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I. INTRODUCTION 

The polaron model exists for a long time, but as far as we 
know, no systematic exposition has yet been given for calcula
tions by perturbation theory. As a matter of fact, widely known 
are only the results of first order in the coupling constant. 
As to the next, second order, in the literature one can find 
contradictory assertions, references to incorrect calculations, 
etc. Higher orders of perturbation theory were not treated at 
all in view of computational difficulties. Therefore, we consi
der it reasonable to discuss this question which is of certain 
theoretical interest at least. Moreover, such an interest is 
stimulated by some practical reasons. Thus, for values of the 
coupling constant characteristic of real crystals the first 
three terms of a perturbation series turn out to provide a bet
ter estimate of the ground-state energy than any of the appro
ximate procedures applied earlier. Further, the polaron model 
traditionally serves as a tool for nonperturbative strong
coupling methods. However, any method of that kind capable to 
describe the polaron properties throughout the whole range of 
the coupling constant values should be compared, at small coup
ling constants, with exact results of the perturbation theory. 

Finally some physicists suspicted that at a certain critical 
value of the coupling constant there occurs a phase transition 
from the polaron state of weak coupling to the localized state 
of strong coupling. As one supposes the energy is not analytic 
in coupling constant at that point, and other characteristics 
of the polaron (e.g., the average number of phonons ) have dis
continuities. The perturbation series for polaron being known 
exactly would help to solve the problem of whether the phase 
transition really occurs or not. 

In this paper we develop the perturbation theory for pola
ron. In Sec.2 rules are formulated for constructing Feynman 
diagrams for the energy of t he system. In Sec.3 we calculate 
the polaron energy and mass in the first two perturbation or
ders. In Sec.4 the energy of the polaron at rest is computed 
i n the third order. In Sec.S an expansion in coupling constant 
is constructed for the average number of virtual phonons around 
the electron. While constructing the diagrammatic technique in 
the polaron model we shall make use of the quantum-mechanical 
perturbation theory. So we consider it is worth giving here 
a sketch of its basic results. For simpl icity we shall deal with 

corrections to the energy of the ground state \vhich is known 
to be nondegenerate. So one splits the Hamiltonian H into the 
perturbation potential V and free part Ho ' for which wave 
functions and eigenvalues are known: Ho In > = E(O) In > . The con
ventional notation V = <n IV Im> and (oj =E(O)n_ E (0 ) is adon

. . . nm . nm n m
ted. Br1llou1n-W1gner perturbat10n theory bases on the expan
sion 

VOn Vn ... V 0 
(0) V + 2 _~__~. nk.l2' (I. 1 ) E = Eo + 00 k 2 2 n , ...• n _ (E - E (0) ) ... (E _ E (0)

1 k 1 n 1 n _k 1 
where the prime signifies that all n

i 
f 0, i.e., the absenc e 

of the ground state in the sum over all possible intermediate 
states. 

If 'de cut the series (J. J) at a certain value k = ko' we 
obtain the equation for the perturbed energy E, to which the 
minimal root corresponds. To construct the Rayleigh-Schrodinger 
perturbation series one needs to expand also the denominators 
in (I. I). Doing so the first ko terms of the series will be 
reproduced exactly. 

It follows from (I. I), that a k -th-order correction to the 
ground-state energy E~) is written as a sum of connected and 
disconnect ed parts. The connec ted part is as follows: 

VOn. V nln '" Vn 02 ' _ --'- 2 k 1 ( 1 .2)
(Ek)con n · .. ··n _ 

1 k 1 ( 0) Onl w On _
k 1 

It contains k matrix elements of the perturbation potential 
and k-l propagators of the form 1/(o)On . The disconnected part 
is a sum of t e rms, each being a product of previous energy cor
rections by a ce rtain fa c tor. The previous energy corrections 
occur in all possibl e combinations in orders from 1 to k-2 : 
El ' E i ,E 2 , 2El E2 , e tc. Each of these combinations including 
the numeri cal factors can be obtained from expressions of the 
form 

m 
(E1 "' E 2 .,. .. . - E k-2 ). m =.1,2, .... k-2. (1.3) 

Let some of these combinations be of order i and contain j 
propagators. Then it should be multiplied by a factor obtained 
from (E k - i )con by adding into the denominator missing i-j 
powers of propagators so that the total number of propagators 
in (Ek)con and in all terms of (Ek)dis be the same. The ad
dition of powers is accomplished in all possible ways to all 
propagators that enter into (E k_ 1 ) con' each further power giving 
the factor -I. 
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It is easy to convince oneself that exactly m propagators 
should be added when constructing some term of the disconnected 
part with (1.3) at a certain value of m. 

