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1. INTRODUCTION

The problem of the three—level atom interacting with the
electromagnetic field is the object of gained active research
for the last ten years. It is central to discussions of two-
photon coherence '12/ resonance Raman scattering and double-
resonance processes '° ,three-level superradiance ’#%/ two-mode
laser/8/, three-level echoes’”’, population dynamics,and spectra
of a driven three-level system /8-11/

A number of recent papers has been dedicated to a careful
consideration of the problem of dynamics of a single three-
level atom interacting with two resonant modes of the radia-
tion field. The semiclassical formalism for the treatment of
thiis problem has been discussed /12:13.9,10/ 15 another series
of articles/6.11,15.16,17/ the fully quantized theory has been
studied. Exact Schridinger wave functions have been obtained
for =ome special initial states /8.11/ 1In the work of Li and
Bei’13’ the explicit expression of the evolution operator has
been derived in the interaction picture for the case of exact
one-photon resonance. The rigorous examinations of the dyna-
mical behaviour of level populations and photon numbers have
been realized in the Heisenberg picture by Bogolubov et al./18/
for the three-level two-photon lambda configuration. On the
other hand the exact solution of the nonlinear equation for
the energy operator of a few-level atom interacting with a
single mode radiation field has been obtained by Buck and Su-
kumar 720/, In this paper we shall show that the operator equa-
tions for the three-level two—-photon ladder configuration
detuned from one-photon resonance can be solved explicitly.
By using the exact solution obtained here we shall examine the
dynamical behaviour of photon numbers and level populations for
arbitrary initial states of the field.

The remainder of this paper is organized as follows. Sec-
tion 2: Model Hamiltonian. Section 3: Exact solution of opera-
tor equations for level populations and photon numbers. Sec-—
tion 4: Time evolution of photon numbers and level populations
in the case of quantum initial states. Section 5: Time evolution
of photon numbers and level populations in the case of arbitrary
initial field. Section 6: Summary.




2. MODEL HAMILTONTIAN

We consider a three—level atom of ladder configuration (see
Fig.1) in which nonzero dipole moments exist only .between le-
vels 1 and 3, and 2 and 3. The dipole transition between le-
vels |1 and 2 is thus forbidden. Let the atom be at rest in

a lossless cavity and interact with a two-mode radiation field.

The energy operator for the atom is 7

i-3tod
AT L H (1
Here, the operator Ry; =|]><{| describes the population of

level j and bf)lj is the corresponding energy. The atomic eigen-
state vectors [§> (j = 1,2,3) form the basis of the state spa-
ce of the three-level atom

~ ~ 3 A .
HAIJ>=HQJ.[]>, <!|j>=81j,j=21|1><1|=1. (2)
The field Hamiltonian is
2
-~ 7 A+A
Hp _a‘:‘ lh“’a ata . (3)

The operators Qa.g‘*a describe near-resonant mode @ of the ra-
diation field in the cavity. The corresponding frequencies of
the modes are w,,where I(m -1Q3 -9, )| << @y. The atom-field
interaction is described in the dipole and rotating wave
apnroximations 721/ by

fiﬁp:?\g (a R

131+ a 13)*'*'g (8y Rogt A5Re0) - (4)

T R e ]
Here, the operator R“ = |i><j] describes the atomic transi-
tion from level j to leveli (i#j). The parameters g, are the
constants of atom—mode coupling. Thus, the total model Hamil-
tonian of the "atom field" system is
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Fig.1l. A ladder-configuration

three-level atom interacting with

a two-mode near-resonant radiation
1 field.

=H, +Hg +HAF=j21TijR“+ 2 ta.ha ag +

(5)
+\‘igl(§ ‘hsl 3 a;'Rls) +f|g2(a.2R23+ a.gRsQ)
Note that the operators Ru =|i><]| «(i,§j= 1,2,3) are the ge-
nerators of the group SU(3) and obey the followmg relations:
Ry Ryp = Ryp 8y
R 1. )

By using (6) the commutation rules

[Ry5 o Rypl = Ryp &y =Ry 8y (8)
are quickly estabhshed . The commutation relations of the
photon operators a,, 4 (a = 1,2) are

