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1. INTRODUCTION

The properties of one-dimensional interacting strings which
are embedded in three dimensions are of great importance both
in polymer physics and biology. A model that reproduces the
configurational properties of hydrocarbon chains}%vside a lipid
membrane has been proposed by Izuyama and Akutsu (to be re-
ferred to as IA). This model is a generalization of the two-
dimensional dimer model’?/ used by Naglela/ to describe a phase
transition in the system of noncontact flexible polymer chains.
Polymers or "dislocation lines" in the IA model appear above
the critical temperature T, and may be regarded as directed
strings which run vertically through the lattice and do not
intersect one another.

IA attempted to prove that the model exhibits a phase tran-
sition with a jump in the specific heat C(T) at the critical
point, i.e., the specific heat is finite as T-T¢ + 0 and zero
for T < Ty.However, Bhattacharjee, Nagle, Huse, and Fisher
(see, also’ " ) have reconsidered the TA model with a random
walk analogy and found that C(T) diverges as In(T- T, when
T-+T, +0 for d = 3 and as finite for higher dimensions.

The random walk analogy can be elucidated by identification
of the vertical 2 -coordinate with discrete time. An actual
question to be solved is a random walk problem of n walkers
on an x-y plane lattice with the restriction that after all
walkers have taken the same number of steps, any two of them
are not at the same site. When n=2 the problem can be solved
exactly/4( The logarithmic law for C(T) follows then from
a finite-size scaling ansatz’%, namely, the supposition that
the asymptotic behaviour of two walkers remains true for
large n.

Another approach to this problem has recently been pnropo-
sed’® which deals directly with an arbitrary number of wal-
kers. Unfortunately, the sign of contribution to the partition
function in this method depends on periodicity of polymers in
the vertical direction (assuming periodic boundary conditions).
Neglect of the sign difference called "peneralized Bethe appro-
ximation" leads to the finite jump in C(T). It was noted in
Ref.”® that the method becomes exact, if the x - y plane lattice
has the Bethe structure. The purpose of the present paper is
to obtain explicitly the generating function of the above for-
mulated random walk prohlem oa-the-Cayley tree.
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In Section 2 we use the general method ’®/ to reduce the ori-
ginal problem to statistics of a single Polya walk. A Polya
walk on a Bethe lattice was investigated by Hughes and Sahi-
mi’?/ who extended the Montroll generating function formalism
to this case and showed that random walk on a Bethe lattice
do have some qualitative similarities to random walks on a hy-
percubic lattice of dimension d> 4. It is natural to expect
that the finiteness of the specific heat at T, follows from
this result according to the analysis of Ref./4/. However, the
true answer is quite different. In Section 3 we show that the
model exhibits "3/2-order" transition in which the specific
heat diverges as (T - Tc)_‘/? Thus the IA model on the Bethe
lattice demonstrates the two-dimensional behaviour’23%  in
spite of apparent multi-dimensional properties of related ran-
don walks.

If we consider the random walk problem on the complete Cayley
tree, then the generating function contains contributions from
both sites deep within the lattice and sites close to the boun-
dary. The results obtained below show that the contribution
from the latter gives in thermodynamic limit the same singula-
rity as the bulk term.
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2. GENERAL CONSIDERATIONS

Consider the complete Cayley tree with a coordination num-
ber z and a central site O.Any other site of the lattice is
connected with O by a unique sequence of bonds. If this se-
quence consists of f bonds, we assign to the site the coordi-
nate [. There are z(z-—l)P“l sites with the coordinate f and
the total number of sites in the graph is

N=z[@z-1)"-114z - 2), (1

where L is the coordinate of boundary sites.

We define an M-stepped walk as a connected path along M
bonds (perhaps with repetitions) starting and ending at the
same point. Two walks do not intersect if they are not at the
same point after equal numbers of steps. The statistical weight
of a single M-stepped walk P 1is defined as

W(P)=2x™ (2)

Let g, be an arbitrary configuration of n nonintersecting
M —-stepped walks on the Cayley tree. The weight of configura-
tion g, is given by the product
n
X€) = I WP, )= x " 3)
1= 4
2

The problem consists in determining the generating function

Ax) = E x &), (4)

where summation runs over all possible configurations of M-
stepped walks and the weight of the void lattice is unity.
The polymer model arises from these definitions if one as-—

‘sociates time (or the number of steps after the start) with the

space Z-coordinate, Indeed, the trajectories of walkers moving
in a Cayley tree may be regarded as noncontact polymer chains
or "dislocation lines" of the IA model. The condition for an

M -stepped walk to start and to end at the same point means

the periodic boundary conditions in 2z direction for the ob-
tained three-dimensional lattice.