This algorithm looks cumbersome bein g expressed in words, 
but in fact it is rather simple to deal with. The conviction 
comes, say, when looking at the well-known formulae for the 
ground-state energy corrections in the third and fourth orders 
of the RS perturbation theory. In the next section we use the 
algorithm to construct Feynman diagrams for the polaron ground
state energy. 

2 . FEYN}~ DIAGRAMS FOR THE POLARON ENERGY 

The Hamiltonian of a nonrelativisti c particl e (an electron) 
interacting with a quantized scalar field of lattice vibrations 
in an ionic crystal (phonons) is of the form 

-+-+
t:J. + g ikt -ikr 

H= - -+ ~w-+a-+a-++ - ~ (A-+ e a-+ t A .! e a +-+ ). (2.1) 
2/1 k k k k JV k k k k k 

Here a
+ 
~ and ail' are operators of creation and annihilation of 

phonon~ with the frequency wk and momentum k-+ ; A it' are Fourier 
components of the source density, and V is the volume of the 
system. The conservation of the total polaron momentum P = 

-. ~ + 	 . .=-iV + 	~k a. a... allows us to make the canon1cal transformat10n

k k k 


-+ -+ + 
H -. SHS+ . S = exp ( - i r ~ k a -+ a -+ )

k k 	 k 

and to 	obtain the following repre s entation for the Hamiltonian: 

1 - -++ 2 -I- g *+ (2.2)H = - ( p - ~ k a,. a -+ ) + ~ w-> a,. a,. + -= ~ ( A ...a -+ + A ~ -» • 

2/L k ' It k Ii k J< k JV k k k k k 


where the vector P 
... 

is now a C -number. 
In the theory of the so-called optical polaron the frequency 

of phonons is considered being independent of their wave vector. 
It is usually assumed that 

gA = - i ~ {47Ta)l!2Wk' =w . 	 (2.3)k k (2/Lw)U4 

where a is the dimensionless coupling constant. It is conve
nient to rewrite (2.2) in dimensionles s units and to split the 
Hamiltonian into the' sum of the free Hamiltonian of noninter
acting electron and phonons and the inte raction term: 

4 

H = Ho 	+ H int 

-. ... + 2 +
H = (W - ~ k a -> a .. ) + ~ a ->a ~ • o -> k k ... k k 	 (2 . 4)

k k 

47Ta J. ! 2~ .L + ) H , = -i(--} "- (a .,. - a -> . 

Ill! V k k K k 


Here the energy is expres s ed in units of w and \V= P/ J 2J,l:::
1S the polar on dimension l ess momen tum. 

For small momenta the ground sta te of the Hami l toni an (2. 4) 
takes the form 

&: ( W) = E I w + W
2 

l!... + 0 ( W4 ) • 
m 	 (2 . 5 ) 

where E is the energy of the ground sta te of the pol aron at 
rest and m is its eff ective mass. The calculat i on of these 
quantities is a basic problem of the polaron equi libr ium theo
ry. 

Ei genfunctions of the f r ee Hamiltonian ( 2.4 ) a r e In ... >. 
· 	 . ... khwere 15 the number of phonons w1th momentum k ; the corresnk 

ponding energy eigenvalues are 

, (0)	 ... -> -2 
&; =(W - ~ kn-» + ~ n-+. 	 (2.6 )

nk' k' k k k 

The ground state ener gy equals 

&, (0) = W2 ( 2 .7)o 

that is. the kinetic energy of a free electron with mass /l and 
momentum P in units of w. The propagator which will be called 
electronic is defined in accordance with the quantum-mechanical 
perturbation theory as the inverse transition frequency w~; : 

1 	 (2.8) 
~n~ n-+2 


n -2W ~ k i + ( ~ k, ) 

i~ 1 i= 1 I 


In diagrams it will be depicted by a solid line. It describes 
the transition of the system from the vacuum state ( free elect
ron) to a state with n phonons which have the momenta k .....k 

