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I. Introduction

In the course of studying the clectromapgnetic properties of
systema with distributed charpges and currents there arises the prob-
lem of the cholce of macroscopic characteristics that provide an
adequate description for the interactions of these systems with
external fields and currents. An appropriate mathematical tool for
solving such a problem is the formalism of multipele expansion of
the microscopic charge density P(7,t) and current densityjf??,tl
In the framework of clas?iial clectrodynamics this formalism is well
expounded, e.g., in ref, 1 « There it has also been shown that
together with two known families of charged and magnetic multipole
moments the third family, that of toroid multipole moments also
appears. A formal reason for the latter is the splitting of a vorti-—
city field (in the given case, of a transversal component of the
current density _jif{,t) s i.e.,0f the function for which oUMj':=C’).
in the two components

JED=atffye)] + wtwt[TLED] W

where Y (7,1) and X(7T,t) are, respectively, pscudoscalar and
scalar functlions, We shall call this sum by the Neumann-Debye repre-
sentation /233,4 « The expansion of W#(i;t) over radial spherical
harmonics generates a family of magnetic multipolg moments among
which generating 1s the magnetic dipole moment M since with it
one may constrPct all higher moments of that family F4;, =

= T, Mg +Y M; eto. An analogous expansion of J{ generates a family
of toroid multipole moment§*’1’2/ « A toroid family is generated by
the toroid dipole moment ¥ . Besides, the expansion of the charge
density “P(f,t) generates a famlly of charge multipole moments,
amorgiwhich a vector characteristic is the charge dipole moment

P » The above vector quantities F;.Fa ,:f differ in
symeetry propertiesh(the behaviour under the operation of coordinate
I and time R inversiond) from each other and are trans—

formed according to table 1.
It 1s seen, however, that for constructing the complete vector
basis of multipole representation of the group of space-time inversions
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Table 1 R® T the set of vectors P,M, T
is not sufficient and, in principle,

1 R it is necessarZ.to introduce one more
F - ¥ axial vector (; (see,e.n., 5/ ), the
- symmetry properties of which are pre-

2

* N sented in the lowest line of Table 1.
In the classical electrodynamics by
Maxwell and Lorentz, in which
i 8 2 - =
(Tt =Z6,7T8(z-7;(®)
there is no place for a vector with such properties. Nevertheless,
as 1is shown in this paper, there exlsts a number of physical
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applications of the mathematical method of multipole expansions, where
the appearance of the generatlng dipole moment and the family
of its multipoles turns out to be inevitable.

At a multipole analysis of a magnetic charpge system (sect.2)
the vector (; is the toroid moment ngaﬁhe mapgnetic current. It is
analogous (dual) to the toroid moment T of the electric current.
However, owing to pseudoscalar properties of the density R ('E’,‘t‘)
of magnetic charges (G is an axlal vector, while T is‘a polar
vector. —

In the electrodynamics of condensed matter the quantity (; may
be introduced for describing systgg§ with distributed charge dipole
moment s (sect.é}). In this case (G is an analog of the induced
toroid moment T;d in media with distributed mapnetic dipole moments
/1,6,7,8/ %)

Proceeding from the symmetry properties and the analogy with
toroid multipoles in the Maxwell-Lorentz electrodyramics we shall
call the vector EE the axial toroid moment, and the vector

:? the polar toroid moment,

The introduqﬁion of sgip necessitates the classlification of the
toroid moments T and (3 with respect to the inversion trans-—
formation i\g in the spin space. In case it is necessary we
shall supply the even (singlet) vectors with index ( 5) s and odd
(triplet) ones with index ( ] o

*)Note, the term ™induced™ is actual characteristic of dipoles,
arising due to the polarizability properties (of media), and therefore
in the corresponding Hamiltonian there appears the additional degree
of an '1nducing“ field, But a circular chain of dipoles is considered
in this context as a primary object and the term ™induced™ as applied
to 1t, €.g.s in the book '/, is confused.

—

{g the description of phase transitions in crystals vectors 7T
and G (or their higher multipoles) can naturally be taken to
serve as order parameters transforming according to certain irrcducib-
le representations of the magnetlic space group of a hipghly symmetric
phase. Let us discuss what is the peculiarity of the toroid types
of orderingy and for which systems it makes sense to introduce these
concepta.

From the point of view of a formal symmetry g;lot of_jho Icnown
order parameters are transformed analogously to | and (} » So,
for instance, for describing the spin magnets multipele order, para-
meters (spin densities) have been introduced, some of which are
analogpous to Fr} in transformation properties. The simplest
15 the case of a two-sublattice antiferromapgnet,

Analogous to (;& s the vector (W transforms, which is dual to
the antisymmetric pa}t of the distortion tensor LLf s as well as
the director Ff characterizing the orientational ordering in
liquid crystals 12/ « In the theory of "spin nematics" /13{¢§omc
ordcr_parameters are introduced, analogous in symmetry to (:;ﬂ,t
and T“ﬂi « However, the description of these systems in terms of
toroid distributions is not physically transparent thought it may
happen to be constructive for description of interactions with an
electromagnetic field.