The partition function of the polymer model results from
generating function (4) if we attach to the variable x a sta-
tistical meaning by setting X = exp(-fBu),where B is the inverse
temperature and p is a chemical potential of a polymer link.

Instead of the original problem we consider first a modi-
fication of it. Let P be a K-stepped aperiodic walk returning
to the starting point after K=kM steps, where k>1 is an in-
teger. The absence of periodicity means that neither the walk
itself nor any part of it can be represented in the form (P°)™
where P’ is a closed path and m2 2 is an integer.

We introduce the auxiliary functions

LA Wi .
W(P) = (-1)x (5)
and

- n oM

X(I—'.") = (-1} X 7. (6)

There holds the following proposition.

Theorem. The product

1+ we) (7)
P

over all possible K-stepped aperiodic walks on the Cayley tree
equals to the sum X y(g) over all configurations of M-stepped
nonintersecting walks including the void lattice:

N1+ wWE) =35 3@. (8)
P (4

Sketch of Proof. It should be remarked that Eq.(8) is very
similar to the identity which is known as Feynman®s conjecture
and is proved by Sherman’?/ to get the combinatorical solution
of the planar Ising model.
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We will say that an K-stepped walk (K=kM, k> 1) is self-
intersecting if the walker being at some point at the moment
f (0<?<(k-1)M) visits the same point after M steps, <k
is an integer. An essential property of the Cayley tree is that
any K-stepped walk with K=kM , k > 1 is self-intersecting.
Let us consider the formal infinite product on the left-hand
side of Eq.(8), decomposing it into a sum of products of the
form W(PI)W(PE)...W(P"). If among the set g, of walks Py,..., P,
there are not intersecting and self-intersecting ones, the pro-
duct equals x(&,) and contributes to the right-hand side.
Consider nmow a configuration g, containing two walks P;
and P, intersecting at some point. Then there exists a confi-
guration g, which contains in place of two walks P, and P
a single walk P’ with self-intersection at the same point. fhe
first case is described by the term GJ)xKi @4)ij in the

expansion of (7), while the second by the term (—1)xKi+Kj_The—
refore, the contributions from intersecting and self-intersec—
ting walks cancel. Similar arguments can be used in the case
of several intersection points. Thus, only terms of the sum
ZgiKg) survive, where all configurations g consist of solely
M -stepped walks.

Equation (8) makes it possible to reformulate the random
walk problem of many walkers into a more simple one of a single
particle. For this goal it is necessary to establish a relation
between the configuration weight x(g) and the auxiliary function
%®. Let us put %X=xe"/M and note that the change of variab-
les_x—’i alters the sign of each M-stepped walk in (6). Then
E.x@) ~ X x(@) and since we assume M- oo, A(X) and A(X) coincide
in the thermodynamic limit. As a result, we may write the gene-
rating function in the form

AR = 3 x(@) = I W(P) . (9)
g
On the basis of this equation we have
(-W (P))’
1 i

WAG) = S Wil + WP == 5 (10)
P

=
B =

]
Let R be an arbitrary K-stepped walk not restricted by the
aperiodicity condition, returning to the initial point after
K=kM steps, k> 1. We denote by Rnp) a set of walks which oc-
cur in the site i after m steps, 0 <m < M. The total number of
such walks |Ry(i)| obeys for each i the following translation
relations:

[Ro@| = [R @] = ... = [Ry_,()], (1)

4

A walk containing kM steps with k> 1 being at site i at the
moment' m and passing some sequence of sites coincides with
walks being at the site i at the moments m+ M, M+ 2M, ...
and passing the same sequence of sites. Hence, each K-stepped
walk enters into the sum
&-1
2 X |R, @)
m=0 i - Ch2)
5 Fiwes if it is aperiodic, and K/j times if it has a pe-
riodicity j. Then we can continue Eqs.(10):
K i m K 0 {
=W (P)) M=1_ Sg()x Spdx "
: '=‘—~§‘-—————’=—M22‘_~ (13)
1 J m=0 i K K o i

-
p

o M

it

)

where ST“) is the number of K-stepped walks in the set R (i)
The sum over lattice sites can be rearranged due to the sym-11 s
metry of the Cayley tree. As a result, we obtain for the lat-
tice with a coordination number z:

8 (0)x ¥ L . O
A =M e =M X z(z-l)P 12 K(L (14)
K K f=1 K K X
where
S _(f %
(D) = 8 () (15)

if the site i has the coordinate /.

