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Z2. THE MODEL

The actual crystal structure of trans- (CH)y according to
the data of’1?/ is shown in fig.la. To simplify the calculati-
ons we use as a model structure a quadratic lattice of equiva-
lent chains (see fig.lb), where the area per chain is taken as
the actual one. Using the data of Fincher etoal.'17/one obtains
the lattice constants 2a = 2.46 K, b=3.94 A and the volume
of the unit cell Q,. i.e., the volume per C,H, unit, Q= 2ab =
= 38.27 &% Comparing the resulting bulk density (= 1.138 gcm"s)

with the density of real inhomogeneous films (= 0.4 gem™® 7147 y
a filling factor of ome third can be estimated.
The model Hamiltonian proposed in’®/ reads

H’—‘-?Hy-le. . (2.])
where ﬁp is the single-chain SSH-Hamiltonian ®’ of the I-th
chain:
Hy = -t,2 [1+ -1y (e, h 2

Tt Sl LS SR L YRR 2 D L

s.n

which describes in a TB-picture the behaviour of the melectrons
of the system under consideration (where one m—orbital per C-
site, numbered by n, is provided and $ is the spin index). The
overall width of the whole # -band, 4t (usually to be taken
4ty = 10+ 12 eV) is chosen as the scaling energy of the consi-
dered problem. The Peierls gap between the filled valence band
(w-band) and the empty conduction Land (#*band) becomes in
units of 4t a small parameter: y = E /4t 4~ 0.14+0.17 << 1.
To get some insight into the influence of an interchain coup-
ling on the DF, a next neighbour hopping between chains has
been added to (2.2)

~ +
Hi=-% I (e
Ban  rd

cp,'n,S 3 Ween)s (2.3)

Fig.1. Schematic structure of
transpolyacetylene (a) and simp-
lified one (b) used in the cal-
culation (b,=7.32 4, b, =

=8 25 BV p . = X08 A,



http:0.1470.17
http:ch:tn~�.in

Assuming the interchain hopping t <<t ‘Y. the Bloch-wave

function in the zeroth order 1nt is given by
>
) ik !
e, -— 3 s ulm)0, ¢ - R -va). (2.4)
\/NE R v=0

where n = 0,1 stands for the conduction and valence bands,

respectively, and - ®,(T = R - v2) is the associated Wanpier-

function. The position of the unit cell is denoted by R, &

is the displacement vector between different sites of the same

cell, and Np means the number of unit cells. The coefficients
(k) depend besides a phase factor only on the K-component

m chain direction k according to the relations:

U) = L 1) ek, ) - iBlk, )1
1 ’ s v=20,1, (2.5)
oy :}{a(k ) - i(-1)"Bk Hle'VE?
where
alk,) = H's"—(k“)+ cosk .a]/s u,(],:“,)ll‘/2
1/2 (2.6)

Bk,) = sgn(sink a)i{s  (k )- cos k ,al/s, (k")!

7/
R stal <% Q2.7

s, k)={1-k %sin®k 13l
and a is the projection of 3 on the chain axis. Note, that the
notation on (2.5-6) and (3.5) has been changed and differs from
the analogous expressions in78/ by the phase factor and the pro-
per prefactor (Np)~1/2 instead of (2N p ~1/2 corresponding to
the Hanke-Sham calculation scheme 1%/, The eigenvalues of the
Hamiltonian (2.1) in the first order of t, are given by

- v -

Ev(k)= ("l) 2tos|((_k.ﬂ_2+2tl (k_l.)’ ¥ = 0,1-
- ik, Ry, (2.8)

s, (k)=(2)se [,

P

where the sum has to be taken over nearest neighbour chains.