Separation of toroid moments in a speclal group of order para-—
meters is much more Jjustified in case of systems with itinerant elec-—
trons, In particular, the polar torold moment describes the orbital
antiferromagnetic ordering with formation of the current-density wave
114/ . The vector T3 can be used for describing a number of iti-
nerant antiferro-magnets with spin-density waves.

The axial toroid moment E§5 describes a speecific charpge ordeﬁéng
like the itinerant antiferroelectricity (see below). The vector (}t
characlerizes the orientational ordering in itinerant magnets and 1s
connected with the spin-current density wave (SCDW) 15/

The scheme of multipole expansions allows a rather constructuve
desoription for the general macroscopic properties of a number of
systems with intricate distributions of charges and currents ( in
particular, the response to an electromagnetic field), however, an
important problem is also the study of concrete quantum-mechanical
models realizing different types of multipole structures. An 11lumi-
nating example 1s the theory of polar torold ordering in crystals
constructed in refs, /14 .

In this paper, besides a general phenomenological considera—
tion of the axial toroid ordering (sect.4), microscopic model



of the phase transition with formation of such an ordering is propo-

sed (sect.5). To be more precise, we consider two band semimetals

or semiconductors with the charpge-denslity wave (CDW) and allowad in-

terband transition ia the orbltal moment, Earlier /15 another

microscopic model with formation of the (SCDW) was consldered, there-

fore we do not concentrate on its speeclfic features (a general outline

15 pgiven in sect.4), o
These models clearly 11llustrate the physical meaning of G

and allow n better understanding of the nature of formation of 'c';’

in crystals.

2, Multipole expansion of a system of magnetic charges

In ref. n/ it 1s noticed that in a dual-invariant scheme of elec—
trodynamic there appears total symmetry between forms of multipole
sourpes and types of fields (specifically, of radiation ) 1 . lote
that in the electromagnetic theory invariant under R ana I in-
verasions the current of electric charpges should be a vector, whilc
Lhat of magnetlc charjies a pseudovector 1if we_edopt a ooyentional
ricture of space-time properties of fields E and H ( see.,
€y 16/ ). Obvious (see ref. 17/ )y the formulation of an electro-
magnetic theory with pointlike magnetic charges turns our to be
difficul_l:’ (however, see , 18 ), since, in particular, infhe ratio

div H :3 9(7) either the charge 2 1s not a number, or it
is a number, and parity is not conserved in the theory. In a macro-—
scopic formulation of the theory this diffioulty does not arise
since in the equation dits H = _P (%) the i‘u.uotiun 3(7 o
may be always considered to be odd, and in ‘ot j ('z t)
the funotion f¢ (%,7) to be an axial veotor. \'Iith this differen—
ce of magnetic from electric¢ charges, the problem we are Mterested
in of the multipole expansion of densities }) (z 'f) and _1 ('z f‘}
is readily solved. One should, c.g., in the gorrespondlng i'ormula.e
of ref. /1/, to make the change! _9@ ->_P and je — qun-

Let us write the corresponding formulae denoting the qus
tities having the same form in the eleotric and magnetic worlds by
the double symbol 3/9 « In particular, the expansion of J)g/e(?’t)

is wrigten in the form
Dual-invariant should be not only field equations but also

the equations of motion of charged particles. The latter is achieved
by introducing into theory of particles having both electric and
magnetic charges 17/, When €/s = const for all types of particles
a scheme like that may by a dual transformation be reduced to a
conventional one-charge electrodynamics.

? n o
Pﬂ/ (T4) = Gw) JZ(“‘) ‘Ieff:);'. Emk(’l) Qz/:: (kft) l(zd/(;
(2)

’-_Eml( - {!(KZ) >/C"' (%)7 % = ‘L/{:ﬂ

/1
where charge multipole distributions Qfm (1(2;{) d are given

by
Ve ¢.s (26¢4) ! f Q)
¢ 41 = - (? )d%
Qe... ( ) Cik)ENaTi(2e+1) ‘PW
Hence there follow definitions of the charge multipole moments

; X A
Ort (o) " | 7£Xm(?)j>g,e(f,f)d% W

and thelr 2n-power radii
N =S CTICE

that complete the multipole parametrization of the initial function

Pure (T,4) -

The multipole expansion of the current density of magnetic
(electric) charpes with a separated toroid part 1s as follows /1/:

g - N \J-4q|—(25.4)_(€'1)/€ )
(34) = (27 j;ﬁ i

—>
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where :
gi-é(:x S Gl ( . 6’5:: ‘Kg) 3= 8,51 ’ v
the masnetic pultipole distributions
M () = —F (“L)”._ N (e)
Bs (i) \fawi (204 1) (6+1)/p

=

[Ty ) Ty (F0

he wasnetiec mulkinoele moments

L

e 3 (9
B g iy B S ¥)7, (70,
M t (Ojf) o (Qh 1) ( "’1)2 ) y (

the toroid multipole distributions

+ 1) !
el/e(2 . {28+ 4) 2 % (10)

