t)‘%x,?s in the form
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By analogy with Compagno and Persicols/ we factorize
<r/“{t>R[j(t)Jaa,>_; = (;c% SRy G, 3 (15)

Using the factorization (15) and solution (4), one can find the so-
lutions of equation (11) and write the atomic correlation function
in the form
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Expression (16) yields the give-peaked structure of spectrum of
Stokes line.

It is easy to show, using the relations (9-10), (11-14) and
(16-18), that in the case of Z = 1 the peak intensity of each spec-
trum component of Stoke line in (16) varies as N*® while the width
of each component is the smme as in the single-molecule spectrum. An
analogous behaviour for the triplet of resonance fluorescence in the
two-level system 1s discussed by Agarwal et al. 3/, Compagno and
Persico . The plcture changes for the case of Z ¢ 1 and the num-
ber of atoms N is large enough. For the cage of Z < 1 the widths
of all spectrum componenis of Stoke line vary as N . The peak in-
tensiiies of the three lines located at the frequencies (A)x_, ’

Qogys t 2L are independent of N while the peak intensities of
the two lines located al the frequencies wlS: J) are proportional
to N . For the case of Z > 1 the widths of the three lines located

at the frequencies C.st . 2y 2 1 are independent of N and

their peak intlensilies very aa N® while the widthas and peak inten-

pities of the two lines localed at the frequerncies ("JX-S 4 Al ware
proportional to N .

Pig. 1. Schematic representation : 12>
of three-level system interacting 8123
with resonant incident and scattered Woa
coherent waves (‘Ju {21
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Pig. 2. Relative intensity (<8, % s * ) of spectrum components
located at frequencies CJzs , W,y 2 4L as function

of Z . Curves marked 1 to 3 correspond to N = 5,25,50,
respectively. The dotted curve indicates the behaviour as
N—=> 2°-
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Mg. 3. Relative intensity (<Ru R‘” %— /N * ) of epectrum compo-
nents located at frequencies CJyy + 42 as function of Z.
Curves merkod 2 to 4 correspond to N = 2%,50,100, (respec-
tively). The dotted curve indicates the behaviour as N-» 92,
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The detailed behaviour of the functions <A > /N & and

< Ryg Rey 2% /#% which are proportional to intensities per atom
of the three lines located at the frequencies CJgs de3 * 24
and of the two lines located at the frequencies C‘Jea + fo. , res—
pectively, are shown in figs.2 and 3.

For all finizte values of N , one observes a smooth variation
of functions <Ay %5 /N*  and <Ry Ry % /N® with Z . For
the cooperative limit N-» ©°2 | one can find from relations (7-10)
and (17,18) that

1/3 if Z >
% /Nt = 16 z =1 (19)
(o) z <1
and
o if oz > 1
< Ryg Rey% [N = iz Z =1 . (20)
o z <1

Thus (in cooperative limit N 92 ) the functions <A /”8
and < Ryp Ryy % /N have a discontimuous (see Figa. 2 e.nd 3) be-
haviour analogous to a typical nonequilibrium first-order phase tran-
sition’2" at the critical point Z = 1. Thia result s different
from the critical beheviour of resonance fluorescence where the sysg-
tem exhibits a sharp transition reminiscent of a typical second-order

phase transition/” ’12’21/.

One can gshow thet the characteristica for spectra of Rayleight
line can be obtemined using an analogous approach.

IV. Intenaity Correlation of Spectrum Components of Scattered Light
aky

Due to Apanasevich and Kilin , the normalized intensity cor-
relation functions of the speclrum components of Stokes line are de-
fined as
2
() e 2
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where o0 * .
functions for the spectrum line located at frequencies &):/5 ’

+ .0 and wlji 2 L2 , respectively.