-~ ~ lﬁ ~ . + ~ 1 9
[3,351=8,,-. [a,a.]=0, [a;all=0 (9)

Assuming that there is exact two—photon resonance, the detuning
parameter A can be defined as

A:ﬂ%—ﬂl)—wl=w2—m2-ﬂy. (10)

3. EXACT SOLUTION OF OPERATOR EQUATIONS FOR LEVEL
POPULATIONS AND PHOTON NUMBERS

Starting from the Hamiltonian (5) and Lhe commutators (8)
and (9) we write down the Hmsenbergt‘qugtions for various ope-

rators in the usual way, i.e., -(1/ ) [H k] is convenient
to define the subsidiary operators
Ai=i@ Ry —aiRyg), By =1(3,Rpy =25 Ryp) - (1)

Then, the Heisenberg equations for the leyel-population opera-
tors fl‘m and the photon-number operators N, =aja, (a= 152) ‘are
quickly established

R, 0 =R, = g A0, Ry =Ny () =-g,A,0. (12)



It follows that
ﬁltt) - ﬁ“(t) = const = ﬁl = ﬁa(t) +§22(t) = constsfqg il (13)

where M, are time-independent operators.
By using the relations (6) the Heisenberg equations for A

are found to be a
Ay () —-A C, (0 +2g (M, +1) [1-2R,,() - Rop(®] - g, BV,

By () = AC, (1) 28, +1) [1-2Ryp() - B, (0] + g, BOY, k143
where

B=d,8,R, +alaiR, €, =a,R, +atR,,, €, =3,R,+aR,, (15)

The operators B and Cz obey the following equations of motion:

By =-g, (1, + 1) £, 0 + g, + DA,

X ~ A~ & ~ A (16)
Cl(t) = AAl(t) + gzn(t) - Cg(t) =—A'A2(t) - g, D(v,

where

D=i(a a,R, —a} o R o) . (7

Finally, the Heisenberg equation for the operator D is found
to be

By g @, +1 &0 -, + 1 E - (18)

The equations (12), (14), (16) and (18) form a closed li-
near system which has two following integrals of motion:

&, & B + gf (M, +1) Ry + (M, + D R ,() = const = &,

~ - ~ . = 19
B Ci (M) +8,Cy() —AIR () + Ryp(t) | = const = Q. (e

Here, K and @ are time-indepePderlt operators. It is easy to
establish that the operators M; .K and Q commute with H and =ach
other. Taking into account (19) one can obtain from (12), (14),
(16) and (18) the operator equations

."{z“(t) =@ A R (0 - 3R2R, () - Ag, T, (0 + A2 4R, o)
Rps® = (382 + A%) R, (9 — (3R + 32 + A%) Ry(o) +

i

nglel(t) +2£22+§.-Aa. ’
» - ~ ~ ~ n2 ~ Azﬂ (20)

g, C, (0 =AR, (0 + ARGIR ;0 + Ryf 1 -Agg, C, (9 +27Q.

Here we have introduced the notation

-~ - FCr— -~ . 52 4-2

Aa:ga\/Ma+ll. )LO-_-\/'A1+.\2. (Z1)

To solve the system of the second-order differential equations
(20) we ought to determine the eigenvalues of the characteris-
tic matrix. This leads to the following equation:

X% - (3hF +1%) 32 iA
det ~3A2 + A%) A% (302 L 32, 42) -iA
A " oy (22)
A - X3 iAA % X2 -2

8 ~ =~ ~ -~ ey
=X —23% + A%) X4+ (T + AT)EXZ X Y42+ A7) < 0.

The solutions of this equation are found to be A, .A_ and 2A
where

XE\/‘X%¢A2/4_ ﬁ+_i+A/2. )«_:A—A/z_ (23)

They are the operators of the [requencies of nonlinear optical
oscillations in the three-level system/22:10,11/ Noy the solu-
ticn of the system (20) can be presented in the form