« e e o i,
(- BB 4w (2t 4) (60

)

Jaten’ (9e-n) um {re 2

the toroid nultipole moments

SESe - -
P TET i A GO KNG

2) The basis of expansion (6) is introduced as follows C-E’(‘u'
W

ae 20 d 2 4 .
:_%VF&«\L ,q?:\( = We ) {Z FénK% )Q:giu.— W Zof?of{? [:@wk?

ne/ .

and spherical vectors are introduced according to

[LYM'M(%)}“"’ Z (e 1l €> Y@'w' (7)
r e Erm A% = Bppr Dt S,x(%“ s(k- '),

Puke T WK

S Fae ] [$0.0)], 5D,

-Jme” [, 1" (201 G 17 )3
—I--?/e(01L ine J'»l 1{ + NSO >/ j> d(10)
dw =7 fe-4m Leé+dm

(.'2?+1) 90+3 3/9
the bongitudinal charge multipole distributions

(1)
o ’ 4 ~——>(_ ¥ —
Qei/e (10 = ‘*(‘2&?4):: 7N ) 1, (7 1d%,

the bngitudinal charge multipole moments

g : E 8 (3
Qi: (o/{):\[zme [7( f %6.”“ 4?/‘3( /{)O{ Z. 13)

When the conditions of spectral expanslon of _P;,/ 1) ana 19 (? 1)
(the simplest case 1s a harmonic dependence)nrec fulfilled, UIL 1.’1ttcr
definitions reduce to formulae (3), (‘i), and any case exprecsions
(12), (13) are functional—dependent on @f (kz +) ‘tecause of the
4-—-current_ conservation. The question of how Lhe ™ onpgitudinal™ mo-

ments Qpﬂ (07‘) et into the cxpansion of the current trnns—
versal part (C‘((Uf — ) (see rozmula (6) ) is nuch more complieated
and is considered in ref. ( and in references therein).

Basgd on the propertics of vector spherical functions (;-fa-\(
under | - inversions, 1t is not difficull to establish that
distributions Mﬁ (K”‘) now create fields of the F¢€ - Lype
(4in particular, thcv yield CE€ —radiation electric multipolps)
whereas charge (Coulomb) GJS (€’t) and toroid T [lc2 1‘) d1stribu-
tions produce fields of the ME —type (Spccifically, G‘é.« (o)
and fi/'l(’,f) arc responsible for the emission of magnetic multipoles).

3. Lultipole representations of dipole media

Since free marnetic charpres (and their currcnts) are not as

0
yet detected (the history of the problem may be found, e.fl.sin /2 /),
it misht seer that the results of multlpole expanslon in the dual
clectrodynamics presented 1n sectlon 2 are also of a pure scholastic

mfum. We shall, however, show that the dual symmetry M “— me
Mfm PR G(‘n has a rather profound meaning, and Lhat the forma—
1ism exponded in sect. 2 is useful for describing some dipole
structuzes in the electrodynamics of condensed matter.
We shall describe media as o family of elementary magnetic
Cimle\, { ’E ( rE R I T N ). The magnetic current density
LY is given by the known formula 1 :



Tﬁ()f gﬂ xV o(%- 7{#))>702“M(?1:)

whcre the symbol —> denotes the transition to a continuous
tribution of the magnetic dipole moment density (magnatization)
M_\. « Topether with (14) 1t is convenient to introduce a formal
quantity ,P“‘('Z’t)’ a pseudoscalar distribution density of magnetic
charges:

F}’I (2,1) =- din Mj, (1) (1s5)

dote that tke nsunl llamvell-lorentz equations do not contain
tha quantity pqu Cz t) (the longitudinal component of magnetiza—
tion).

If we replace the density ©, by P}—: in fommulae (3)=(5)
then there arises almost a complete analopy of multipole expansions
of thesc quantities (fhe only difference 1s that one should set

j'P ('z t)d =0 . Clearly, the corresponding for-—
nulae will give “charpge" multinolp moments of the system of nagnetic
1ipoles. We note that a completely qymmgtric schem.a of miltipole
expansions does not arise si’nee d'ijF Cz,f)#}j‘-(z,f)and B MDOE 0.

S0, the eddy current {33 does not contribute to @em
but 1ts contribution to T, 1s nonvanishing. It is just this
contribution due to which toroldal distributions started to be
introduced into electromagnetism (sec 76/ ana references therein).
Under the name of induced electric moments there was known the
induciive part of the toroid moment

Ry fane 5_’.—‘)%'1#0[,3'2. (16
—Tfm (t)_i (20+1)(0+1) j’l >£€m M‘L(l )

Tio-oomalisation ks defined as dn rets 167 , 14 15 seen that Ge)
differs from MZM for free ourrents by the change je — MJ_

So, the elementary dipole by analogy with M_L s can be written

in the form
— 4 — —
T =T 2 (G %A, o
M 7

A geometrical image in the case of the toroid (polar) nipolP is
a closed circular chain of elementary mognetic dipoles {){1 }
(Fig.la).