3. THE MACROSCOPIC LONGITUDINAL DIELECTRIC FUNCTION (MLDF)
Usually, the MLDE t’(q, @) 1s expressed by the density corre-
lation function x(d, w)

(@ 0=l @3N = [1-v@xE o), (3.1)

mlCl‘

4

. £18,18% °
where according to k) X is written in terms of the Wannier-

function ¢, (mentioned in sect.2), the form factors of the char-
ge density Ay and the screening matrix S - :

x(q w)=3% A (Q)S (q w)AZ ((l) ) (3:2)
SS
- . g d > —-i(;l? > > .
As(q)zjd ro(r - va)e tDV,(r—R— va), {3.3)
-1 > o A I ~ ~ 1=
qu, (q, <u)=Nss,,(q. w@itl =V = EVQ ¥ N, @)l e s (3.4)
where s denotes the composite matrix index s = (R, v, v ‘). At low
temperatures kT <<E, the polarization bubble N(OJ (d, w) is
I e > K R,-R
N Gy 3 0 Een @ Do ©OEE
. 1% v
1 2 NE nFENn 1 1
(3:5)

b J k = f k ‘
Un(k)U (qu) (- f(n +Q) (n, k) 1.

e 2 En,(E+H)—En(i<')_tw_ia

The Fourier—component of the bare Coulomb potential i (3.1 it
long-wavelengths compared with the strand radius 1s certainly
(see the discussions in 2 21) v@)=4me?/(Q, 34 ) where ¢
describes an isotropic background dielectric contr1bution re-
sulting from electronic transitions wp at sufficiently hiph
frequencies R 24ty much higher than the frequency region

of our 1nterest (e.g., interband plasmons, see below). As a ty-
pical value for an organic solid we take ¢ _=2 +3. Like in /8’
in the first step the overlap between neighbouring sites in cal-
culating Ag (3.3) as well as the Coulomb matrix Vg, - and the
exchange correction Vgy ¢ in (3.4) are neglected (their in-
fluence will be considered in a subsequent paper). Then, we get

A= ,=e”””“’5 5 (3.6)
R.v,v R 0 wv

and x@. )becomes

NCE w)———~1———§ (- 2w @, K, (3.7)
2NQ S, % D, Dy

where the dimensionless notation

D .=i:1(k+q)-ﬁ0d<)- 24, D

. 0=E0(k+q)-El(k)—2_¢u

A l, . g (3.8)
E, () =CD"s K& )+ /ty)s, & ), v=01, a=fe/4t,

has been introduced. In the zeroth order in !, the matrix ele-



> >
ment wo(q, k) in (3.7) becomes a function of k" and q, only

cosk acos(k, +q,)a + y2| sink a -si'n(kIl +q;)a|
wo(q“oku): L = = (3.9)
sy(ky +qy) s (k)

Inlthe long-wavelength limit we obtain

Wolay. k)= 0.5(q"a)2y 2'/5:?0‘»1) for q,a «<1, (3.10)
which differs from the corresponding expression in’® (formula
(18)) by the exponent of sy equal to 4 instead of 1. The t; -
dependence of ¢{d,w) via W, 1is expected to be weak and will
be neglected, whereas for a qualitative discussion its influen-
ce on Imc@f,a)) via the denominator D (eq.(3.8)) will be taken
into account.

Otherwise the influence of the interchain coupling t beco~-
mes negligible and the MLDF reads

72

(@, @)= =C [ d(ka)A/D, -1/D W @,.k,)/Ga)" (3.11)
-m/2

where

C = @e/tga)- /00 = o )% sar)? R
3.1
wh = 82NV s By, vy - 2ealk,

and w_y means the plasma frequency of the correspond1ng quasi-
ID-metal with the area density of chains N “?Y. From the data
referred to in sect.2 we obtain for polyacetylene C = 0.45.
Note that (3.11) is essentially the Ehrenreich-Cohen formula
in the extreme TB-limit for noninteracting chains.