. 	 • 1 nand all frequenc1es are the same and equal to un1ty ; then the 
-+ n -> 

e lec t ron has the momentum W - ~ k i . 
i=l 

The matrix element of the interaction Hamiltonian ( 2 .4) dif 
fe r s f rom zero only be tween s t at e s in whi ch t he number of pho
nons differs by uni ty f or some va lue of t he momentum: 
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. 417a )1'21 (2.9)<k 1 .... .kn \ Hint \ k. kl .....kn > -1(--- -.
V k 

As in the initial and final states real phonons are absent, all 
the expressions will contain squares of the modulus of the mat
rix e lement (2.9). The transition from summation to integration 
over momenta is performed in a standard way: 

-.1.1 ., -.L r dk . 
V k ' (2 17) 3 

which gives additional factor 1/ (217)3 so that the square of 
each matrix element of Hint yields the factor 

~_ 1 
(2. ]0)

k 22172 

The pm ission and absorption of a virtual phonon will be repre
sented by a wavy line between two vertices on a solid line. We 
shall represent each wavy line by the propagator 1/k 2 and each 

vert ex by the factor v a / 217 2 • thus reproducing the factor (2.10). 
\~e c all the l.Javy 1 ine the "phonon 1 ine" in a rather symbol ic 
sen s~ : we can merely assign to it a unit factor and attach the 
squa re root of the whole factor (2JO) to the vertex. However, 
the no tation we have adopted shows a more close analogy with 
the d i a grams of quantum field theory where propaga tors of the 
form 1, k 2 describe the propagation of massless particles. Natu
rall y, all virtual momenta in diagrams are integrated over and 
the momentum conservation takes place in each vertex. The pola
ron di a grams look like the diagrams of quantum field theory of 
the ~3 type without external lines. 

Not e that in the polaron theory the electron is considered 
as a quantum-mechanical particles. As there is no electronic 
quantum field, there are no diagrams with electronic loops: 
electrons cannot be created and annihilated. 

\ve also stress that in the quantum-mechanical perturbation 
theory the summation over virtual states does not include the 
state to '.Jhich corrections are searched for, i. e., in our case 
the ground state. This means that lye have no dia~rams containing 
a free electrcn line without phonon lines, i.e., weakly connec
ted diagrams which can be divided into two disconnected parts 
by cutting the electron line. 

At t he same time the theory should include disconnected 
diagrams corresponding to disconnected terms of the quantum
mechanical perturbation theory discussed in the preceding sec
tion. The procedure of increasing the power of the propagator 
can be described by introducing a new type of the vertex on the 

6 

solid line: a point to which the factor -] corresponds. As the 
momentum should be conserved at the point vertex, the latter 
will increase the power of the corresponding propagator by unity. 
For constructing any of the factors we speak about in the first 
section we place on connected diagrams of the proper order a ne
cessary number of points in all possible ways. The obtained fac
tor miltiplied by the corresponding diagram without points is 
a term of the sum of all disconnected diagrams. The number of 
points is chosen by the above-mentioned algorithm so that the 
total number of electron pr opagators be the same in connected 
and disconnected diagrams of the same order. 

Like in quantum mechanics, the above rules for constructing 
diagrams are more easily to use in practice than to formulate. 

3. LOWEST PERTURBATION ORDERS 

Prior to proceed to particular calculations we note that all 
the corrections of odd orders to the energy in the polaron theo
ry vanishes so that the expansion is made in powers of g2 = a . 
So, what we call the first perturbation order corresponds to the 
second order of the quantum-mechanical perturbation theory. 

In the first perturbation order we have one diagram which, 
by the formulated rules, corresoonds to the contribution 

a r dk 1-::-_~~1 ~ (3. ])
2172 k 2 1-2Wk +k2 

This integral can be easily calculated: for W~ 1 we have 

- a W2 4
Co ~ - ~ arc Sin W = - a ( 1 ~ - + 0 ( W ) ) • (3.2)

1 W 6 

Summing &1 and the free-electron energy (2.7) and comparing 
with (2.5) we get for the first perturbation order of the energy 
and mass of a polaron: 

E = -aw • rn =11(1 +a : 6). (3.3) 

This result was known almost from the very creation of the po
laron model. To the second perturbation order two strongly con
nected diagrams contribute: 

r dqdk 1~ a 2 


=- 4"4 I q2 k 2 -(1_2Wq+q2)2[2_;W(q+k)+(q+kf] 


