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1 • INTRODUCTION 

Quantu~ behaviour of solitons in solids has been appa r ently 
considered first in 1972111 in the ca se of crowdion propagation 
in crystals at low temperatures. Obviously , the crowdion confi­
guration represents а unique example of one-dimens ional struc­
ture 'in. 3-dimensional solids. I t arises when the de f ormation 
caused Ьу an extra a tom occurs only in one of the crys tallo­
gr ap.hic direct i ons . Thus, the ex tra atom is in more or l es s 

. close- packed row i n which even the remote a toms are displaced 
f rom their equi l ibrium positions (Fig .1). The model us ed in 111 -- -- -~ 
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is s i mila r to the Frenkel'-
Kontorova disloca tion mo­
del 121 . It has been shown 
that the crowd i"on turns in­
to а quasj -particle (the 
crowdion wave) that is no 
longer characterized Ьу its 
mass centre and veloc i t y but 
Ьу its quasi-wave vector, k, 
and dispersion law· Е (k) . It 
has been also shown that 
the crowdion can move with 

· а supersonic velocity and 
irradiate Cherenkov phonons. 

From а math.ematical point 
of vie\1 the proЬlern has been 
reduced to the sine~Gordon 
model. However, the consi­
deration made in 111 is quite 
more general and the physi­
cal results can Ье also ap­
plied to some other models 
(e.g.' ssн 1~ 1 Ф4 -model 14 1 

etc.) used fo r describing' 
solitons in polyacetylene, 
NЬSe ·3 and other quasi-one­

Fig . l . Cr>oыdion configur>ation: 
а) in an unde f ormed cr>ys t al and 
ЪJ in а cr>ystal defmomed Ъу an 
elastic ыаvе . 

dimensional substances. It 
is of interest therefore to 
point out the main conse­
quences of the effects pre­
dicted in / 1/ and consider 
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their app1icabi1ity to other mode1 structures. It wi11 Ье shown, 
e.g., that the quantum effects make impossiЬle the pinning of 
the so1iton to the 1attice not on1y in the case of crowdions 
but a 1so in po1yacety1ene in contrast to the c1assica1 r esu1t s14( 

2 . MODEL. CONТINUUМ APPROXIHAТION 

Crowdion behaviour in crysta1s 111 and the so1iton behaviour 
in quasi-one-dimensiona 1 structures 1i~e po1yacety1ene described 
usua 11y Ьу SSH and Ф 4-mode1s have many common featur es which 
can Ье trea t ed in а common way Ьу means of а Lagrangian of the 
form 

ш · 2 1 mc 2 2 ( )t L = - 2. и - 2. -- (и 1- и ) + W и s 2 n n· n 2 n+ n n 
( 1) 

describing а cha in of par tic1es of ma ss m interacting with 
their neighbours via e1as tic fo rces and p1aced in а potentia1 
W (и). и 0 i s the di s p1 acement of n -th partic1e, and с cor­
responds to the sound ve1ocity in the iso1ated chain. The 1at­
ti ce constant а= l. In the ·continuum approximation ( n conti­
nuous) the equat ions of motion are reduced to the fo11owing 
dif fe r enti a 1 equation 

'а 2иn · 
~т 

дt 

J~~n = -_L 
дn2 m 

aw 
диn 

If the potentia 1 i s assumed to be · of the form 

1 W(и) ~ -А(1- СОS277и), 
2 

(2) 

(3) 

then ( 2 ) coincides with the sine-Gordon equation. The one-so-
1iton so1ution of interes t has the form 

и(n-vt) = .Rarctg(exp x-n+ vt ), - (4) . 

" L 
where х is the c rowdion centre, and the crowdion 1ength is 

--- 1 . 
L = L y l-w2, L

0
= - y mc 2/ 2A, W= V/ c, (5) 

о . 11 

For the va1idi t y of the continuum approximation the inequa1ity 
L >> l mus t Ь е sa ti s f ied. The c rowdion energy in the same ap­
proach is 

Е = U0 1 у l - w 2 

2 

(б) 

!Г'. ""' ;;. .. , 
..~ ;>· 

which can Ье' obtai~ed from the static energy UQ = 2mc 2/ 11 2 L 
Ьу the Lorents transformation. At sma11 ve1ocit~es (v « с) t~e 
so1iton behaves 1ike а partic1e of mass 

1.1 = U
0

/c 2 = 2m/ (77 2 L 0) 

which obvious1y is much 

W(u) 

- u. u. 

(7) 

sma11er than the atomic mass, m. 

u 

Now consider the case of 
douЬle-\-тell potentia1 W(и) (Fig. 2). 
Obvious1y, W(±и 0) = W'( ~ и 0 ) = О, 
where ±u 0 are the coordinates 
of the equiva1ent potentia1 mi­
nima, and (') denotes the deriva-
tive with respect to u. As we 
are interested in so1utions of 
the form u((n-vt)/0 eq . (2) Ье-
comes 
mc 2 (l _ w 2) d 2и = ~ • (8) 

Fig . 2. А douЫe-well po­
tential form used in ф 4 

and SS!j models . f 2 dz2 dи . 
where z = (n- vt) / (. 