4, EXPLICIT RESULTS AND DISCUSSION

4.1, The long wavelength limit. For q,a << 1 the integrals
in (3.11) can be calculated analytically (compare fig.2}:

Cy cosze)[ nx/A-° ).k} E(k)

Ref(o.w)=em+ o - : 1. (4.1
© 1~ w y
i i) 44 - 2.~ =

FCy%eos?0u® (0 -y®y "% (1-5% P forycam <1

Im((o,m)=
: (4.2)

0 otherwise,

6

Fig.2. DFe(0, w) versus frequen—
ey (w=wlityg, e =3, ¥ =E /4=
=0.15, co8@ = 1, C'= 0.9).

]

where k = (1 - Yz)]‘% and 0 is
the angle between q and the chain
direction. Il and E denote the
complete elliptic integrals of the
third and second kind (for the
definition of Il see’1%/),
Egs. (4.1-2) fulfil the condition
¢(w)=-c*(-w) in contrast to %/
where the factor «™® in Im¢(0, o)
was lost.This factor and the squ-
are-root sxngularlt at the gap frequency have been obtained by
several authors’ although the numerical prefactors
differ for each treatment. In these works the dipole appro-
ximation and (or) a simplified linearized electronic disper-—
sion law for the undimerized case were used. The latter is va-
1lid only for frequencies lower or near the gap, i.e., oy 1.
The absence of the singularity at the upper edge of the inter-
band transitions (IBT), i.e., at w = 1, is possibly connected
with the difference of the longltudlnal and transverse dielect-—
ric functions for crystals of noncubic symmetry 16,247 and the
mentioned above linearization of the electronic structure.
Explicit expressions for Re¢(0, w) for the quasi-1D-TB-semi-
conductor with commensurablllty 2 are given, to our knowledge,
only in the work of Schulz’ 10790 the dipole approximation. Ac-
cording to the above given statement we get similar behaviour
at low frequencies o - y and different one at high frequencies
w > 1. According to the singularities of Im¢(0, ) connected with
the 1D-bandstructure, Re (0, ») possesses square root singula-
rities at the outsides of both IBT edges, i.e., at w-+y ~ 0
and @ » 1 + 0;

» 2 —-3/2 T
Besll, 5oy = w3008 Oy a@y) R SR s
g oy e y©
(4,3)
D o 7 2. -2 Qs il -t
Ree¢ (0, o ~1’0)~(x—CCOSQ(')[—I—_VZ(::) & 1) -w l]"—“‘u

4k
where K = K(k) denotes the complete elliptic integral of the
first kind (hereafter the k-dependence of the elliptic integ-—
rals will be omitted), whereas at the insides of the ITB edges
Re¢{(0, w) remains finite:
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Re e (0, @~y +0)-c_+Ccos’® (-2E/y2+K+E)/k?2 (4.6)
=~ ¢_~2Ccos®®@/y? for y <1, (4.5)
Rec(0. 510 =c_~Ccos O +y (F-K)Vk?), (4.6)
=¢_=-Ccos®® for y << 1. (4.7)

At very high frequencies @ >»> 1 or for y- 0 we get quasimetal-
lic behaviour

Ree (0,0 > 1):(&(1~Eu)p% c0s?@/w?), (4.8)

= (1 - wp% cos?@ /0®) for ¥y «1, (4.9)
in agreement with the well-known result for the quasi-I1D-

-metal /20,227 Finally, at low frequencies & << y we have
Re (0, m<<y)=¢ + (2Ccos”@/3)([E/y%-E - K/2), (4.10)
=e + (2C/3y ®)cos 2@ for y << 1. (4.11)

The static value ¢, for polyacetylene becomes ¢;(0, 0, ®=0) =¢. =
=€, + 13.3 = 15+16 almost in agreement with 3’. This value
seems to be somewhat enhanced in comparison with/tbe usual
accepted value derived from optical measurements’® . However
since the optical wavelengths are large compared to characte-
ristic lengths of inhomogeneties of real (CH) ~films, the opti-
cal data actually deal with a quite smaller effective dielect-
ric constant resulting from the average over the volume and
fibres orientation.