2[ I (_ ,- 1 ./2 1] 2 2[ Al (J- 2 1N 2 1]=-a nv2+1)--ln2-~+--aW ~nv2+1)--ln2- +-+... 
2 2 2 3 3 24 2 
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a 2 dq dk-> 	 1 ._ - 
24774~ q k 2 (1 _ 2 Wq'~ q2 )[ 2-2 W(q;"k) r (q,.kr 1(1-2\Yk~~) 

( 3.4 )
= _ a 2 r In (vI"2 + 1) -In 2] - a 2 W	-J 2 + '" 

12 

We stress that by the formulated rules the form of the pro
pagator shown by the solid line depends on the number of phonons 
in a given virtual state. In the above diagrams of second order 
the end electron propagators depend only on the momentum of one 
phonon; and a vertical cut crossing such a propagator will in
tersect only one phonon line. Therefore free terms in these pro
pagators equal unity. For the middle propagator the vertical 
cut intersects two phonon lines, or, vlhich is the same, the 
electron propagator depends 	on the momenta of two phonons.There
fore, the free term equals two. This general rule valid also 
for higher-order diagrams follows directly from formula (2.8). 

Besides connected diagrams (3.4) we should take account of 
the disconnected diagram, that is, the energy in first order 
times a factor constructed out of the same first-order diagram 
but having one more electron propagator. As we discussed diag
rammatically this is depicted by a point on the electron line: 

&1'~ ~.~ 
(3.5) 

dq dk 1 	 a w2 a~ L 	 --
2 

+ 
2 

"3+ 
4774 q2k2- (1-2Wq + q2 )(1-2Wk + k2)2 2 

Diagrams (3.4) and (3.5) cover all second-order diagrams as the 

polaron theory does not include weakly connected diagrams and 

diagrams with electron loops of the form 


,r'J ,..r""\ and ~ 
Summing the contributions (3.4) and (3.5) we get for the 

polaron energy in the second perturbation order 

C " - 3 	 v2
19 2 ", -a-[ 2In(-J2 +1) - --In2 -	 -J + 

2 2 
(3.6) 

2 2( 4 - 2 5"2 1+ W a 	 - -In (v 2 + 1) + - In 2 + __Y..___ - -1 ... 

3 3 8 S 


8 

This expression, together with formulae (2.5), (2.7) and 
(3.2), leads to the following expansion for the polaron energy 
and mass up to second order in a : 

- 3 . / 2 
E/w=-a-a 2 [2ln(-J2+1) - 2In2-'t-l=-a-l.591962(1~)2 

(3 . 7) 
A - 2 5,,[2 7ml ll= 1... as 	 ta 2 [.1.InC-J2+1)- -In2- -+-- -1=1 + .£.+23627S3(~)2
3 3 8 3S 6' 10 . 

To complete this section, we make some historical remarks. 
The diagrammatic technique for the polaron has been developed 
by Pines / 1/ . He started wi th a general quantum-field approach 
and constructed diagrams for the Green functions which included 
integration not only over momenta of virtual phonons but also 
over their frequencies. In diagrams we have made use of, the 
frequency of virtual phonons coincides with that of real pho
nons. As a result, the vertices do not contain the 0 -function 
providing the energy conservation. Instead, there appeared 
a rule according to which the free terms in the electron pro
pagator depends on just where this propagator is situated in 
the diagram and equals the number of phonons in a correspond
ing virtual state. We kept a different way, but it appears 
that both the variants of diagrammatic technique should give 
the same results. 

Numerically formulae (3.6)in the form&2=-a2.0.01S+w2a 2.0.0042 
have been obtained by Hohler and MUllensiefen/2/. Analytic 
expressions (3.7) have been found by Roseler / 3/ by a variatio
nal method. As an exact result these expressions have been de
rived in our work in collaboration with Kochetov/ 4/ (see also 
reviews / 5 1 ) from the expression for the polaron free energy at 
finite temperature. 

4. 	THE POLARON ENERGY 
IN THE THIRD PERTURBATION ORDER 

-> 
He set here W=O. i.e., for the time being we do not consider 

the mass but only the energy of the polaron at rest. This re
moves terms, linear in momenta, from the propagators. As a re
sult, calculations will get simplified. 

