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INTRODUCTION 

The problem of theoretical investigation of metastable 
states attracts a great interest in recent years. These states 
may be treated in the kinetical the.ory as nonequilibrium states 
having very long lifetime'1-4~ The statistical equilibrium 
treatment is permissible too, as far as it is applicable to 
all kinds of equilibrium states, whether stable, metast able or 
unstable / 5 ,6l , The renormalization-group approach for describing 
the metastability has been formulated in ref .'7/ , A detailed 
review dedicated to mathematical problems concerning the meta
stability has been given by Sewell / 8/ , As has been cleared up, 
thermodynamic functions o f metastable states mi ght be conside
red as analytical continuations of the corresponding functions 
for absolutely stable states /8 ,9: This idea has been ef f iciently 
analysed by Schulman and colleague / 10 ,l1: One of the main prob
lems when dealing with metastable states is the behaviour o f 
their probabilitie s or lifetimes in the thermodynamic limit. 
This has been investigated for some classical models in ref .' 12
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and f or the two-dimensional Ising model with nearest-neighbour 
interactions in refs / 13 ,14 1

, As has be en discoveredl 13,14;' the life
times of metastable states and their probabilities as well tend 
to zero wh en N -0 no . Tha tis, the thermodynamic 1 imi t des trays 
metastable states. The same result has been ohtained ' 15: f or 
the droplet model ' 16,17 

1
. Howeve r, there exists a cl ass of the 

so-called heterophase models ,' 18-201 that can possess metastable 
states even in the thermodynamic limit. In these models hetero
phase fluctuations are stabilized by the existence of a dis
ordering interaction "21 '. For exampl e , a modification of the 
l ong-range f erromagnetic Heisenberg model, taking into account 
coexisting ferro- and paramagnetic states has been analysed in 
refs. '2 2,23 / . And it has been shown tha t this heterophase system 
in the thermodynamic limit does have metastable states whose 
presence depends on the relation between the values of orde
ring (exchange) and disordering (direct) interactions. 

In the present paper we generalize the Ising model with the 
nearest-ne ighbour interactions so that it could include he tero
phase states. This case is of special interest, since Ising 
model proponents claim it to be a paradigm for all phase tran
sitions (we ll may be not all, but many). We find exact solu
tions for the two-dimensional heterophase Ising model, Ana
lysing these solutions we come to the conclusion tha t hetero
phase states in our model are either metastable or unstable. 
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Such a result i s in agreement with inferences of the inves
tigation of heterophase fluctuations in the Ising model when 
limited Gibbs distributions / 24/ have been used. 

The structure of the paper is as follows . In Section 1 the 
heterophase modification of the Ising model is formulated. 
Section 2 is devoted to the Bragg-Williams approximation for 
a two-dimensional model. Exact solutions for the nearest-neigh
bour interaction are obtained in Section 3. A brief discussion 
of results is given in the Conclusion. 

1. HETEROPHASE MODIFICATION OF THE ISING MODEL 

When constructing theory of pure thermodynamic phases of 
macroscopically degenerated systems one should invoke the Bogo
lubov/ 25 ,26l concept of quasi-averages. And phase mixtures can 
be considered by using the concept of the spontaneous restora
tion of a broken symmetry 127 1 

The Hamiltonian of a two-phase mixture is of the form 

H (j) Hp , (1. 1 ) 
p=1,2 

where Hp are defined on the spaces of states 5p ' 

Hp 5 p = 5 p (p = 1,2). (1. 2) 

The total space of states of a mixture is 

5 = ® :tp. (1 .3) 
p= 1,2 

The probability of a fixed phase is defined a s 

wp=Np / N (N=N 1 +N 2), ( 1 .4) 

where Np is the mean number of particles in the corresponding 
phase, N is the total number of particles. Taking into ac
count a natural normalization condition 

W +w =1, (1 .5)
1 2 

we put w ;; W 1 ' w2= 1- W • 

One can obtain the equation for the phase probability w from 
the conditi on of the heterophase equilibrium 

o -{3H<Jg = 0, g= - _. In Tre ({3.e=1). (1 .6)iJw N. 
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From (1.1) and (1.3) we obtain for the free energy of the two
phase mixture 

g ~ g • (J .7)
p= l,2 p 

The Ising model can be considered as a limiting case of a s t rong 
anisotropy in the Heisenberg model. So, in analogy with the 
model of a heteTophase ferromagnet 1 22,23~· we have 