Electric dipole media will be described by a set of elementary

dipoles { d‘% « In this descrip-
Tﬁr tlon, the characteristic space sca-—
le of the multipole expansion is
large as compared to the characte—
ristic scale of dipoles themselves,
therefore the latter may de conside~
red pointlike. The electric polari-
zatlon of the system F’(f: z)
is introduced in the usual way:

- Pl e =
P(74) =20 d; 5(7-7,(1)
(18)
It is clcax_; that the electric
polarization P (% 4) may,duc to
Fig.la dual symmetry, imitate multipole
moments of magnetic charpges. ve
introduce the axzial curvent “psoudo-
vector" with respect to the time inversion, in the medium of distribu-
ted electric dipoles {d ]

(a)(,,ﬁ Z c{ 5 VS(? '2:'({)>_,’“L01L FL (‘?,t)_ (19)

where —E.L (‘(' 1) is the transverse part of the density of electric
dipolv moments ( polarization), the longitudinal part of polarization

E“ (7 1) is described by the scalar density of the distribution
of electric charges

O (;f) - o(lZL R, ('Z 't) (20)

We emphasize that the axial current j a‘° (7 t) differs in nature from
the polar currvent JJ’ (7 1) entaing into the Maxwell-Lgrentz
equations

.Tat’ T) = > Jf S(F-50)->P @), w

—
Unlike ma:;netlt:_q_tion MJ_ ) M,, both components of polarization
( , and R_ ) enter into the Maxwell-Lorents equations, and
only in the static limit P, disappears therc.



Going back to foagyla (19) we see that the substitution of the

effective current 1 T into the definition of P1ZM reduces, the
definition bq?w‘ upon integration by Bgrts, to the conventiggal
definition of thc electric part in which j is replaced by Fh».
llere, of course Eof’ = (0 + The case with TZ ig more
intriguing, Substitution of (19) into the definition (11) nnd
transfer of the derivative 67 lead to the formula

e N v - P (22)
1, (=1 (ag)(m) ‘ \/m{ PL@#)OFZ

il

analopous to (16). Ience it immediately follows that the elementary
"induced" axial toroid dipole moment is equal to

Tp=4= G d) “‘”

>
and its geometric imoge is a closed chain of electric dipoles {LZ; }
(Fig.lh). The last formula demonstrates the simplest possibility of
imitation in the dipole representa-—
— tion of symmetry elements absent in a
1-37 system of pointlike electric chargces.
(In principle, the gompleteness of
properties under R and T
reflections may also be found in mec-—
dia of elementary higher multipoles
of the usual tymne).
Let us point to one more poiiibi-
lity for realizing symmetry of 7—3
in magnetic media. Recall that in the
problem of motion of a particle in a
central—symmetric potential corre-

lation arises between the vectqr of

angular momentum and moment P.
This oorrvrelation is described by the
Fig.1b Runge-Lentz operator

L S
Mm=L*F
g (24)
This operator already appears in considering the dynamic symmetry
of the nonrelativistic Kepler problem, and it it more important for
considerlng the dynamic symmetry of the relativistic Coulomb—prob-
lem /22/ or motion of a free relativistic particle obeying the

Dirac equation 23/ o

10

—
The distribution of a wvector like [_I being present in a ne-—
dium (of an orbital or svin origin) also necessitates the introduvc-—
tion of axial toroid moments.
Consider a medium, in which there are distributions of the 1o—
ment fluxes described, in general, by a second-rank tensor (dyad)

2 2z
s — e 17
I'; —<Li®Pﬁ>> Li=542. 22
(3)

e represent (25) in the form of symmetric IY(i and antisymetric
fW:?) parts. The latter is dual to thc polar vector [] (E:f)
and may be described by analogy with how it has been done above with
vector i;(f}t) in electrodipole media. Let us introduce the trans—
verse (axial) current

Tﬁsa)@ﬂ = ot [, (71) :701‘<_L: ~PY @

-
Substitution of this current into fornulae (10), (11), like of jéT’ ,

will produce a multipole family rr}r\ . In this case the elementa—
wr

:fﬁ :% > %« 1, (75,1),

T

ry dipole is

27

An ideal geometrical imase of that dipole is precessing local momenls
on a circle (Firm.lc).

- 4. Phenomenoslorical theory of
l-TFT the axial toxold ordexing in

crystals

Consider a system of itinerant
electrons which exhibits a second-
-order phase transition into a
N state with the axie} vaectonr
"?/ _ N order parancter (; even with
! b respect to time inversion. Priori

to proceed to particular micro—
scopic models revezlinpg mechaniams
of that ordering, we dwell upon
some of its phenomenological con-
sequences using only formal

Fig.lc syrmetry arguments.
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fmony magnetic classes we may indicate \" e Tollowing 43 classes
admitting the existence of t’;hl.. axial vestor G that is even with
respect to time inversion R 3 N

1) 13 usuel crystal classes not containing Q at all:

C, ,C{}Cs ,CZ,CI,,,C,,,gg,th,Ce,Ss)C%?Cwaa . (28)

2) the same classes supplementad by the oneration R 3
3) 17 actual maznetic classes

C»i @4) ) C.z(CJ ) c.z},(di), CJL.(C-!)‘, CJH(CS), CSCC“) £ (29)
Cl; (Cl\) ‘qk (C-l) ) C‘Ih (Clc\)) C‘l‘h((‘ﬂu); CLH,‘(SI‘)) Sé(C3))
C'}}\(CJ)) C(.(CJ: C(,i,,(CQ)J,ﬁ&(S‘ﬁ), G(,h(cf!h).