In the third order there are eight strongly connected diag
rams whose contributions will be denoted by 0 1 ••••• 0 8 : 

~ 	 ~ ~ 
'~ C;::::?, 

as 
2 	R'0 1 	 0 4 
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- -

~/~~ 2 ~_I" 
°6 	 Os 

Not p i s t o be mad e that the diagrams G;Z and Gs enter \.ith sym

me t l:)' factors 2 allO\,ing for contr i butions of the diagrams 


°5 	 O? 

and 

~ ~ 
lA1hicil foll ow from the initial ones if the latter are considered 
i n the opposite directi on : from the right to left. The rema in
i ng di a p., rams possess the left-ri gh t synune try and thus have no 
s ymme try factors . Ca lculations yield: 

a 3 dq dk~ de 	 1 
- - --.----- -- - --- =G1 8" 6 q2k 2y-2-- 23 ->-+9 ,-+2

(l ' q ) [2+CqT k) ~ j{2~(q + n J 

:l 2 	 ~ dq q 2 , 3 
-0 - f-- -(arctg--) = -O,173361050a , 


"0 q2(1 , q2fl ';2 


a 
3 dq dk' de 	 1 

G2 ~ - 4;6 ----
q2 k2 r 2 (i-;k2)[ 2;~( ti+k)21 ( l • q2) 2[ 2~ (q i P)2 1 

- a''l -±- f _ elL-.. arc t~ ~ I are t~L - arc tg q 1- - 0,170 935 05la3
, 

"0 q2( l t q2)2 \ '2 J2 \ 2 , 1 

a 3 dq dk df 

G3 ~ - 8;6 
 q2 k2 P2 (1+q2)2[2 + (q ~k)2 l2[3t (i~k t f)2j 

3 1 "" dk k k 	 3 =-a - f ----arctg_=_[ 2arectgk - -2--1- - 0,037613 108a , 

"0 (2+k2)2 v3 k + 1 


3 ..... ~ -. 
1G 4 = _ ~ r dq dk d f

8 6 I} - n • ~ 
1T 0+"k2)[2+ (q";k)2l (1 + q2 ){z+(ci:itl0+-p2) = 

3 2 00 dq q q 2 
=-a 	- r 2 2 [arctg-- - arctg ] = -0,045165 941a 3, 

rr 0 q (1 + q ) V2 ,,"2. + 1 

10 

3 dq dkdr 

Go = - 8"6 


a 

crk 2 P2 ~-q2)[ 2+(q"+k)2f{ 3+(q\k+P)2l(1 + k2 ) 

32 co dn q 	 ..9... 3~ -a - r_-'L..- arc tg -[ 2 arc ctgq - arc etg"2"" 1= - 0,032 259 338 a . 
"0 (2+q2)2 '11'3 

I The contributions of di a grams Q l-Go p,iven by simpl e integ
rals may be expressed in an analytic form in term s of a special 
function, the Euler dilogarithm. As the ana lytic expressions 
are bulky, we present here only the numeri cal values. 

As to the remaining three di a grams, we failed t o simplify 
them to such an extent and expre ssed them throu gh tri ple intep,
rals calculated at computer. As a r esult we ge t: 

1G =_ i!.... r dqdkd 

-+ 

f 	 ------ 
(\ 8 " 6 ql2 k 2 f 2 (lt~)[2 + (q+k)21[ 3 .( q.i~+lt~1[2t(q;Ir1(l r r2) 

= -0,0150200(2) a 3 , 

G - _ ~ r dq'dk dr" ___________ ____ 1______________-;__ ~ 
7 

- 8" 6 q2 k 2 r 2 (1 + q 2)2[ 2.( (hk )2 l[ 3 .. (q'+ k't {)2lf 2 .. (q + r )2 1 

= - 0,022 882 3(1) a 3 , 

3 dq dk+ dP 	 ta 
G 8 4rr6 Q2k~f2- (1:-q2) [ 2. (q->- j( )21{ 3~(~tk~-' fn 2,.(Q+ r )21(1· rl1 

- -0,034 581 4(3) a 3 . 

Thus, t he s um of all connected dia gr ams con tributes t o the 
energy 

8 
I. Q . ~ -0,531 818 2(4) a 

3 
(4. ) )

i = 1 1 

Now let us turn to the contributions of dis connected diag
rams; these may be written: 

tJ. = &1(0) (~ + ~+~ +~i-
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-+ + <'J. J + @~ (0) c::--., + @2(0) ~I 

(4.2) 

where ~1 ~) and i 2(0) are, respectively, corrections of the first 
and second order to~the polaron energy defined by formulae 
(3.2) and (3.6) at W=O. Calculation:; yield: 

u 
~ r~--=-'::" 

2"2 q1!(1+ q2)2 2' 

d-+ 
~ = - --.l!....- r --L-=_a.2... 