U 2 T 2 )H =N·-. w -~.w . ~ 0 , '0 , -h· w . ~o , ' (1.8 
p 2 p 2 p <j ,j> I J P j I 

where~ . denote s the sUllUllation over nearest nei ghbours; " j = ±1; 
the cdri~?ant U is expressed through the matrix elements o f 
the two-parti c le interaction over Wannier functions ! 22 /: 

U = l « i, j 1<l> 1 j, i > - L < i ,j 1<l> I i, j > ).
j ,j 2 

Here the first term corresponds to the direct interaction; and 
the second one,to the exchange interaction ,' 22! ; h is th e ex
ternal magnetic field. The usual periodic conditions are a ssu-' 
med. The f ir s t phase is interpreted as an ordered phase. The 
space of states ~1 has the vacuum state described by the comp
letely ordered configuration of parallel spins. The spontaneou s 
magnetization of this phase 

I , iJ g 1 1 ~ M - 1m _. - = w . - .... <0 > (1 .9)
1 <Jh 1 N j j 1 

b-+O 

should be nonzero be low the Curie point. The second phase is 
completely di s ordered, so that when h =O, then the space of phy
sical state s 52 has the vacuum corres ponding to the spin confi
guration, in which each cluster of neighbours has zero magneti
zation / 29 ~' Thus, the total ma gnetization of this phase M2 sa
tisfies the conditi on 

lim . M2 O. (1.10) 
h-+O 

2. BRAGG-WILLIAMS APPROXIMATION 

Let u s first try the Bragg-Williams approximation for the 
model defined. This approximation is a version of the mean
field theory, which, as is known, gives exact results for the 
infinitely long-range interaction. 

In the Bragg-Williams approximation one gets for the magne
tization 

M p = wp' tanh (zo . (3 • I· wp' M p I 2) , 
(2. 1 ) 
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where Zo is the number of the nearest neighbours. The non-tri 
vial solution of this equation corresponds to the ordered phase; 
and the trivial one,to the disordered phase. So, the total 
spontaneous magnetization is 

M = 1 M = M 1 = wL, L '" tanh (z O· (3 I w2 L ,' 2) • (2.2)
P =1,2 P 

The free energy takes the form 

2 u [ ,2 ( f) 1 I 2 T 2 1 ( 1- L ) (2.3)g = -. W + 1- w + - . z . . w u -,. - -In -- . 
2 4 0 2{3 4 

For simplicity we use the following notations: 

A ", _U_ T :; _8 

z 001 Z o' I 


The equation (1.6) allows us to obtain the probability of 
the ordered (ferromagnetic) phase 

2A 
w=--- (A f. 0) (2.4)

(4A- L2) , 

The correct solution for w is to be selected in the follow
ing manner. By definition (1 . 4) we have O ~ w ~ 1. Besides that 
the heterophase system is stable. when the second derivative 

, 2 2 2 

~=Lz I.!4A-L2 .[ 2T+3w U-L ))} (2 . 5)

avi2 2 0 2T-w2(1-L2) 


is positive. 
In accordance with (2.4) the heterophase states exist above 

the nucleation temperature 

Tb = J2A_ 

2· artanh ( J 2 A ) 


For A=O the nucleation point coincides with the critical one, 
and in this case one returns to the standard Ising model. 

At low temperatures (T « 1) we have 

2 2 
L ;: 1 - 2 . exp [ _ 4 A _ ), w = ~-!1- _ 4 _. exp[ _ 4A n)1. 

(4A-1) (4A-1) T(4A-1)T· (4A -1) 

if A!>: 0 or A ~ 1I2 . Substituting this into ( 2 .5), we see that 
the system with heterophase fluctuations is stable for A >112 . 
In other cases, when the solution (2.4) does not mi n i mi ze t he 
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free energy g !w} we must compare two possibi lities: w 1 and 
w = O. It is easy to obtain that 

g! w = 1 I.s. g! w =0 I (O .s. A !>: 1 /2 , T = 0) . 

The specific heat may be written as 

4 2 2A . w • L . (1 - L )Cy 


2T. [ 2 AT-w2 (1- L2)(A + 2w L2)) 


~n the low temperature region C y > 0 and C -' 0 when T -. 0 for a l l 
v

values of the parameter A . The specific entropy of the hete r o
phase system at zero temperature is equal to In2. 