R =B (P () +EPW+R (),

= = ~ ~p A (24)
Rog(®) =B () = P_ (1) + AZP(1) + R,(0)
where
B.() - (cosh, t—1) « B, sinh,t, P (1) =p_(cosh_t—1)+8_sinA_t,
i A ~ a - (25)
P(Y) = e (cos2ht — 1) + B sin2At.
The amplitude operators :13,47,.f£!and B are found to be:
A aoa BT e g R -
i= 3R, (0 « AR, ,0) AT Ry,(0) + & g BO)
',\ -~ ~ - a2;\2
£ : C (0 A2y,
+3 [g1 C, 0 +8,C,( )ll,f(FMU )
iy = LR 0 ~R, 1K AZ/GERR,) + g g, BO) (3% -3%) /@ENR) +
>



~

+[A2g G, 0 -3 g, 0,1/ &%),

~ ~ ~ A2A

B=lgA 0 - g A,/ AN, (263
B, -2 & © +32e,R 01/ (R2N) g g,00) /(2hs) -

By using the conservation laws (7) and (13) together with
eqs. (24) one can obtain

~

~ -~ ~ ~ ~ ~ -\20 ~
Ryg(0 =AZP(H) + R (0, N, () =P () +P (1) + ATP®) + N, (0),

o o A Ay (27)
Ny () =B (@ +B_(1) —AZP() + N;(0) .

The exact solution (24) of the operator equations (20) and the
formulas (27) represent the explicit expressions of time depen-
dence for the level-population and photon-number operators. ,

From eqs. (25) it is clear that the operators A, ,A_ and 2A
are the quantum electrodynamic expressions for the two-photon
Rabi frequencies’!!/ Under _the condition of one-photon resonance
we have A = 0, therefore A, =A_=A. In this case there are two
branches of the two-photon Rabi frequencies defined by the ope-
rators A and 2\ /15,16/ Tt should be noted that the existence of
the "soft branch" is a characteristic feature of the three-le-
vel system. Such a kind of oscillation frequencies is absent
in the two-level system /21:18,19/ Our present results show that
the detuning in the case of two-photon resonance leads to the
gplitting of the "soft branch" to two brapches characterized
by the frequency operators A, =A+ A/2 , A_=A-A/2., This con-
clusion of the full quantised theory is in accord with the re-
sults of the semiclassical theory /9:10,18/

4. TIME EVOLUTION OF PHOTON NUMBERS AND LEVEL POPULATIONS
IN THE CASE OF QUANTUM INITIAL STATES!

Let p(0) be a density matrix corresponding to some initial
state of the "atom+field" system. Then, the mean values of the
level populations and photon numbers are given by

<@ = el 30, (28)

where C is R, or Ng.

First of all, let us consider a simple but interesting case
when at the initial moment t= 0 the atom is on a level i and
the field is in a quantum state with definite occupation num-
bers Jn;,ng>. Then

PO = [tml><im 3], [tmgi>=lisny,n,>. (29)
6

One can easily see that the initial state [{mgl> is one of the
basis states of the total system. Thus, the density matrix
p(0) has in the basis representation only one nonzero element

Pim Lin ) = <Im} P(O) [1m 1> = 84"}, fmg } Sl L, Im g} - (30)

On the other hand the operators Xa are diagonal in this repre-
sentation. So, for an arbitrary operator € and arbitrary func-
tion f(.) we have

<@1(Ry) > = <imgl| () tmol> =

A = a a (31)
= <im g} Cllmol> f(<imgtlAg [imgl>) =<Ct(cr,>).

Below we shall use the following notation <C>=C.Now by using
the relation (31) we can obtain from eqs. (24) and (27) that

: 2)\ t . 2A_T. 2 9
R, () =-2u sin ; -2 sin g 2\, u sin®At + R;,(0),

XX . oAt L
i RN oy . 2
Rzz(t) =24,¢+sm —%——-+ 2y sin T 2\2;1 sin” At + Raz(o)

(32)
2

2 sin*At + Ry o(0),

Rss( f) =24

N (1) =-2u sin® iii-—?;x sinz—)-\—'-'-t——mgu sin® At+n ,
1 + 2 = 2 1 1

ALt e
No (1) ==2u, sin? —— - 2u sin® + 2Zu sin” AL+ n,.

