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Krumhansl and Schrieffer (197%) (KS) in their pioneering work
have studied lhe thermodymamic and some dynamic properties of the
one-dimensional model system
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whose various modifications were used to study the phase transitions
(see, e.g., Bruce and Cowley (1980). In the classical approximation,
by using the transfer integral matrix (T1M) method, they calculated
the energy levels of system (1) in the continuum representation
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where L is lattice spacing, H/L Q- h’) denotes the number of
particles. On this basis they showed that kink and phonon excita-
tions contribute to the energy of the lowest energy levels (in the
low temperature region).They were ualso able to show Lhat the pre-~
sence of the central peak is associated with the motion of domain
walls,

In this note we shall show how omitting all TIM procedure(see
also Scalapino et al. 1972, Kac and Helfand 1963) its final equation
may be immediately obtained. Then, we shall discuss the problem of
calculation of energy levels in the WKB-type approximation by using
path integral method (Dashen et al., 1974, Rajaramen 1975, Radosz
1985 (I)).

In the classical approximation, the partition function Z
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may be written in the following form (K5):
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Let us for a moment consider a particle with maas my moving under

the influence of 4 double-well potential
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(A and B in kqu.(1) and (&) are chosen in sucn a way that 151
and V are =easured in energy units),

Then, the expression for u (see,e.g.Rajaraman1y75)
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takes the same form as 4 (gs. (d4) and (58)) under the formal
transformation ’
*: > -ix (ba?}

(6b)

T = -l .
w—- Q| (6e)
2
wm — Mcd . (6c)
Therefore, we may express Zk as
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where En ure energy levels of particle m calculated from the
Schrédinger equation
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with the final transformation (6c-e). Under this transformation,
Eq.(8) hes the form of Krumhensl end schrieffer "the effective os-
cillator equation", where their Lerm uo is absent. Thus, in this
case of the clamssical approximation Eq.(38), the problem of energy
levels of one space (1D)- one time model has been reduced to the
problem of single-particle energy levels (Egs.(4b) and (5b)). It is
obvious that this procedure might eusily be extended in the case of
cther 1D models where TINM method is used (Currie et al. 1980).

Although the case of a particle in a double - well potential,
Eq.(6), has been widely discussed (see, e.g., Coleman 1979, Gilde-
ner and Patrascioiu 1977), the results did not seem satisfactory (I),
alpo because only the lowest energy levels have been obtained. We
show that higher energy levels, €, 2 Vo = AZE» may be calculat-
ed (in the WKB approximation), what might be interesting in this
case (1) (see Eq.(7)).

Az usually (e.g., Deshnen et al. 1974, hajeraman 1975), we are
interesied in the semiclassical trejectories gy (t) that, satis-

fy the folluwing equaticn of motion:
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where we have chosen the constant of integration in such a way that
energy E > 0. It has been shown (I) that the energy levels "within"
the well E <1VO were found under stroung condition En <3 VO. In
the case E Z'VO, Eq. (%) may be written iu the form of the elliptic
equation
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The solution of Eq.(10) is the two-periodic function (Byrd and
Priedman 1971)
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with only two turning points EL = + 1. Thus, the Green function
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is eagily calculated (for a more detailed discussion see 1). The
energy levels, as the poles ol G( & ), are the solutions of the fol-

lowing equation:
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where K(k) and E(k) are complete elliptic integrals (Syrd and Pried-

man 1971). The right-hand side of kq.(13) takes a relatively simple

form in two limiting cases
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The detailed analysis of Egs.(4),(6),(10) and (13) and tne results
of paper 1 show that the properties of those semiclassical energy
levels (temperature dependent!) of the asystem (2) are the following:
in the range of low temperatures T &K 7T*
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where we used afler KS = kLT) There are no energy le-

vels within well E 'é Vo in the runge of higher temperatures
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wnere 1'¥ is defined by the condition
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Higher energy levels En >:>VO are found from Eq.(13)
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As it follows from Eg.(17), in the high-temperature region
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the energy of the lowest level EO is proportional to T . Deta-

iled information concerning those energy levels b§1;3 Vu may be
found through & numerical solution of Eq.(13). If we ure interested,
for example, in the correlation functions (K, Scalapino et al.1972),
then wave funciions "thw) should also be found from kg.(8).

Above considerations allow us to throw some light on some ambie~

guities associated with interpretation of Eq.(8) obtained within TIM



method: as it follows from Egs.(6) the role of 4 is plajed by
lkgT (% =1 - KS, & is proportional to T - Currie et al.
1980, although Scalapino et al. 1972 gave the proper, within their
model, meaning of H ( = 1kT_)). The quantity $o which is ab-
gent in our Eq.(8) follows from the difference in definition of 2y
and ZQ , where there is no any renormelization term in functional
integration in Eq.(4a) (cf. Feynman and Hibbs 1969). In the thermody-
nemic considerations this term should be added. Combining it with

~keTim 25 , one obtains (KS - Eq.(38a)) NKTIw (¥¢o/re)
(KS omitted * in an effect of their definition of ¥%_, Dbut then
they established for a set of harmonic oscillators £ = 1(1) and
in an effective oscillator equation ithey also proposed £ = 1).

We want to emphesize two points. Firstly, there is & difference
between XS (Eq.(34-1)) and our result (Eq.14) where in exponent KS
have a factor 4 instead of our 16/3. Let us mention that Jona-
Laginio et al. (1981) obtained the same exponent as in Eqg.(14) (in
their notation) by using the method of stochastic mechanics. Second-
ly, as our calculations are within WKB-type approximation rather
suprigingly we find an almost exact egreement between our value of
T* and the numerical result of Bishop and Krumhansl (1975) /Lb =
0.85, where
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The analysisg similar to the above presented Egqs.(9-17) would be
made on the basis of Egq. (4a) and (5a) (imaginary time formalism).
Although all the results in both formalisms, imaginary - and real-
time,are the same we prefer the last one as there is a simple in-
terpretation of the constant of integration in Eq.(Y) as an energy,
E = 1/2 i + V(u), In the imaginary-time formalism u‘d_(x) is
of type of the elliptic function an(x .k). In the 1limit of amall
energies E-—%0, k -1 and sn x -»thx, which is the well-known
solution used in the instanton picture (e.g., Gildener and Patrascidn
1977, Vainhstiein et al. 1982 and also Krumhansl uand Schrieffer 1975).
As 1t has been pointed out in I this sclution describes the motion
only "under" the barrier.

Let us also point out our believing at last. The "true" levels
of 1D -one time model would allow one to obtain approximate (clas-
sical approximation of the type (3a2)) energy levels of 20U model

[

(transformation ror time is of type (6)). [t might ve useful for a
better understanding of phenomena associated with phase trangition
which in 2D models takes place at Tc # 0. At the moment there is
much more information about the exact energy levels in sine-Gordon
1D- one time model than about energy levels in " Q“ " 1D - one time
(Dashen et al. 1975 ). However, in our next paper wc shall discuss
some properities of the 2D - “(fq " model on the basis of the results
of Hammer et al., (1981).
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