The critical temperature obtained from the condition L =0 
is T c = 1/ 8 , w (Tc ) = 1/ 2 . 

So, the critical temperature for the heteropha se model is f our 
times as less as that for the pure model. 

The expression (2.5) at the critical point Tc=1/ 8 is posi t ive 
for A>1.5. In additi on g!w=1/21 < g\w=01 (A> O, T=Tc ) . Expanding (2.2) in powers of f = T/ T -1 we have 

c 

(-~r: (_f)1!2. A '* 1.5
L ::: 2A-3

{ (2.6) 

1.712. (_f)l!~ A = 1.5. 

For the phase concentration w in the critical region we obta i n 

A f, 1.5{ 2L + 4 (2A3 -3) . (- f ) • 

w = 

1 1/ 2 
 (2.7)
'2 + 0.244 (-f) A =1.5. 

The specific heat at the critical point is equal to 

c y = -~. (2.8)
(2A -3) 

This e xpression coinc ides with the specific-heat leap for the 
pure model in the limit A -+ ± "". 

Equations (2.6)-(2.8) show that the phase trans~t~on in the 
heterophase system is the second-order one for A < 0 and A > 1.5. 
Negative values of A corresponds to metastable s t ate s. If 
0 < A ~ 1. 5 , the phas e transition i s of f i r s t order, and al l 
expan s i ons i n powe r s of c become invali d. 
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3. EXACT SOLUTION 

Le t us find 0.xact solutions for the modi f ied Ising model 
with het e rophase fluctuations in ze ro field. For doing this we 
us e ei genvalue s of the transfer-matrix calculated by Onsager ,-3~ ' 
Th e maximum eigenvalue corresponds to completely ordered phase; 
\"hil e minimum ei genvalue, to disordered phase. So, \"e have 

\g = U - w2 - _. In(.2 smh a . - c. .- 0 ) ~ , p , 	 (3.1) 
p 2 p 2 p 

" \"here ap = {3.w~.l, Ap _1_ (Yp(v)dv , and the f unctions yp(v) are 
2" 0 

de fi ned by th e equation cosh yp(v) = cosh ap ' cotha - COSv. Here 
t he po sitive s olution i s denoted as Yi(v); and th~ negative one, 
as ~ (v )_ The latter equation can be trans formed to the form 

"p+ 1 I}' . (J) = (-1 J - In 2 - In (s inh a ) + 
p 	 p 

" ~ 1.. ( dl / ' -In[ COSh 2 -(COSII + cosv') . sinh all.u p
" (I 	 P 

The r efo re, we have for th e free ene r gy ' 

g = R- . [ w2 +(l-w )21 - 0 . (Q - Q ) - 0 · In ( ~ sinh u ) (3. 2) 2 	 1 2 2 ' 

L rr rr, 2 	 , .
I"he r e Qp 	 - . (dv (dl ' .1n[cosh a -(COSI/ - COSV ). sInha . ].

2,,2 0 0 P 	 ('J 

In ac cordanc e with the condition (1.6) we obtain the equa

ti on f or the def initi on of the pha s e c oncentration W: 


2A- 82 
w -----). (3.3) 

1 - B 2 

2 ..,where Bp '" 	 --. _ < a . a . > . 

zoN < i,J '> 1 J p 


Dif f e r entiating (3. 2), we find 

B = [L + (_1f+1.L.( sinha p -1 )K (¢ )]. cotha ; 

p 2 "sinh a + 1 p p


p 

" dvhere K(¢ ) = ( ~-- IS the full elliptic intep,ral 
o (1_¢.sin2v)1 ; 2 

. .	 ,. 8 sinh a p . cosh2 a
of the hrst kInd 31 ' and ¢ '" 4::..£...· 

p (1 + sinh a p ) 

The spontaneous magnetization in the pure Ising model on 
the square lattice was calculated by Yang '32 : Using this r e sult 
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for our mode l we obtain 

L = (1 _ l ' 1 8M=wL. 	 (3.4)sinh 4 a ) . 
1 

The sp ecific heat has the form 

C" =_2{32. J 2. I 2A(X2- X l) +Xl'Y2-XfYl I 
(3 .5)

4A - (Y + Y ) •
1 2 

where 

2 
X ", W:.!(-1'f Bp + cosh a p .[(_1l+1 x p sinh 2a s inh a p p 

(B .tanha _ L) 
x p 	 p 2 _ ..£. (sinh ap- -1 yl . Yp",B , (_l)P+l ~]I, 

p 0 ·Xd¢ 	 •. wp p(sinh 2 a - 1 ) " (sinh a 
p 

+1)6 
p 

To check the stability of the s yst em, we need to ve rif y th 
positivenes s o f the derivative 