Let us now consider the zeroes of Re ¢(0, w) = O which are clo-
sely related to the plasmon energy given by the peak of the loss
function P(w)=~Iml/¢(w). Requiring different signs of (4.5)
and (4.7) a simple condition for the occurrence of an interband
plasmon can be obtained

L <, /(Ccos®@)<2rsy? (4.12)

which is fulfilled for C =~ 0.45 for a wide range of angles ©.
Hence, for films.with more or less oriented fibres the peak of
the measured averaged loss function <P(w)>®(seef15') should be
shifted to lower frequencies compared to the case ®= 0. From
(4.5) and (4.7) the position of the plasmon peak in (CH), can be
estimated in a crude manner by flmsf < 4t,C/e )2 (4 :45)a 1’2 gy
and 1<e¢ <2 in good agreement with the exberimental value of
about 4 eV at g = 0.1 A~1 (Some peculiarities at lower G-values
found in "®’ are discussed in’15/). Comparing (4.12) and (4.9) we

8

sc . .. .
find that the plasmon frequency @, p of the Peierls-Frohlich se-
miconductor is somewhat enhanced compared to the undimerized me-
tallic system @op

e <wh B0 a(uE7 with 1 <a<?, (4.13)
pf pl pf
sc . . = =
By using (4.11) @,p -can be related to the static dielectric con
stant € ,(0) by

1 <1.5dmi? @ =0))" (e O - 8 e

E;2<a<2. (4.14)
o Lis T r)

By comparing the limits (4.3) and (4.9) a further zero lwop”

is found very close to the upper edge of the interband transi-

tions:

-2
hw(z)a4l0[1+(n/4)202y4(k(( -C)y 1.
p oo

However, this solution seems to be an artifact of our model sin-
ce at these frequencies additional electronic transitions and
damping effects (compare fig.3 ''*" ) have to be taken into acco-
unt explicitly.

4.2. The imaginary part of the DF at finite wave vectors.
The imaginary part of the DF is determined by the zeroes of Dy
in eq.(3.8) with respect to k

PO e “(‘L“Qto)[SL(EL +6l).-sl(gl)]%(s"(k“ +(1:)+s“(k“)y2. (4.15)

At first we discuss the limit t - 0. From(4.15) simple analy-
tical expressions for the upper and lower boundaries for Ime(q,
) unequal zero in the (w, 4 )~ plane can be derived analyzing
the first and second derivatives of (4.15) with respect to k
(see fig.3). Thus, the upper boundary E%(q“) consists of the

curves AB and BC given by

s,(a,a/2) for Q9,8 £ n/2, i.e. for AB
(4.16)

w @)=«
u o

' s @Qa®R-a/R) for n/R2<qa <wm, i.e.for BC
!l i

L

The lower boundary &p(@Q ) is given by three curves:

s, (qaR-n/2) for 0<q a<qa, i.e. for DE
s ' -1/2 c &y
w[,(q g )= 0.5x(X -y) for aq,<q@a <7-q.a,i.e. for EF (4.17)

s,(q ,aR) for n-qfaigﬁﬂa < 7y i.e. for FG
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Fig. 4. Absorption vegion due to interband transitions
for 4,=0 {or Y, = 0). (a). This region is sketched for
t, # 0 and QL ey e ) in (b).

vhere

uq: = arccos [ (1 - v)/(1 +y)].

I 1/2 (4,18)
= 0.5(1 + y) sinq ad(l + y)sing,a + [ (1 s y) sin " q a - 4y] i,

It turns out that Im((@q., «») vanishes at the lines AB and TG
caused by the behaviour of the matrix element W (. k ). whe-
reas at the other lines it tends to infinity:

-1'2
Loy —~ wp(q 1)) near DF and EF
Ime@, w)~ 3 . ol (4.19)
(e (q' )-w) 7 near BC and EB,

where the curve EB is given by eq.(4.16) continued to aq' =
sqa < 7/2. Approaching from (4.19) and (4.2) we find that the
lower ITB-edge shows strong dispersion in agreement with the
statement of Ritsko '. At momenta higher than q° (eq.(4.18))

it Spllts into two singularities where the lower one vanishes
for 7~ q, d <aq, < n, Note that there is no branching point
@5.V¥y) in the sketch given by Ritsko (fig.7 of ' ). At the
upper IBT-edge along the line AB the imaginary part goes to zero,
but for small wave vectors a ma%imum appears near the edge which
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becomes a singularity in the limit q » 0, w = l. In the metal-
lic limit y + 0 the branching point (q°,\ V) is displaced to the
origin of the (4,6 ,®)-plane and all the absorption above the

line DBC dlsappeafs completely. The remaining region bounded b)
this Yxne and DEFG becomes the well-known single-particle éxcita-
tion spectrum of the quasi-1D-TB-metal (see 2!).The corresponding
region (II) for the semiconductor could be denoted analogously
(as it was done by Ritsko) if it is considered from the point

of view of the loss function P(q, w) because there are no sharp
peaks there and - Iml/¢(q, ) varies smoothly between the lines

11



EFG and EBC. In contrast with the region (II) in (I) occurs a
plasmon peak, i.e., a collective excitation which however pos-
sesses even within the RPA a finite width due to single partic-
le IBT excitations in contrast with the metallic case, where
it is a delta-function. Note some incorrectness of the menti-
oned feature of Ritsko near the zone boundaries (i.e., at 4=
=0 and ag = ) where nearly linear dispersion instead of quad-
ratic one was sketched.

Since the analytical expressions for Ime¢{d, w) take volumi-
nous form, we do not quote them and refer the reader to fig.4.

Now let us briefly investigate the influence of the inter-
chain coupling t; on the lines considered above. In the simp—
lest case 9, = O there is no influence at all and we return to
the mentioned square-root singularities. If g, is directed along
the x- or y-axis the corresponding integration over k,(k ) in
(3.7) of the leading term of Imc(q ,q_, 0, @) yields an incomp-
lete elliptic integral of the first kind which possesses loga-
rithmic singularities of the type

In— 3 ==t ‘near DE' and E'F!
@, | 3
(4.20)
Ime(q ,9,,0,0)~ | -
3 1nm___ near B'lcll and E"B",
l !w(+)— o |

where

a)(z)(fl'):cu(;)l)(q D= dw(a)), b‘m(?;l)z—;—-(tl/t,o)lsinq-xb/2;. (4.21)
After similar considerations for the other lines, one can sum-
marize that the symmetric (with respect to the mirror line

q.a =n/2 ) butterfly of fig.3 for finite interchain coupling and
transverse momentum along one of the axes will be deformed
into an "asymmetric'" one which is given by eq.(4.21) and the
replacement

6, @=6 @) 5;@;) for AB' and B'C'. (4.22)
u

Thus DE''B''C'' becomes an inner line where Ime(q, w )possesses
a symmetric two-side logarithmic singularity whereas at the
lower side the singularity occurs at one side (approaching from
above) only. At the upper line AB'C' Ime@, w) vanishes now.
For an arbitrary él—direction all singularities disappear and
sharp finite peaks remain. In all cases discussed above a fi-
nite g —component was supposed otherwise Ime@, w) vanishes in
our ap%roach. The change of the singular behaviour of Ime(@, w)
for different G-directions is analogous to the well-known van-
Hove singularities of the density of states in dependence on
the dimensionality of the dispersion law.