2,,2 q2(1+q2)3 8 


2 ~ ~ 
__ _u_ r d q d.! 1 =Q LV' 2k 2- 4;4 q (1+<fr(2+(q+k)2] 

(4.3)2 - 1 3 - 1 
= - u [in ( y' 2 + 1) - -In 2 - -,.J 2 + -1 ,

2 8 4 

2 ~ -+ 2 1 . / 2 a (dqdk _1___--__ = _ a ( __ L:::. ) 

~ = - h 4 Q2k2 (1+cP)2[ 2+ (q+k)2]2 4 8 

2 -+ -+ 
_ =~ =_~( _dqdk 1 

~ 4114 -- 22 ~"'2 2 ~ (l+q) [2+(q+k) ]C1+k ) 


= _ a 2( In (y'2 + 1) -In 2 _ 3Y2 + 1]

4 ' 

a2 ___1__ ~__ a2(_3-J_2 -1) 
~ 4"4 r (1+<f)(2+(qtk)21~1+k2) 4 • 

Inserting (4.3), (3.2) and (3.6) into (4.2) we obtain the 
contribution of disconnected diagrams: 

~ = as [5in(y'2+ 1) - ~ ln2 - ~+ lL]=O,530 915 579 a 3 • (4.4) 
4 8 8 

Sumning up (4. I) and (4.4) we get the energy of a ?olaron 
at rest in the third perturbation order: 

&3 (0) ~ _a3 .0,0009026(4) . (4. 5 ) 

Formulae (4.5) and (3.7) give the followi ng expansion for 
the polaron energy: 

E .' w = -a - 1,591962( 16 )2 -D,903( ~D)3 . '" (4. 6) 

In our \"ork with Seljugin "6 
1 

I"e have found the same resul t 
proceeding from the representation of the polaron partition f unc
tion at finite temperature in terms of path integrals. There
fore, we can draw the conclusion on adequacy of these two ap
proaches. Expression (4.6) may be used for an approximate cal 
culation of the polaron energy at not very large values of the 
coupling constant. In the Table we collect the results of the 
best variational calculations and those of ref!7! obtained nu
merically by the Monte-Carlo method. Numbers in parentheses 
stand for uncert a inty in the last di gits of the result (for 
instance, -1.020(10) means -1.020+0.010). Calculations in the 
scope of the known Feynman variational method '8 ' can be found 
i ii refs ;"9,10 :' In the latter column we \"rite the results folloy}
ing from the expansion (4.6), 

Table 

a Feynman Larsen 10 AGL 11 BGS 7 Our result 

0.5 -0.5032 

-1.0130 

I ,5 -1.5302 

2 -2,0554 

2.5 -2.5894 

3 -3.1333 

3.5 -3.6885 

4 -4.2565 

5 -5.4401 

7 -8.1127 

9 -I 1.486 

I I -15.710 

-0.5040 

-1.0160 

-1.5361 

-2.0640 

-2.5995 

-3.1421 

-3.6915 

-4.2471 

-0.5032 

-1.0139 

-1.5317 

-2.0577 

-2.5928 

-3.1379 

-3.6946 

-4.2644 

-0.505(5) 

-1.020(10) 

-1.545(15) 

-2.080(21) 

-2.627(26) 

-3.184(32) 

-3.747(37) 

-4.314(43) 

-0.5041 

-1.0168 

-1,5 :! 89 

-2.0709 

-2.6136 

-3.1676 

-3.7337 

-4.3125 

-5.5108 

-8.0896 

-10.9475 

-14.1278 

13 
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From the Table it is seen that the developed approximate 
methods do provide the results very close to the exact calcu
lations and that the first three perturbation orders give va
lues below the energy values obtained by any other approximate 
approach, up to a »5-6. It is to be kept in mind that the 
fol1 ow ing, not considered fourth term of the perturbation ex
pansi on, is, to a11 appearances, of an order of (a/l~4 so to 
use the perturbation theory at large values of the coupling 
constant we should know a larger number of the expansion terms. 
In the a-range of the applicability of perturbation theory 
the latter differs from the above indicated approximate methods 
not more than by 1.5%, which, naturally, is of no practical 
relevance. However, as has been said, the investigation of the 
pertu rbation expansion may turn out to be necessary for study
ing more fundamental problems of the polaron theory. 