2 

~ = 2 I . [ 4 A - (Y1 + Y2 ) 1. 
 (3.6)aw 2 

and al so the s ign of the function 19 ~ 9lwl-glw = 11. f or which 
we have 

C1g=U . w(w-1) -El·[Ql- Q2- Q +In(2sinha )]. 	 (3. 7)2 

1 nIT, 2 , .
where Q "" 	-' ( dv (dll In[ cosh a - (cos v _ coSv ) smh ul; a ", (3J. 

2,,2 0 0 

Finall y , the speci f ic ~n tropy of the hybrid s ystem i s equal 
to 

5 = Q -Q2 + In (2sinh a ) - (31.[ w Bl -4A(1-w) (w - t )]. (3.8)i 	 2 

The critical temperature Tc defined by the condition L=O 

T . = _1_. a - arsinh 1 . (3.9) 
c 16a 

This is four times as less as the critical temperature f or the 
corre sponding pure model. 

The expansion of the order parameter L in powers! differs 
from the corresponding ex~ansion f or the usual Ising model 
where L _ (_£)18. In the model with heterophase fluctuations we 
have 
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La'; 1/8 . (-d 1 : ~ [In(-€) ] 1!~ .; '" 4v'2.a 2 

TT· (A + 0.087) (3.10) 

For the phase concentration w in the critical region we obtain 

w _ 1-'2 -I
a 

4TT (A + 0.087) . (-d In(-f). (3.11 ) 

When approaching the critical point the specific heat diverges 
stronger than in the pure model: 

3 
C = 8a 

v TT 2 (A + 0.087) 

2. [ In (- f)] . (,? 12) 

Let us remind that in the usual case C 
v 

- In(-f). 
In the low-temperature region the phase concentration has 

two branches of solutions, whose asymptotic forms (see fig. 1) 
are 

w :;: ~.! 1- (2A -1) . e 

__1_(~)2 

2 T 4A-1 

(4A-l) A(4A-l) 

w = + 1 . T 
2(2A -1) 

(T « I). 

-.1.( 2A 2 
4 .e T 4A':1) 

(4A-l) I. 

(3.13) 

The numerical solution of (3.3) at all temperatures for 
various values of the parameter A is depicted in fig. I, the 
behaviour of the specific heat is shown in fig.2. The unphy
sical solutions (for which either the specific heat is negative, 
or the specific entropy diverges in the low-temperature region) 
are depicted by dotted lines. The continuous line describes 
the solutions for which Cv > O. These solutions exist only for 
A ~ 0.5. 

The numerical analysis of expressions (3-6) and (3.7) shows 
that the free energy of the heterophase system is always hi gher 
than that of the pure Ising model. Consequently, the states 
labelled in pictures by continuous lines are metastable. The 
transition from a metastable heterophase branch to the stable 
pure state is the nucleation which is here the first-order 
phase transition. Note that some metastable heterophase states 
can have a negative entropy. This is analogous to the case 
of the low-tempe rature Sherringt on-Kirckpatri ck spin glass/ 5S •S4 

l 
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Fig .1. Tempel'atul'e dependence of the phase concentration for 
t he values of A=-3 (curve 1) ; A=-1.5 (c'Urve 2) ;A = -1 (curve 
A=-0.087 (curve 4) ; A= 0.5 (cUl've 5) ; A=1.5 (curve 6); A =3 
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CONCLUSION 

The two-dimensional Ising model with heterophase states is 
an example of the system in t·]hich metastable states survive 
after the thermodynamic l imit. This is due to the presence 
of the direct interaction besides the exchange one. The compa
rison of the results of Section 3 (the short-range model) and 
the results of Section 2 (the long-range approximation) shows 
that the thermodynamic behaviour of heterophase systems strong
ly depends on the kind of interaction, the long- or short-range 
one. The increasing range of the interaction stabilizes hetero
phase s tates. 

The authors are very grateful for discussions of results 
and the interest to V.B.Priezzhev, A.S.Shumovsky, A.V.Vedyaev, 
and I . R.Yukhnovsky. It is a pleasure to thank L.S.Schulman for 
the useful correspondence and for sending us preprints and re
prints of his works. 
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