Further we shall consider nnly systems without nontrivial
translations, in which giving a magnetic class is a necessary and
sufficient condition for defining a possibilityAEPJ the vector (;
to exist., Lilke in the case of the polar vector T , all the classes
1isted above are not difficult to obtaln by using the tables of
irreducible representations of point groups.

Egtablishment of the axlal toroid ordering in crysials may be
connected with softening of a certaln collective electron mode ( in
particular, in the model of §5 this is a CDW oscillation,
ang 30 7397 BEW Y, We shall esll this mode tke axial torsid
mode considered earlier

Let us assume that owing to some circumstances the freguency
of the axial torold mode gets anofialously small, and a tendency has
arisen for establlshing the torold long—range order.

It 1s coavenlent to anslyse the general properties of such sys-
tems bty the effective-Lapgrangian nethod. Assuming that the symmetry
group of a highly symmetrlc phase contains, as & subpgroup, one of the
above-listed axial magnetic groups, we consider small, lor frequency
axial torold oscillations above the phase-~transition point. The
effective Lagrangisn (with no external ficld present) has the form

o{: K=,

- (30)

K = (@) +D(§'CG)> (1)
—>_ 2

- .qz_tﬁGl‘+ X‘(zo‘f@) " ¢35

12

where M E pDrf o P Y >O and the symmetry of the gystem
above the transitlon point is counsldered cubic. In the kinetie
energy (31) we have retained the term (~(} ) y Lhe necessity of
which {o be taken into account will be explalned somevhat later. The
interaction with an external electromagnetic fic¢ld 1s by syumelry
conalderations, written in the form

A IK - % Q- wtA , (32)

b7 vl ol
where A (7 7*) is the vector—potential, ¢ 1s the 1light veloci-
ty, A is a coefficient. Formula (233) may also be wiitten as
two eguivalent expressions N

ASC p\G-wth’, (35)

iy

= 4 =
where -g'—'T.O’tN ’ Ex. c A and the Maxwell equation is
used for the cure of the electric field E:

m‘g:_%B_ (36)

From (33) and (34) it 1s scen that the dynamical magnetic
susceptibility Ls:ﬂ(uo) at low lrequencies & has the following
correction

Mg w?
A () = < ) =7 4 -
G
where & “’ —S‘MG is a normal mode of axial toroid

oscillatlons. Vanishiag _§2—» corresponds to a second-order phase
transition, Note that throughout we are speaklng of the transverse
axial toroid oscillations, since the longltudinal oscillations do
not interact with electric and magnetic filelds.

Adal torold modes could, in prineipley react to the current
of magnetic charges Gr they would exis st) as polar torold modes
react to the usual electrlc current /14/

Noteworthy is a nontrivial frequency dependence A Jf(&»

(the numerator 1s proportional to Lﬂz as in the case of polar
toroid oscillatlons vhere there occurs an analogous to (37) anomaly
in the dynmamlc dielectric susceptibility / ). Expression (37)

is valid onmly in a low-{regquency reglon whean the second term in (31)

13
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may be neglected. To find a correct asymptotics foxr w >> 2 @'

it 15 necessary to take this term into account, and then, as it

should be, the contribution of A Y(w) vanishes at high freouencies.
In the microscoplec model (secotlion 5) the second term gets essenlial
for Ircquencies GO~ E , Where = 5 is a characteristic
onc—electron erergy of an order of the band gap of a semiconductor.

Interesting effects may occur, in systems in which, together with

the axial toroid ordering, there is rcalized another type of the
nagnetic long—range orxdering. For instance, in the casc of anti-—
ferromagnets with SDW the appearance of axial toroid order commected

.
with SCDW results in a "weak ™ ferromagnetisn 15

In the case of antiferromagnet containing, in additiorn to iti-
nerant elecirons, localized moments, the axial toroid order also
produces in the Lagrangiai of the system the term responsible for
the ™weak™ ferromagaciisn of local moments:

se[Tam], o

where _f is the vector of antiferromagnetism, M isthe averapye
magreric noment ; 18 a cocfficient. Hote that in the model /15
the whole effoct is of a pure—exchanpe origin and has no relativistic
smallness, whercos the conventional Dzyaloshinsky-horiya mechanism of
weak ferromagnetism 1is connected with the spin-orbital or magnetodi-
pole lnteractions 15 B

In the casc of 1ncormensurate structure of the axial toroid mo—
ments @ below the phase—transiiion point there arlses the in-
homogeneous spontaneous polarilzaticn

”ﬁz: - } ot @ 5 (39)

which dlrectly follows from the representation of the teym of 1uterac—
—

tion with electric field E by (JD). At the phase transitior

point the static transversce dielectric susceptibility A EL(?')’