) ) ) ,
and gz,z are normalized intensity correlation

Using egs.(4,5), one can find .
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Here the values < R 7 can be found in (6). The detailed beha‘uour
for normalized intensity correlation functions go & g,‘,f and
9; are shown in figs.4,5 and 6, respectively, where they are

plotted as functions of the parameter Z . For the cooperative 1li-
mit N 99 the relations (21-23) reduce to

6 if Z el =
)
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7 95 z >
r) itz < 1
@) 8/5 Z =1
941 ® 8/3 z >4
4 itz <1
)
9(3 _ 8/5 z -1 <
&% 6/5 zZ > 1

Thus, (in the cooperative limit N-s ©° ) the normalized inten-
sity correlation functions for spectrum components of scattered light
have & discontinuous transition (see figs. 4-6), reminiscent of a
typical nonequilibrium first-order phase transition, at the critical
point Z = 1. Becsuse Of(zt?e quantum fluctuation, the normalized

2.
correlation functions 9 o * g’(':’ and ga(z) differ from unit
0/ v o
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Fig. 4. Normalized intensity correlation function gf:; graphed
against the parameter Z . Curves marked 1 to 3 corres-
pond to N = 5,25,50 (respectively). The dotted curve indi-
cates the behaviour as N = 2,

Pig. 5. Normalized intensity correlation function glzf)graphed
against the parameter Z .Curves marked 1 to 4, correspond to
N =5, 25,50,100 (respectively). The dotted curve indica-
tea the behaviour as N > 2©. -
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Pg.6. Normalized intensity correlation function (3:1 graphed

ecaine the parameter Z . CGurves murked 1 1o 3 correaspond
io N = 5, 25, 50, respectively. The doited curve indicates
the behavicur g N > 22
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not only in the criticel region Z ~ 1 but for all the valuea of
perameter Z including the case of cooperative limit N-> == . Con-
gequently, the system cannot be considered classically for the case
of large number of atoms.

In conclusion we have shown that in the difference with reso-
nance fluorescence in two-level atoms, the eritical point Z = 1 in
the three-level case is invariant and does not depend on N . How-
ever, in the limit N-=> 2 1t is also necessary to increase -fL 8o
that the condition (2) is satisfied.
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Boromo6os H.H./mi./, lWymosckmit A.C., Yau Kyaur  E17-85-679
KonnexTuBHble 3hdeKTH pesoHaHCHOTrOo paccesHHss Pamana
B CHIIbHBX OIITHUECKHX BOJIHAX

HccnenoBansl KoJUleKTHBHbBE 3bdeKTh Pe30HAaHCHOrO pacCedHHA
PaMana B TPUCYTCTBUH CHIIEHBIX BHEWHEr0o W PAaCCEeAHHOTO TMONeH.
NonyyeHsl aHANWTHYECKHE GOPMYINBI AJIA CTAIMOHAPHLIX CIIEKTPOB CTOK™
COBO# JHHMWM M HODMHDOBAHHBIX MHTEHCHUBHBIX KODPEIALHOHHbIX GYHK—
HUH CHEeKTpPalibHbIX KOMIIOHEHT.

B kosuieKTHBHOM rnpenesie N » o OTHOCHTENIbHble WHTEHCHBHOCTH
M HODMHDOBAaHHble HHTEHCHBHLIEC KODpEeIAUHOHHble (GYHKIHH HMEWT npe-
DLIBHOE TOBeleHHe, AaHaJOrWYHOe HepaBHOBECHbM (a30BbiM NepexonamM
nepsBoro poja.

PaboTa BomosHeHa B JlaBopaTopuH TeopeTHueckoi dusuxu OWAH.

NpenpuuT O6BeAHHEHHOrO HHCTHTYTA AAEPHNX HccnepopaHuft., Jly6ua 1985

‘functions for components of the spectra are given. In the
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Collective Effects in Resonant Ramann Scattering
of Intense Optical Waves

The collective effects in resonant Ramann scattering
in the presence of intense incident and scattered light
waves are investigated. The analytic expressions for the
steady-state spectrum and normalized intensity correlation

cooperative limit N-~ the relative intensities and nor-
malized intensity correlation functions for each component
of the spectra have a discontinuous behaviour reminiscent
of a typical nonequilibrium first order phase transition.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1985



http:nepexo,n.aM