2

Here the frequencies A _,A_and 2A of the two-photon Rabi oscil-
lations in the system are defined by

A=yvag+A%/4, A, =A:A/2, A_=A-A/2, (33)
where
Ag=vAZ+aZ, A -gn, R, (0) + 1 Ap=gyVng + Ryp(0). (34)

The amplitudes of the oscillations are found from eqs. (26) to
be

o [‘\21 Ry (@) + "‘; Ryp(0) — ’\20 Rgq(0)1/ (a\%ﬁ )s

(35)
u, =[R @ - R ONEA2/QEAA,), B=B, =B -0.



For the sake of eliminating the above-mentioned fast oscilla-
tions and obtaining the time-average values of the mean level
populations and photon numbers, we make the following proce-
dure:

= 1 t+T =
O=—== [ . 2E7ds, T>> A (36)
t—T

for O(t) = Rjj (t)r Na(t)-

Then, in compliance with eqs. (32) we have

5 9 = 2
Ryg=~, +p_ +Ap) + Ryy(0),  Rpp=p, +u_=Ajp+ Ryp(0),
- " (37)
RSS: AO;.: + RSB(O)'
2 2 2
N1=-(,u++u_+liu)+n1, N2=-(u++p__—?\2,u)+n2.

Let us now concretize the initial condition (29) and find
the values of the frequencies and amplitudes corresponding to

the cases when the atom is initially in the state 1,2,3, respec-
tively.

Case 1. Let at t = 0 the atom be in the unexcited state |1>,
, S [im I>=|1;n In this case we have R (0) =1,
Ry (@) = Rog(0) = 0. frla aqs. (33-35)it follaws chat’

A=Wlng D, Ag=Wo U )y A =gV, Ay =gy,

2 2 (38)
' e A g1*‘;2“1 2
2W2(in 1) W¥(in ) W (tn ) Wetn 1) Wy (in D)
where we have introduced the notation
Wo(lna b= Wolngny) = \/gelnl + ggn2 4
W(in l)_W(nl.na)—\/‘q'n1 +g2n +A%/4, (39)

W,(ln_b) = W,(n,,n,) =\é21n1 + g5, + A/4 1A/2,

Case 2: Let at t = O the atom be in the upper state 2, thus
|[mol>_[2 n,,n,> Then, we have Ryg(0) =1, R;;(0) = Rgg(0) = O.
Equations (33 325) in this case give

A=W(n,+1D), Ao+ =W 4 (ng +11), A =g, Vn, +1, A =g, Vny+l,

(gg(n2 +1) gfg:(nl +1) (@, + 1) (40)
C2W(n, + 1) WECIn+1h)

S Woltn ,+1) W(ln + 11 Wylin  + 11)

Case 3: Let at t = O the atom be in the immediate state 3,
i.e., [lmgl> =13 n;,n,>. 1In this case we have R33(0) =
Rll(o) B R22(0) = 0. From eqs. (33-35) one can obtain that

Azw(nl TR o ﬂg)- Au.t =W0'i(n1 +1, ng).

(41)

R 1
e o n li. A o T :._.7___._—. © =0,
R B 2= BVl % 2W-(nq +1,np) 5

Note that the expressions (32) together with (38), (110) and
(41) are in compliance with the results of Kancheva et al.
and Radmore and Knight /117,

To determine the transition probabilities of the atom, let
us introduce the Schridinger representation with a wave-
function of the total system |¥(t)>, where |¥(0)>=|i; Ny, 0> Then,
the probability of finding the atom on its jth 1level at time t
as a result of the transition i - j initiated by the n, en_ -
photon field can be defined by the formula g

P(t;i-j) = : l'<‘P(t)lj.n ' >l (42)
i

where

|‘l’(0)>=|i;n1.u2>. (43)

Tt is seen that under the initial condition (43' the population
Rjj (1) of level j is equal to the probability P(t i-j). Hence,

by using eqs. (32) together with (38), (40) and (41) one can
determine the probabilities of various transitions in the sys-—
tem. 1In particular, for the two-photon processes of absorption
(1-+2) and emission (2+ 1) one obtains

P(t 1+9) - L8 01%e W Juccy LA
WE (In, ) Wingh { W, (In, ) i
W_(in_bt
MAE sin® 2 - : sin” [W(ln, b elg
W_(In,h 2 2W(in, H C4d)
2 2
2ggo(n, +1) (ng +1) W (n +1)t
Pt 2-1) = 21 A £ , - o S S O
WO(Ina+ i) W(!ua+ll) W+(lna+ 1} 2


http:1'_-1.21

1 3 W_(In +1) ¢t 1

b > f ~ EWagah

sin [ W(in , + 11) u;.
For the one-photon transitions 3,a(a =1,2) we find

2 2
P19 -’ (Win, D1l P29 20D G (wnge1h1l,
nﬂ.