2 .
o _ CL /'1'k MG \
l& g‘L(%) - 2 f-:. I (10’
s ()
_' "J defincd from vanising of
the transverse normal modes uz**[ q(\ OAE— q ).;oo(fnr' f;:I 0 .
Arial toroid excitations mn *nmr'v! W 1U, other collective

[}

is divergent., On some wavevector

excitations in crystals. Consider, e.g., a ferromagnet with loeal
moments, in the ground state of which there is no axial toroid

ordering. At the same time the collective toroid oscillations are

mixing with usual mapgnons slnce the effective Haniltonian of the
system contains tarms of the type

Aol &__ 5 H’e&}(é’)) (1)
H’eﬁ(@’): oy 3 ,

vhere ?\4 is a proportionality coellicient, !‘71 is the magietic mo-
ment. Let us write the Bloch equation, with account of (41) ana (42),
Zor small deviations YYI('Z 1) of thre magnetlc moment M from equi-
librium value Mo :

Y':YT = 2(o [H)CH) ﬁ] ) (43)

~
RS
A

[\7| = ﬁo*ﬁ , H(:z* He{l,(@.) = HfH )

(44)
—-—)(0) Wim 1)
F efy v X, 09X, B (43)
% = )
Here me s % is the gyromagueciic ratilo, Han - the

contribution due to magnetic anisotropy which will not explicitly

be written here (see ref. 12/ ). Setting oL ,,( y) Ny ( 7 is
the unit vector directed along the wavevector _l_ M _2)
we get for Fourler components ¥V :
. s 7 (o) ] ) L
_ = ’LW a, M (46)
1wm&) - ?(0 MHeH ? M

—
and for Gw we make use of the cquation resulting from varying
the ¢ lfective Lagrangian (30) with account of (33) and (34):

W —
- & -84’ )G, r 0 m, =0, en

Q.M

The dispersion law of magunor—torold oscillations is given by the
equztion ( (,Oﬁ(o) is the frequency of a ferromagnetic recsonance) :

_ N E g5°
w:h/o\_wg’(@*&qz*%;]Mo; (48)
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L«J?' 2
}w=§qa—o’\—‘(7. (49

We shall not write down here the general solution +to the subic
equation (48) because of very cumbersome expressions involved in the
solution. Clearly, the mixing of toroid oscillations and magmons

13 maxinal at quasimomenta To glven by the approximate relation

GM [ 248+ wp ()] & Ra(F),
Qe (f) = (L+¥92)2Mg

(50)

The wixing mapgnons with aial toroid oscillations may also
oecur 1In antiferromapnets for the corresponding parity of antiferro—
magnetlc structure.

The microsconic realization of this intertwinning is possible
In the model /17 s where the axial toroid mode 1s taken to be a SCDW
oscillatlon, and the frequency LSZE; can be cluse to that of the
antiferroma netlec resonance. Uhe genevalization of formulae (46) -
(49) to antiferromagnets is obvious.

Axial toroid oscillationa inieract with light in a rather
reculinr manner; as a result, new branches of polaritons are produ-
ceds. Indeed, the Lagranpgian of the system in an clectromagnetic
cteld  AT(Zt) has the form

& ¢-‘—7 £ oo -Z.Z‘ y 773 /(51)
< IC‘“* 2 ot (3 A 4 [;_CT(A) (7"'4)]/9,ﬁ

Varying (51) with respect Lo E": and K’ we arrive at the system
of equations fo- th: axial toroid moment and the Haawell cquations:

_ 12 = AT
.QM-*b +XAG"'€ (O‘f’I:O’
¢ (52)
_ fe /T' rodnod /Tﬁ gl el (2 =0
Cz

16

For nomal modes eqs. (51) and (52) yicla:

e T e (RO )46 S g
. L€ (=3

A(:2:’ CL+L’(“RM§A£ ’

Wihen i-? 0 5 exp. (53) 1s simplified to

(*)*z - k521§ ) haly E:,o
Z
whereas for WZ c? 3D Soa 'jzc‘ we get the asymptoticn
2 ! ? 22 (55)
z ey a0y —* ? C
(,-J‘ - 52 a S 3 2

liote that applicability of all the formulae (51)=(55) 1s 1limi-
ted to the range of low frequencies and small momenta ( in the
microscopic model, sect.5, w, Ct,‘/ «< Eg, where E is a band
gap of a semicondictor). IFf w, of ~ E,. » then we should keep
in Lagrangian the terms with higher-ordc? derivatives of ord;zfﬁama-
meter (analogously to the case of polar toroid oscillations ‘°~ 3
Tho result in correct asymptotics for large energies and momenta

ias
. B 2C7
wf—* SLg , w, = 1 e - (56)