12

The peculiarities of the q -dependence of the DF can be used
in principle to determine the electronic parameters tg and t;
from measurements of the loss function P, w) (see 1) by
introducing a new DF ¢(q. w) the imaginary part of which is
given by

10 ¢(q. w) = P, o) AP 0. o) - RZla. &)

where R is the Kramers-Kronig transform of P. This function
reflects to some extent the singularities of Ime(q. w). The
splitting of the low frequency peak in our model occurs at
9:q°-06A"! (fory = 0.15), whereas in the data of Ritsko !
a much stronger splitting can be seen beginning from some-
what lower momenta q = 0.5<0.55 &"!. Using, e.g., the expres-—
sion for the line EB (eq.(4.16)) one finds

tO  (w 4)‘s(q|a.2-—n32)¢ 27216,

(taking w = 4.77 eV, y = 0.15 and q = 0.7 8! for the upper
peak, see fig.2 of ! ) in fairly good agreement with the com-
monly used value ty= 2.5 eV. Carrying out experiments on mono-
crystals (not available at present) one could estimate ty 't
from the singularity shift given by eq.(4.20).

4.3. The real part of the DF at finite wave vectors. Using
the Kramers-Kronig relations one can quantitatively conclude
from the singular behaviour of Ime(q. w) for t, = 0 that
Ree¢(q. w) possesses positive square root singularities approa—
ching the line DEF from below, whereas the limit from above
remains finite( negative).For t, # O and iL_ éx a logarith-
mic singularity is obtained and for arbitrary ¢ -direction
the singularity vanishes. Approaching from above the lines
EB and BC Rec¢(@. w) behaves in an analogous manner. On-the
other hand at very high frequencies Rec(q. ) is positive for
arbitrary q-values. Thus, the interband plasmon given by the
equation Re¢(q, w)= O cannot intersect the lines EB and BC and
therefore the plasmon is never Landau damped, in agreement
with the statement 1in for the quasi-1D-metallic-TB-case.
From the RPA-result (3.11) obtained for a monocrystal follows
that there is always a region at low momenta with a quadratic
q-dependence in contrast to the statement of 4.1’ although
the dispersion law quickly tends to a quasi-linear one for
higher momenta.This seems to be in conflict with the experi-
mental findings of 2/, We shall discuss this problem in con-
nection with the loss function in our forthcoming paper :

The results of our numerical calculations for Re«(q.w)
are shown in fig.5.

For some applications the static limit ¢(q, 0) is also of
interest. The corresponding curves are shown in fig.6 for dif-

13
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ferent angles ®. In comparison with usual semiconductors the

DF along the chain direction shows strong spatial dispersion.

At q =2RF= n/a we have

: - . 22

Re ¢(q =2kg, 0=« _+ 4C(K - EV/(77K)

- (4.23)
= ¢ + 4C(In{d/y) - 1)/m "~ ~
y=»0

reflecting the giant Kohn—anomaly connected with the Peierls-

transition.

5. CONCLUSIONS

In this paper the full DF for a two-band model was calcula-
ted in the RPA neglecting local field and exchange effects as

14

well as some overlap terms (eq.(3.6)). Although the considered
model is rather simple the obtained dependence of ¢(d, )

on the wave vector and the interchain coupling is non-trivial.
All of the approximations made can be relaxed without serious
problems at the expense of enhanced numerical efforts. Before
the next step in this direction one should in our opinion compa-
re the present approximation with the experiment, e.g., with

the electron-loss spectroscopy data. However, due to the lack

of monocrystals at the present time the morphology of polyace-
tylene films, especially the fibre structure have to be taken
into account and for comparison with experiments additional
censiderations are necessary. We shall return to this problem
in a forthcoming paper’/15/ dealing with the loss function and
some other applications. It will be shown that the present mo-
del gives a good qualitative description of some features of

the loss function and related quantities for comparatively low
frequencies < 7-8 eV. Using the obtained results some parameters
of the 3D-generalized-SSH-model can be estimated from the expe-
rimental data.
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APPENDIX

Starting from (4.1) simplified expressions for Re¢(0, w)
at certain frequencies (or special parameter range y << 1) are
presented in this part. As is mentioned in the text, we use
the following definitions and notation for the complete (in-
complete) elliptic integrals of first, second and third kind,

respectively )