3. SINGLE WALK GENERATING FUNCTION

The considerations in the preceding section lead to the ex-
pression (14) which we shall now make explicit by calculating
the sums

o SgOx _
Yy = [=0,1, ..., L
K = (16)
including 8,(f) = the number of arbitrary closed K-stepped
walks.

Let W (f|m) be a number of walks starting with coordinate m
and terminating after n steps with coordinate f. Following

the treatment of Hughes and Sahimi 77 e begin with the evolu-
tion equation

Wy (E1m) = % y (8 E) W, € [m), | (17)
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where
(‘z—1)8[,‘p,+1 *86’,?’-—1 0<l'<L

vy, 0 )= ZSp,f«,.l =0 ] (18)
5&?’—1 el

The origin f= 0 and the last shell f= L act as reflecting
barriers. Thus the random walks on the Cayley tree can be repre-
sented as effective biased walks on the one-dimensional lattice
with two "defects'". The initial condition is
W (f|m) = B o (19)

To separate translation invariant and "defect" parts of y(f p)
we write

ylE E) = p(f = £7) +q(t, 1), (20)
where
P(P) =@ -1)8  +8 21)
and
0 P #0, 8 4L

LEATEAE I PR =0 (22)

—(z -1)8 =L

( )‘V,L+l I

Inserting this notation into Eq.(17) we obtain
W, () —‘%p(l’ - )W (P [m) _Pz Q FIW(F|m). (23)
It is convenient to introduce a generating function by
Wim: £)=3 W (0 |m)&". (24)

n=0
From Eq. (23) using Eq.(14) we have

WCEIm: €)= £ DU =PI W [mi €)= 8,0 £3 0L WA s £)25)
A discrete Fourier transform

~ o if
W(¢[m:§')=?2 e ¢W(F[m;§)

o

(26)
6

yields

¢ 109 £e'® <719

W(eh|m; &) = +

1-£A(¢) 1-&x(4)

&z - l)ei(L+ 1)¢

W(Om: &)— e
1= &)

where A(¢) is the "structure function'

[>~] -p 5
Ald)= 32 el‘¢p(F)= (z — l)eld’ '8

(=~

_qu)'

Inverting the Fourier transform we find that

W m; £)=G( |m; £)+ EWO|m; E)H(E: )~ EW(L|m; E)F(L; &)

with G(f|m; £), H(P : &), F(£; &) defined by

~f
/4 Hllﬁ(m )

O [m: Bt f S92 g g
IS4 2,,_;’,, —{,\(qb')d)
o I-—it’¢. i —igh
RUE; )it [ iS . 2 i
RY o 1 - EX(¢)
and
= r L L=f+1)¢
Pl €)= it d¢

1 - ax(4)

Put f = 0 and = L
tions

W(0|m; &

W(L|m; £), (27)

(28)

(29)

(30)

(31)

(32)

in Eq.(29). We get the system of linear equa-

)=G0|m; &) + EW(0|m; E)H(O; &) - EW(L|m; &) F(O; &)

(33)

WLim: &)=G(L{m; £)+ &EW0|m; £)H(L: &) - EW(L|m; &) F(L; &)

which has the solutions

o GO|m; &)
W0\ m;£)=D det
G(L|m; &)
1- £H(O; &)
W(L|m;&)=D" 'det
~£H(L; &)

EF(0; &)
1+ éF(L; &)

G(0|m; &)

G(L|m; &)

(34)

(35)




where
1 - £H(0; &) EF(0: &)
D= dek . (36)
-£H(L; £) 1+¢éF(L; &)
The integrals (30), (31), (32) are simply evaluated. Denoting
2 /2
ad(&)=[1-4¢@-11"" (37)
and
1+ d(&) .
t e B2
5 EE) @ 1) (38)

one can show that

[-tf"Pou Sy e ey wa E
Qe mag) = (39)

m

t, 0(t, | -1)/d(&) mo< b

-1
b=t 0@ -t Det_ -t 0(t, |-1lAcg) €= 0;

& =
H(E: &) e (40)
e (b =ty DOt | =1)/d(&) A S
and
) L—Vo} L-F+
F(£: &)= (@ -1)-t, I =t |)+t_ 11/«1({), (41)

where A(x)=1,x>0and 6(x)= 0, x < 0.

Up to now we were dealing with the number of arbitrary walks
on the Cayley tree. To calculate the sums (16), it is necessary
to adapt the general generating function (24) for M-stepped
walks starting and ending at the same point. For this goal we
put in (24): £ = xtexp(2ni-).