Wz(lna+ll)
g1 (ng + 1) 2
P(t: 3+ 1) = 5——————-si W '
bl s e el b o2
8211
P(t; 32 =Tg—2————'sin2[w‘(n +11.) tls
Wo(n, +1n) 2 -

The expressions (44) and (45) are in compliance with the re-
sults of Kancheva et al./10/ and Radmore and Knight/11/,

5. TIME EVOLUTION OF PIIOTON NUMBERS AND LEVEL POPULATIONS
IN THE CASE OF ARBITRARY INITIAL FIELD

Now we consider the case when the field is initially in
some state described by the density matrixp, whereas the atom

is on level i. The total density matrix of the "atom+field"
system is

P(U)=|i><ilﬂpr. (46)

In the case of initially coherent field the matrixpy takes the
from /247 E

= >
Pp |z1,z > <8, 4 %

2 1 2l (47)

where the coherent state |zl.z2> is defined by

2 2 n n
g2, 2.5= = ( 1241 + 1zl z11""22
v = € el ——
e b ) Rl ST (48)
1' o Vn1!n2!

In the case of initially chaotic field EF is

Pp= e (=BHL) /(’i{; exp(-BH_) . (49)

10

Here, the field Hamiltonian 'i-lp is given by eq. (3) and g3

is the temperature of the initial field. i

. It is seen from eqs. (24-27) that the operators Rj{ () and

N, (1) are diagonal in the state subspaces . {1 nh. ?S> -
a

e nl.n2‘-i and l'|3;n1,n2>l, i.e., for € =R”(t). one has
ehnsn’ Ifli;n;'.n;’=3n‘,_n”8n’.n" <1;n;.ué|C]i:n;.né>. (50)

1.9 82

Hence, the mean value of € in the case of the initial state
(46) is found to be

<@ = TOp) = £ <O, o P, 05), (51)
n,.n 1'%
12 .
where <@>in1 is the mean value of & in the case of the ini-~
tial state 59)
’- =N b 1“'5" p
\C>in1n2_ i; nl.nglt.l.nl.ng". (52)

and P(nl,nz) is the weight factor defined by the field density
matrix Py

P(n ,n,)=<n '“2|Ppln1'“z>' (53)

1
Thus, by using the relation (51) and eqgs. (32) together with
(38), (40) and (41) one can obtain the mean values of the level
populations and photon numbers in the general case. In particu-
lar, we find

Ru(t) = N1 v - N1 0) +1=

Sl 5 2g¥ ggnlnE I 1 I51H2W+(‘na i) L
0,0 Wy (1ng ) Weln, Wotnp &

1 2 W_(ingHt .
RN sin - (ng.ny) -

~ gin’
1 2
"2 oW, b W) b ek

Ryp () =1, (0) = Ny(0 =

11




+

; 2gfg:n1n2 1 n® W (g H ¢
o =0 Wellng ) Wiin,h W, (n, D 2

A, il W_(ina ht s Lk sinalwdnal)t]}P(nl, n,),
W_(in_ D 2 2W(in, b (54)
S i
R, = 511 sin” [W(in, 1) t] P(ny, ny)

n,.n,=0 W2 (fn, b
for the case ;J(O) =|1><1| & -;F ,when the atom is initially on

the lower level |. For the other case when the atom is initially
on the upper level 2, and therefore p(0) =[2><2|e Pp+ We obtain

R,,(0 =N, () =N, (0) =

pae 22 g2(n, + 1) (ny+ 1) { i e W_(In_+ 1Dt L
n . m,=0 Wo(in 1D W(in ,+ 11 W, (In, + 11) 2
W (n +1Dt

