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1. Photoelectron spectroscopy and X-ray excited Auger
spectroscopy’ !’ have proved to be a very powerful technique
to study simple and transition metals, their compounds and
alloys, magnetic semiconductors, mixed-valence compounds, etc.
Electron spectroscopy has been particularly useful as a probe
of the band structure of solids and as a test of theoretical
developments in atomic structure and molecular orbital calcu-
lations.

Effective-one—-electron theory has provided a basis for un-
derstanding a wide range of solid state phenomena, especially,
for simple metals. The adequacy of the single-particle picture
is based on the density~functienal theory introduced by Hohen-
berg, Kohn and Sham. On the other hand, now it seems to be
generally accepted that the transition metals provide a tho-
rough test for many aspects of many-body (or correlation) ef-
fects in solids. But it is only relatively recently that the
Auger and photoemission spectra of 3d transition metals have
been investigated carefully/2—7/-After this there has been
a great interest in interpretation of the obtained results in
connection with the role of the correlation effects. As pointed
in paper/34 nickel, from several points of view, is the case
for which many-electron effects cannot be ignored. While photo-
emission reveals well-defined single-particle dispersions curves
in nickel, they have a large energy width indicative of short
quasi-particle lifetimes. Angle-resolved photoemission experi-
ments providing diregt observation of energy band dispersions
in cuprum and nickel’ revealed a few problems for nickel:
presence of satellite, narrowing of the d-bandwidth and other
discrepancies with standard one-electron-band calculations.

The ferromagnetic spin splitting in nickel is particularly in-
teresting because photoemission has made it directly obser—
vable, and the local-density approximation interprets it as

a property of the homogeneous electron gas; in this case theory
and experiment differ by more than a factor of two % . The ad-
ditional information is contained in Auger spectra which pro-
vide the possibility for determining directly the local Coulomb
interactions in materials’/4~8/ While explaining these features
the importance of the correlation effects within the unfilled

d -band has been generally recognized/g_llﬂ

Effect of the Coulomb correlation on energy bands in ferro-
magnetic nickel has been investigated recently in papers’loJl/
within the degenerate Hubbard model by perturbation theory li-
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mited to second order inU/W for T =0 (U: Coulomb intra-ato-
mic integral; W : band-width). A theory for the resonant 3d-
band photoemission spectra in nickel has been developed in pa-
per ‘ on the basis of a hybridized S— and d-band model.

In this report we present a new self-consistent and unified
approach to consideration of the correlation effects in transi-
tion metals like nickel. For this aim we use the novel irredu-
cible twg time thermodynamic Green-function method developed by
Kuzemsky 12/ ¢or interacting Fermi-systems. The IGF method comp-—
letely describes the quasiparticle inelastic scattering pro-
cesses in the many-body systems and finds quasiparticle spectra
with damping in a very general way.

2. For the study of the correlation effects in transition
metals we use the total Hamiltonian for the degenerate d -band
which is given by the following expression:
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One can use the basis orbitals of the canonical bands adapted
to cubic symmetry of 3, or &, type. Those states are repre-

sented by dlvo or N, =3a;,,8,., where i is the site index, v
is the type of orbital and ¢ is the spin index.

We consider here, for example, only the following four con-
tributions
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The Hamiltonian (2) is specified by four parameters: band-
width W and the three integrals U,U" and J. In addition

to the intrasite Coulomb 1nteraction U, which is the only inter-
action present in the Hubbard model, our Hamiltonian (2) con-
tains two more kinds of interactions, namely U’ and J, which
have been taken as an example only to emphasize central ideas

of the IGF-method description of the degenerate correlated
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Fermi-system. Due to these two additional kinds of interactions
crucial differences between the degenerate Hubbard model and
generalized degenerate Hubbard model have been highlighted.
Additional important interactions, for example, exchange in-
teractions (c.f.”'3" ) can be included directly.

3. For the calculation of the electronic quasiparticle spect-
rum of the described model {2) and the electronic density of
states let us consider the two-time thermodynamic one-elect-
ron Green function
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Following the IGF method’!?/ the equation of motion for the
GF(4) can be exactly transformed into a Dyson equation
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with an exact representation of the self-energy operator M
which is represented by higher—-order Green functions. For the
model (2) we use here the mean-field renormalization differing
. . . s ’
from the simple Hartree-Fock renormalizations '*'As a conse-
quence of the suitable definition of the irreducible CF, the
generalized mean-field GF G" has the form
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The self-energy operator M consists of four terms describing
all possible electron inelastic processes. Because of a very
complicated form it is not written explicitly. To find useful
explicit expressions for M, suitable approximations to eva-
luate the higher-order Green functions in M should be used.

4. To give a physical picture of the calculations to be
published elsewhere in the complete form, we now consider what
happens in two special limiting cases. First, let us consider
the many-band Hubbard model. in this case U’ =J = 0..

In the pair approximation 2/ for self-energy operator we
obtain
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The a:&) are coefficients of the atomic orbitals which form
the Bloch basis function
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As we can see from the above expression for M, (w) (7), the
obtained result is quite similar to that one d&fived in pa-

/10/
per :

To gain some more explicit physical insight into the prob-
lem, we consider in addition, the second limiting case by ana-
lysing the one-band Hubbard model. For the one-band case we
find from Eq.(7)
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where

gko(w) =-—-—71;- Im Gko(w + ie). (12)
Equations (5) and (11) form a closed self-consistent system

of equations for the one-electron Green function of the one-
band Hubbard model. In principle, we may substitute. into the
r.h.s. of (11) any relevant initial Green function and solve

it by iterations. To obtain explicit analytical expression,

one can choose, for the first iteration step, the following
simple one-pole expression for (12)

g‘-‘»o(m)=-5(w—£(ka)). (13)

Then we obtain
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In the Figure we show the typical
behaviour of the M ;= ReMand Mg=ImM,
the real and imaginary parts of

M(w) calculated with the appropriate set of metal parameters
for FCC lattice with

ak ak, ak ak
¢, =E - 4t[cos —% 605 —-L + cos —% gos—L +eosf_liy_cosf£_2_]'(|7)
k 0 2 2 2 2 2 2

For the FCC-tight-binding electrons the band-width is given
by

W= 16t. . (18)

The details of the calculations will be published elsewhere.
Note that in X-ray photoemission spectra the photoelectron
current is proportional to the imaginary part of the Fourier
transform of the retarded Green function which can be explicit-
ly calculated on the basis of the developed formalism.

5. In this report we have shown that the IGF method gives
a unified and self-consistent formalism for the complete desc-
ription of the quasiparticle electronic spectra including elect-
ron-electron inelastic scattering processes within the realistic
many-band model of transition metals. The approach developed
here can be extended to the description of the correlation ef-
fects in disordered transition metal alloys within the random
Hubbard model. Our principal conclusion, therefore, is that the
adequate description of electronic quasiparticle spectra in
transition metals and their alloys experimentally observed by
Auger and X-ray photoemission spectroscopy require a much
stronger role of the many-body correlation effects than belie-
ved some years ago.
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