In the system with axial torold ordering there may occur interes—
ting nonlinear optical effects. In particular, below the transition
point there occurs the anomalous contribution to coliponents of the
gyratio&tensor %ik s that is proportional to the electrie

fiela E ¢
aik = ¥ uln Ge e (57)

Note that in the systems with polar toroid ordering there may also

occur the anomalous contribution to the tenso& %LK s that is,

howevery proportional to the magnetic field : 5
(8

17
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Thus, Lhe anomalous behaviour of clectro-ontical and magneto—
—-ontical characteristics of crystals may help in identifying toroid

transitio: 5,

5¢ Axlal torold moments in crystals with charpe density waves

Consider o twoe-band model of a semiconduclor or scmimetal with
direct exlrema at point E{o of the Brillouin rmone. Asswue that the
matriz element of interband dipole transition at point Ez equals
rern (the wave functions of bands 1 and 2 have the same parity out
belong to different irreducible representations of ihe pgroup of wave’
vector R; ), aad the watrix elemeat of interband transition over
the orbital momwent differs from zero, The model with that symmetry
/26/ where it has been shown that in the
case of the electron~hole pairing with an imaginary siaglet para-

has been considered 1a rof.
nnter Afm there arlses the orbital ferromapgnetism of electrons of a

f111ed band, The nedel Hamiltonian will be written in the k P appro-—

sileation In oan external electromagnetic field /27

T . (59
A ER SR S

|

where ™M, and wm
zones 1 and 72, & & of o semiconductor (for semi-—
metals F, <O ); A?ilJ\ and q‘f?n{) are Lhe vector and scalar
potentials of the eloctromazactic fleld, A,'{('?_H) i1s the order

parameter describing an ordered state below the il{‘.aﬁt‘—!.“nn."-'l*‘ml. In

are eflfective wasses of eliectrous and holes da

~

18 a band

ad

the two-band "excitonlc insulator®™ type models A has renerally

the tensor structure ~ b B
~ ’5 ! >
A.. = /1{ L+ KXii G
J] i ! (60)
~
3 ‘ 3 il .
where T is the unit matriz, & is a vector composed of Paulil
N
matrices. In what follows we consider the order parameter ‘Ai,'
to be singlet and real, which corresponds to the charpe donsity
\ ’ p
wave state <5/ « It is assumed that the »offective intcraction cons-

tant is maximal in the case of transition into the state with CDV,

18

therelore the corresvondln transition temperature (or the eritical
baad gap E* in a semlconductor model at [ =0 ) is also maxi-

mal, and the state with CDW i3 energetically ihe most Tavourable.

The explicit forn of effective i’r:trzracti:n constant for all ﬁo/‘..’";"{‘.:l'z
structures of order paraicter A@J‘ can be found, Ceiley in R
The tensors lj  in the one—clectron part of the Iaailtonian

~

H have the Torm P

41 yJ_’( A< { 1 ol I3 (rl)

] T 2

Ly ?Jp T Agu St Bgg] VR
vhere Eg 15 the emergy of &- band at point K, g Pﬁ;‘
is the matrix clement of the monentum between a band 1,(1 = 352)
and a2 highest band S #4,2 . Turther, the situation ls consideved
when the tensor :_Z 1s purcly real {this nolds, eJfley whon
Bloch wave functions \0 "\(0('2) at point \_(’0 caa be talien real).

The study of a system with pamiltoniar (59) i3 carried out by

a. usual Sreen functions method, and we shall not dwell unon the
calculati?nal techn}%uc (sece a detaliled exposition of the wexzclitonic
insulator model in B ). lNote only peculiaritics due Lo Lhe
reaction to an external electromagnetic field since just these pecu—
llaritics allow us to understand the type of orGgering avrising in
system below the phase-~transition . To this end we write Lhe
e”fective Lapgrangian describing the transition to the state with
CDVW at T = 0 for the model of semicorductor with a small band
zcap  Egx EY , vhere E* is of an order of the exciton
binding energj. 5Up to theitermssof hipghest order in the paramecter
Asgg E%@i, (AQQ: 3 (A11+A“> in a weak and slowly changing

transverse field » upon cumbersome calculations, we get

o{eg = X-Y ) (62)

(NG DY), o

= N (J(A;lf.— %—(Aiewa4é;)2>) (s

MgZXE;_ (65 )
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Dg = 35 55 ; (66)
of = €n _ES_
B Ea" k (67)

£,

%:ELZ_

an m (68)
—_ 4 i 1 — —
" +
gu Lot gzﬂ,z (E,-Es EJ-ES)(P“' £ P;g) (69)
— ‘3/2 4/2
m?2 g *
N = Wa y M=We=m, (70)

where m is clectron wuass.,

- = .3 —

Introducing the notation G = n,zARg where n,z 15 the unit
viuctor directed nlong E ve arrive at an expression analogous to
the phenomenolorical Lagrangian (30) for unioxial systems.