) % S L e i [W(in_+1)tbP(@_.n_).
+W_(!na+1!) sin : EW(lnaJrﬂ) sin” [ (na+ ) n .,
Ry (D = 1+ N,(0) ~N, () =

o0 2g2 72(n + 1) (| +1) 1 W ([ﬂ +1!)t

__1_ E 1‘52 L b { Sil’i2 2 a o

n.n =0 W2(in +1D) W(in +1}) (W (In + 1D 2

12 8 a a + o’

(55)

1 W_(n, +11) t
T e B S T . s S R LY -
NS U } Cair)

o0 gq(n i 1)2
B RLE L s e, <9 Pl o)
nens=0  Wo(ln,+1h) Wo(in, + 1)

oo gg(ng+l)
Rgy(D = = -sm2[wuna*1t) t) P(n,,n,).
- nl.nzr()wz(lna+1l)

For illustration we calculate the time variation of the pho-
ton numbers SN, (t) =N.(t) —~N.(0) for the case when the atom is
initially unexcited on level 1 and the field is in the state
(47) or (49).
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5.1. Initially Coherent Field

In this case, according to (47) and (53) we have

= — =Ny N

P(n,. n,) = exp[(n, +n2)1nl1 n22/(n1!n2!)- (56)
Here n, =(21|2. 52=!22|2 are the mean photon numbers in modes
1 and 5, respectively, at the initial time t= 0.

Substituting (56) into (54) and by using (39) we can now
calculate the time evolution of 8Ny(t), 8Ng(). The results of
calculation for the case glg’g2==g 5 = 0 nlA-ng = 5 are
shown in fig.2, The revivals and collapses of the two—photon
Rabi oscillations are exhibited. Such a behaviour has been pre-
diced for the coherent-state Jaynes-Cummings model (see Eberly
et al”’?% and references therein) and also for the three-level
two-mode lambda configuration by Li and Bei’/!%/ and Fam Le
Kien et al”17/

5.2. Initially Chaotic Field

In this case the weight factor P(n .o, ) according to (49)

and (53), is given by

P(n‘.n2)=2_lexp[-(3(t|mlnl +han )1, (57)
where

27'- (1 - esm(-gho )1 11 - ep(-pho,) ). (58)

The time behav1our of &N,(t) and SNz(Q has been calculated
fOr By=8s = 9 (g B= %a} 2B = 0.2, A =0, and is plotted in
fig.3. The 10n¢-t1me and chaotlc character of the revival is
noted.

More detailed investigation of the revivals and collapses
is the subject of a future publication.

.

6. CONCLUSION

Thus, in this paper the operator equations for the three-
level atom of the ladder configuration interacting with two-
mode radiation field detuned from one-photon resonance has been
solved explicitly. The quantum electrodynamic expressions of
two-photon Rabi frequencies have been found. The time evolution
of the photon numbers and level populations has been examined.
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B 06veaMHEHHOM MHCTMTYTE AQEpHHX WCCNeqoBaHui Hauan
BuxoguTe cBopHuk "Hpamxue coobyenus OHAH" .’B HEM
OyayT noMewartbcA cTaTbM, COAepXalue OPUIrMHANbHHE HayuHue ,
Hay4YHO=-TeXHMYECKHEe, METOAMUECKMEe M NPUKNagHHWe peaynbTaTw,
Tpebyoumne cpouHoi nyGnukaumm. Byayum uacten "'CoobueHmii
OMAW', cTaTeu, Bowepwue B COOPHUK, MMENT, KaK W Apyrue
napanua OUAH, cTaTyc oduumanbHex nyEnukauwWii.

C6opHuk 'Kpatkme coobueHnn OMAU' GypeT BwxoaMTb
PEryYnAapHO,

The Joint Institute for Nuclear Research begins publi-
shing a collection of papers entitled JINR Rapid Communi-
eations which is a section of the JINR Communications
and is intended for the accelerated publication of impor-
tant results on the following subjects:

Physics of elementary particles and atomic nuclei.
Theoretical physics.

Experimental techniques and methods.

Accelerators,

Cryogenics.

Computing mathematics and methods.

Solid state physics. Liquids.

Theory of condenced matter,

Applied researches.

Being a part of the JINR Communications, the articles
of new collection 1ike all other publications of
the Joint Institute for Nuclear Research have the status
of official publications.

JINR Rapid Communications will be issued regularly,
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