The summation over j gives

KR &
2 SK(?)x L= %

W (]| )x "t exp(2ai-t)-1 (42)
K n n M

I M

1
0o M-y
because only terms with n=0 (mod M) will survive in the
right-hand side of Eq.(42). Performing the integration over !
and changing the summation by integration, i.e., setting
B=27j /M, dB8=27 /M we obtain for large M

SK(E)xK B

- z ) = 11. (43)

- 1 2n ldt ) i

Now, the solution (29) together with Egs.(34), (35) and (39)-
(41) can be used for the derivation of thermodynamic proper-
ties of the system from the partition function (14).

4. THERMODYNAMIC PROPERTIES

In this section we concentrate on the analysis of the par-
tition function near X =1/z that is the critical point accord-
ing to simple arguments from Ref./ ¥, Indeed, energy-entropy
estimates show that lowest-lying excited states consist of one
M -stepped walk and have the free energy RT(-lnx -Inz).Such sta-
tes will be thermodynamically preferred to the ground state
only when x > z~! which locates the critical point of the mo-
del. The free energy is zero below x,. We have now to determine
the singularity of A(x) when x-» x, from the disordered phase.

We put !

1
X = —+a

~+w (44)
and substitute the first terms from Eq.(29) into (43). From
Eq.(39) we find that

en 1 iB 1 bh@,t)y _ iB
IlszL fapg r4t rqeje;xee” y-11=-L g9t r4agd (xte ' ), (45)
4 t 2 -t
0 0 0 —h@,t)

where the function h(w,t) is defined by

It, (xte' Py <1 -h<B<h. (46)

The condition (46) gives the integration range in (45):
2(z -2)(zw +t — 1) A 172

h(w,t) = [ 2 ] (47)
so that
2!/273 /8 2
Il = - —‘-—7 m' - + O((u ). (48)
3n(z - 2)V2
The second term in Eq.(29) appears due to reflection of effec-
tive one-dimensional walks from the origin f = 0. Note, that
at f:z 1/2
F(0; &)= et 5 (49)

@-2&-1k
Then the simple estimates in Eqs.(34), (36) show that the non-
vanishing contribution from the second term has the form




G0} ¢e; &)

EH(P; &) ————o 50
1= £n; &) e
in the thermodynamic limit L - . Hence,

g VRN G(O|L; &)
lo=— [ 4B [— EWO|m; EH(: £)=— [dB [— EH(L; & ) ——2122,
o=gr | B[S Wl B TR S
In the vicinity of 1/z take (51)

3
H(P:f):—?—z—uw‘t»O(mQ). (52)
2
(z -2)

From Eqs. (39), (40), (46), (52) we find that the expression
(51) for I, becomes

2 1 hw,t)
Z w dt 3
Iy = e i e { dg + O(w ) (53)
rz-2)%e-1"20 ~h(e, 1)
and because of (47)
3/2 4 5/2
2 Z w 3
Iy = s s + Olw ). (54)

3n(z - 2) (z - 1)

The third term in Eq.(29) is associated with the boundary shell
f=L.In the thermodynamic limit L+ ~ it reduces to
G(L|m; &)
EF(L; §) e, ‘ (55)
1+ £€F(L; &)
Proceeding as above we obtain from (30), (41), (46), (55)

: L fad | {w, 1)
1 27 14 ~z(z -1 dt ¥
1352—- [dﬂ_(—t _fF(l’;:f)W(L|m:f)=————)— [— de+0(w2)
n o9 0 1 2”(2‘2) Ot
~h(w,1)
and, using (47) (56)
2 172 z3 3/2
Iy =- 2 + O(w?). (57)

3rz -2)V2(z - 1) L1

Substitution of the leading terms I; and Ig4 into (14) finally

gives ’ :

y 21/2 2 -
= 2

— InA(x) = —-L.(EUP,—)Q + O(w ). (58)

MN 3@ - 2)

Thus, we obtain the free energy per lattice site above x,=1/z.
In the same way, the integral (43) can be calculated below X, .
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This gives the obvious result

AR) =0, % <xq. (59)

The obtained "3/2-order" transition calls for some comments.

It was noted in Introduction that the phase transition of this
type occurs in two-dimensional polymer models 23/ 1n our no-
tation it is the case %= 2. There is a drastic difference bet-
ween random walk behaviour for % = 2 and % > 2. For any pair
of walkers in the former case its coordinates (; and f, are
strongly ordered, say f,>/f,at any moment of time, whereas in
the latter one permutations of f, and f, are permitted. The
sole restriction on a walk configuration for z> 2 1is the ab-
sence of K-stepped walks with the period k = K/M» 1. Never-
theless, our results show that this reduced constraint is still
too strong to give the logarithmic singularity of the partition
function.
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