Thus, in the miecroscoplc model with Hamiltonian (5%) below
the CDW phase transition tlere arises a singlet axial toroid
ordering. This allows us not only to 1llustrate the general phenome—
nologleal scheme consldered above, but also Lo consider certain, more
apeclfic properties of the systenia One of the most interesting ia,
in our npinion, the problem of iufluence of collective excitations
iu the system vith Hamiltonian (59) on its optical and magneto-
optical pronerties in a ordcred rhase. Aaplitude exeitaticis in the
case of pground state with CDW ave, in faet, axial toroid oscillat-

lons, whereas phase eucitations nvee "marnons" since at small deviati-
ons from equilibrium:

Aiz(ﬂ = a] exf(i‘p(“) 14 (1+5<P)) (7)

Aze({) A+ D lA(i)\) (72)

Ai‘h(ﬂ - A $(t), (7

20

-

S ~ 4,5 1am), (70)

-ty

M - eulg(P(f)' 1%)

vhere 6({) 18 the denriiy of the axial torolidl moment, M (t)
the same for the orhital mapgnetlc moment. n'u.mlitugr: (i.e., mxdnl
toroid) oscillations have normal modes Wg *2A , and phase
osellladions (L.e., orbital mapgnons) w, % p;‘i y Wheee ¥ ds
a quantity proporiicnal te the diffarence of effoctive conctants
for zaal and 1maginary order prxramete;‘sﬁ}on a phasce flzation Ly
"excitoule~insulator" type model sae "“ ). Bobklt these cseillallons
. tril ctrlie suncenbibility and
glve a resonance couirlibution te ithe diclek..t,.ll, Gl &j'l.jl.:t“ :/ :lcx
magnetic susceptiblility of the :syslemt oa the corsesponding frequen—
cles,. ~ )
An interesting situation may onccur in ithe case of incoummensurate
structure of CDW (soliton lattice). In accordance vith conclusions nf
seclt.4, below the Ltransltion point in the system thf‘;‘?risen;é,,ﬁ,}
spontaneous inhomogeneous transverse polaritation P.L ()~ 'éo/ '
In a semimetalic model with Hamiltonian (59) (where £ =~ 54/2,
€: 1s the Fermi-cnergy), in Lhe rcglon of incommensurate
structure of CDW /78 at TQTG’ 3 whars T'é' is the transition

temperature, we have = g 4 (76)
B, = ¥t (Lo Age),

P
P LGERVORE. Iy

469,
A’ie(?) = 5 CM?@? 1 o

and 10 15 the wave vector of superstructure (near the Lifshitz
polat ?,D —> 0 ). Wnile lowerinz iemperature, there may nz;:;u'(_i)
one more transition witih the appearance of order parameter Tia =
in sddition to A%, (¥) and the spatial distribution of Al (¥)
as compared to A%QILT) is shifted by '"T‘_/g (for more detail
see, Cafle ./29/ ):

A — -
AL (D) = A, 5T, (79
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. 3 e
As has been mentioned in ref./2°<the appearance of ijhlé)iﬂ a sys—
tew with interband transition allowed vith respect to Lhe orbital

B
morientwn ( 241A¢'O ) slgnifies the appearance of orbital magnetic
orcering. The magnetic—soment dengity is:

— . —> 4 b
M(Z) ~ L, A5, (2). (a0)

From (72) and (80), it follows that in the system

rate structure of parametors

ar Wyg?ctnclcc{:}c"_ﬂrdcr}ng in t@g range of domain walls, CDW ang
T?l M ),}? l-qo, M A y I ﬁo’;L 242 « If, however,

q‘b i 612 » then _P"-: O » but M may be nonzero, and we arrive
at the case of orbital long-wave ferromagnetism.

Thus,
with axial

‘with incommensu—
Aﬂﬁe and AIm there arises a peculi-—

in the range of domain walls of incommensurate structures
toroid monents there Day appear various types of electron
ordering ( Lferroelectric, ferronagnetic or magnetoelectrdc).

A detoiled analysis of different structure types requires

a special
consideratlon and

&nes Leyond the scope of the present paper.

G. Conclusion

Owing to the scheme of multipole expansion Veing universal one

can in principle, also consider more complex structures th

an discussed
above. Of a particular intercst would be the study of dipole toroid
media s

neclfying by a set of eleouientary torold dipoles %73 : o Desplte
belng seemlngly exotlc, such a model may happen to be useful for
studying phase transformations in a number of molecul
Generally speaklng, using the above
"construct™ media of higher multipoles
distributions is considerecd in /30 3
In particular, these include sy

ar crystels.
scheme one may also

(this hierarchy of multipole

stems with distributed Tluxce
of magnetic moments characterizing by the symmetric tensor r]gi(ﬁ;f)

(see sect.3). However, the nicroscopic deseription and discussion of

properties of such multipole media seem to us to be somewhat early,
In this paper we have only touched on the

Se==p b ~d

rroblem of longltudinal
components of the quantities h4") I)“ and r?” « Without going into
details we only roint to a geometrical llustration of elementary

distributions of thqu quantities (Fig.?a,b); a pair of magnetic or
=

electric dipoles [¢ b4“oz- §>" ) directed towards each other and a

Palr of spins Precessing around a common axis but 1in opposite direc—

tions ( FT") .
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