5. AVERAGE NUMBER OF VIRTUAL PHONONS 

The rule formulated for constructing diagrams allows us to 
calculate not only the energy but also other equilibrium cha
racteristics of the polaron. Thus, it would be of further in
terest to compute the polaron mass in the third perturbation 
order. If at a certain value of the coupling constant there 
occurs a phase transition, what is doubtful,the polaron mass 
at that point changes abruptly. One more important characte
ristic of the polaron with similar properties is represented 
by the average number of phonons in the cloud around the elect
ron defined by 

N ~ <'II I 	~ a+ a 1'1' :> , (5. 1 ) 
k' It It 

where I'll> is the wave function of the polaron ground-state. 
For an optical nolaron the operator of the phonon number can 
be determined as a derivative of the Hamiltonian (2.2) with 
respect 	to the frequency w on condition that aw 3 ' 2 =const, that 
is denoted by the prime of the derivative: 

+ a'H 
~a a =--. (5.2)It It J( aw 

(A straightforward differentiation with respect to w is not 
suited as w enters also into expression (2.2) for the coupling 
constant). Taking account of (5.2) and Feynman-Hellman theorem 
we obtain, instead of (5. I), the following representation: 

a' 3 a W aN = -	 (w {i,) = (1- - a - - - -) 6: (5.3)aw 2 aa 2 aw 

\oJ'hence 	 there follows the perturbative series: 

N = ! all N (W), 
n= 1; W a{i, n (W) (5.4)

N (W) =(1- ~) {i, (W) - - -=----
II 2 II 2 aw 

where 0	 (\V) are expansion coefficients of the polaron energy 
11 

we have calculated in the preceding sections. With due regard 
to (3.2) we find in the first perturbation order 

Nl (W) 	 _:=:a==:::::- (5.5) 
2v'1-W2 

The first terms of expansion (5.5) in powers of the polaron 
momentum squared coincide wi th those derived by Lee, LO\oJ' and 
Pines/ 12( Hith the electron energy approaching the threshold 
of production of real phonons (p2/ 2/l -> w, i.e., VI ,I ) the ave
rage number of virtual phonons, according to (5.5), increases 
to infinity. This is another manifestation of the effect simi
lar to the Cherenkov effect: for W> l owing to the production 
of real phonons, the polaron energy acquires an ima g inary part, 
i.e., the polaron acquires a finite lifetime. 

The relation (5.3) makes it easy to find a perturbation 
series for the average number of phonons if we know such series 
for the 	polaron energy. For example, for a polaron at r e st we 
have from (4.6) and (5.3) the following expansion for the ave
rage number of phonons: 

N =::... + 3,183 924 (.E..)2 + 3,159(1). (!!...)~ + •• , 	 (5.6)
2 10 10 

The relation (5.3) is useful not only for deriving a perturba
tion series. For example it is well known that in the strong 
coupling limit the energy of a polaron at rest is of the form 

E/w ~_Aa2_ B - £ + 0(1 / a 4 ), 	 (5.7)
2a 

whence it follows that the average number of virtual phonons 
at large a equals 

N ~2A~ _ B- 4~ + 0(1 / a 4 ). (5.8) 
a 

A numerical calculation by Hiyake .' 13 / gives for the coeffi 
cient A: 

A ~ 0,108513. 	 (5.9) 

He recall that for the coefficient A Feynman found the value 
A=1I377 	= 0,1061 which is very close to the exact result by 
l'1iyake. 
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As for the coefficient B, Allcock made a conclusion / 14.' that 

31n2 +! =2,829S; B S4,159=6In2. (5.10) 

The lower bound for B coincides wi t h the value obtained in the 
scope of the Feynman var iat i onal method. Numerica l calculations 
by Miyake/ 15! give 

B = 2,836. 
(5. I I) 

For the coefficient C no direct estimations as far as I know, 
were obtained. However, the Feynman var i ational expression for 
the polaron energy gives the value 

2717 7 2 1 172 
C = - (..:... + 21n 2 - - In 2 - -) '" 4,864. (5. 12)4 16 2 12 

In the absence of other estimat.ions the v alue (5.12) may serve 
as a guide since the Feynman method provides a really good ap
proximations for all values of the coupling constant. Then 
eq. (5.8) takes the form 

N = O,217026a 2 -2,836- (gjL) + .... (5. 13)
a2 ? 