« 172

F(¢\a) =/ (1 - sin®q sin®@) de,
1]
F(n/2\a)zl{=1n4/y for y<<1.F(%, -Z-—-—a)EK',
é
E(¢ \a) = [ (1 - sin®e sin?0)!2 a@, ' [ (AD
0
E(r/2\a)=E=1 for y<<1, E(%,%—a =R
m/2 .
M(n\a)= [ (1-nsin?@)"' (1 - sin%sin?@)"1d0
Py J
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In our problem the parameters N and « are given by

T P s SR M, T L S (P L (A2)

In the hyperbolic case (n > 1) it is useful to express Il(n \a)
by the Jacobi function (Zeta-function) Z(e\a)

H(n \a)=- 8 KZ(c,\a), (A3)
Z(c\ @) =E(c \a) - €/K)F(c \a), (A4)
where

5, =l0-09a7%@2-y2yt) " (a5)
¢ = aresin[(1 - a/a -y '? (A6)

In the circular cases (n <1 - y2, 0 <mn < 1) it is useful to
introduce the Heuman function /\O(fz\a) (Lambda-function) .

H(n\a):K+ (77/2)52(1 -—1\0((2\(1)), (A7)
Age\a) = R/m)IKE(e\7/2 -a)- B-E)F(e\ n/2 -a)}, (A8)
where

“ =arcsin[(1- n)/cos EaIVz =arcsin[ (1 - (@ /y) 2/(1 _;2)]1/2 ! (A9)

5, =ln-n" @-sin®)"? <[a-2")a-@mHN'"2nay). (a10)
In the second case mentioned (n < O) one has to substitute
N=(sinfa-n)1-n)"la(-y2)52/(G2% y? (A11)
and use the identity

H(n \e) = (-ncos®a) (1-0)"" (sin®e - n)"! nW\a) +
(A12)

2a - n)'l K.

+ sin?q (sin
At very low frequencies o <<y €, approaches 7/2 and it is con-
venient to introduce the small expansion parameter ¢ by the
relation

tan ¢y = coseca-cote = (w/y)(1 - (o /y)g)—l/2 (A13)
Rewriting (A8) in terms of

: 5 g . .
E((\n/g—a)=~E(l,iJ\7T/2-—a)+E =y smezsm:,/;, (A14)
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F(e\#/2 ~a)=-F(¢\7/2 - a) (A15)

and using (A1), and the Legendre identity (EK'+E’‘K-KK’'=7/2)
we obtain for M(ma) at & <<y

Nm\a)=Ek %+ (@ 28y2)@E /2~ 2E - K) + 0((& /9)%). (A16)

From (A16) and (4.1) we get (4.10). In the ‘limit @ +y = 0 ‘5
vanishes whereas 8, divergesrs(y — w)~1/2 and one obtains
{4.3). In the high frequency region (w >1) using (Al1l), (Al12)
we have §

N(a\e)= KA -52)+ 0/2)20 - 22)@ 2= a®)O®N\a).  (AID)
8g= (6 /@M - W™ -1V , (a18)
€, = arc sin[(a2- 1) (@2 -y V2. (A19)

Hence it is evident that in the limit o + 1 +0 ¢, and A,
vanish whereas 8, diverges as (& - 1)'1/2 . Using (1{"17), (A18),

. (A7) and (4.1) we obtain (4.3). At very high frequencies, i.e.,

@ > 1 from {A17)-(A19) it follows that
M(n\a) =K+ 0(1/w). : (A20)

So, we get (4.8). Finally, we consider the case of frequencies
in the range of the interband transitions, i.e., ¥ <@ < 1.
Using formula’ 18/

ﬂ(Sinza,a) = sec 2qE = E./y ® ¥ (A21)

the limit w +y + 0, i.e., (4.4) is easily evaluated. At the
upper IBT-edge, i.e., at @ » 1 - 0it is seen from {A5-6) that
81 and € vanish, therefore we have

De\a)|- =~ =-0- a3 -E)/x? (A22)

and Re ¢(0,w- 1 - 0) yields (4.6).
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