If we knoVl the larger number of terms in the strong coupling 
expansion and in the perturbation series, we could trace how 
solutions (5.6) and (5.13) approach each other and whether the 
average number of phonons has a discontinuity at some critical 
value of the coupling constant. 

The quantity Nn(W) may be also represented by diagrams. For 
doing so note that the differentiation with prime (5.2) means 
the differentiation with respect to frequencies of phonons en
tering into the electron propagators. Therefore, we may intro
duce the operation of "crossing" P (x ) acting on diagrams for 
the polaron energy, which supplies each of the propagators with 
a new vertex marked by a cross: 

N 1 = P (x) ~ ~ , 

N2 =P(x)[ ~ + ~ + ~ ~J 

16 

r;;:::\1 + ,.rz'J + ~ 4

+c(;\,+~+~+ 

+~~+~~+~~ 

and so on. It may be easily understood that to a vertex of that 
kind thp.~e corresponds a factor n, equal to the number of pho
nons in a given virtual state. So, vertices marked by a dot 
and a cross differ by a numerical factor, therefore, results of 
preceding calculations can be used here as well. However, the 
diagrammatic representation for No(W) is useful when direct dif
ferentiation of the Hamiltonian is impossible, for instance, 
\"hen phonons possess dispersion, i.e., the frequency w depends 
on the momentum k. Obviously, the particular choice (2.3) of 
A it and w k is not crucial for the diagrammatic technique. 
The very form of diagrams for fj,o and No as \"ell the contribu
tion of vertices marked by a dot and a cross remain unchanged. 
Clear are also changes to be introduced into the correspondence 
rules for vertices, electron and phonon lines: 

g~ ~ .- I A -> 12 
k ' (217)3 / 2 

1 

o -> .... n ... 10->2 
~ w (k i) .E.. ~ k · + - (}; k.)

i", 1 /.I. j '" 1 I 2 /.I. i", 1 I 

Diagrams construted with these more general rules describe an 
arbitrary Hamiltonian of the form (2.2) and permit us to go 
beyond the optical-polaron theory and to study other models of 
physical interest. 

For the BW expansion one can also derive the diagrammatic 
technique which will be even more simple than that of RS per
turbation theory. The main difference is in the absence of dis
connected diagrams. In addition electron propagators take the 
form 1 

n ... 1... n ... 2 

~w(k . ) +-2 (P- ~ k . ) -E 


j ", l I /.I. i = ll 

as it follows from (1.1). On diagrams this will be dep i cted as 
a thick solid line. BW perturbation theory can be used to im
prove the results of RS series by partial l y summi ng the dia?,rams. 
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CMOHAWPeB M. A. EI7-85-222 
AHarpaMMW B Mo~enH nonRpoH 

Pa~oTa nOCBR~Ha cHCTe MaTHqeCKoMY HsnozeHRO TeopHH BOS~ 
meHHA AnR 3Hepr HH ~~ymerocR nonRpoHa Ha OCHOBe ~arpaMMHOn 
TeXHHKH. ~OpMYnHpOBaH~e npaBHna nOCTpoeHHR weAHMaHOBCKHX 
~HarpaMM nO~BOnHnH paCCqHTaTh 3Heprnm nonRpOHa C TOqHOCThm 
~O qneHOB TPeTherO nOPRAKa no KOHCTaHTe CBRSH. AHanOrHqH~e 
p aCqeTW npOB~e~ ~ cpe~Hero qHCna BHpTyanhHWX WoHOHOB. 
nonyqeHHwe pasnoz eHHR HM~T, COOTBeTCTBeHHO, BHA: 

EJ Cd ... - II -1.591 962(1~ I - O.903( ;0 )3 + ..... 

N = r +' 3.183 924(tf;)2 +3.18( ~O )3 + .•.. 

Pa~OTa BwnonHeHa B na~opaTopHH TeOpeTHQeCKOA WHSHKH OH~H. 

DpellPllMT Oeo........HOro H.C'I'IITYT. JI,IleP'" HCCJI...O....... . 47GH. 1985 
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