~ .. '~~j 
~"t.:·~ 

The energy first integra1 of (8) i S" 

2 d 2 '2 
~ (-.!L) = L W(u) • 

2 dz 1 _w2 
(9) 

As the left-hand side and W(u) are positive, the condition v <с 
appears. On the other hand, eq.(9) must Ье satisfied for arbit-

rary v < с • Hence., l = l 0 v' 1 - w 2 • 

Taking into account (9), the strain energy, W l . can Ье writ-
ten in the form е 

mc 2 ""' дu 2 mc2 du 1 ---2-
W t = - ( (-· -) dn = - f - dи = - U 0 /у 1 - w , 

е 2 _ "., дn 2t dz 2 

where 
. uo 

U
0 

= v' 2mc2 J v' W(u) dи. 
-uo 

In the s·ame way the kinetic energy is found to Ье 

m ""' • - J и 2dn = w 2 w г 
2 et 

_"., 

and · the energy connected with the potentia1 W(и) is 
. d 1 

f W (и (n)) dn = t( W (u) -2- du = - U v' 1 - w 2 • 
du 2 ' о 

( 10) 

(13) 
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Fina11y the tota1 energy iв 

Е = U0 / V 1 - w 2 • ( 14) 

Note that the contributions of terms (10,12,13) to the effec­
tive mass р. are equa1 in magnitude but differ in sign. 

Hence, the so1iton energy and effective mass can Ье obtained 
Ьу means on1y of the potentia1 W(u) without kno\ving the so1ution 
of (8). So, for the ф4-mode1 one has 

W( 1 2[ u 2 2 u) = -yu
0 

(-) -1] 
4 u0 

and making use of (11) obtains 

u
0 

= 4mc 2 2 
Зf u О 
о 

and 

(15) 

(16) 

' 

p.=.i..J!!..u2, (17) 
з е0 о 

where 

f
0 

= (2mc 2 / y) 112 • (18) 

In the same notations the so1iton so1ution of (8) has the 
form 

x+n-vt 
u (n - vt) = u 0 tanh ( f ) • ( 19) 

. 
In this case u

0 
and р. contain an additiona1 sma11 factor 

(u
0

/ a) 2 in comparison with (б) and (7). The same parameter ap­
pears a t so in SSH mode1 131,and owing to its sma11 va1ue (-10-

3 

the effective mass of the so1iton in po1yacety1ene turns out 
to Ье of the order of severa1 e1ectronic masses . 1 . 

However note that u 0 and t0 · may not Ье extreme1y sma11, 
because this 1eads to very sma11 potentia1 minima not аЬlе tO 
pin atoms. In other words u0 has to Ье 1arger than the zero 
osci11ation amp1itude. Unfortunate1y this is not the case rea-
1 ized in SSH mode1 where ' the barrier height А = W (О) - W (u0) "' 
"' 150 К (ca11ed in / 3/ the condensation energy) is much sma11er 
as compared to the first quantum 1eve1 ~ш/2 "'1Q3K, In the no­
tations of SSH / 3/ one has 

2А 2 ЛМК 112 . 2а 2 
~ == u 0 (~) « 1; ~ = -- == 0.20; 

11Кt 0 
4 

о 

u 
0 

== 0.04 .А • 

) 
~ 

,, 

As а resu1t, the atomic coordinates become bad characteristics., 
the · existence of а rea1 dimerization is questionaЬle, and 
accurate q~antum ana1ysis has to Ье carried out, 

3. LATTICE PERIODICITY EFFECT, 
PINNING PROBLEH • 
If the so1iton 1ength is much 1arger than the 1attice con­

stant, so1utions (4) and (19) describe we11 the atomic posi­
tions. However, the so1iton energy ca1cu1ated in the continuum 
approximation is degenerated with respect to the coordinate of 
centre х. The 1attice discreteness can Ье taken into account 
in а good approximation substituting the so1utions into the sum 

2 -
Е== ~En' En== ~U~+ ~с (un+1-un)2 +W(un)' (20) 

Making use of а standard method yie1ds 

Е = f dk I. д (n - k) Е k == f dkE k + f dkE k cos 2rrk + 
n 

(21) .. 

The first integra1 in the right-hand side is the energy (14). 
It can Ье sho~ that each subsequent integra1 is sma11er Ьу 
а factor -е-112 • Hence, one may 1imit onese1f to the second 
term. The calcu1ation (for v =О) yie1ds (see Appendix). 

:& 
1 

== ~ U 
1 
СОВ 21ТХ , U

. _ 11 2г 
1= ае Lo 

' 
(22) 

where ' the va1ue of the coefficient а depends on the mode1 used. 
For the sine-Gordon system 

aso "' 41Т 2/9 (23) 

and for the ф 4 -mode1 

а = 811 2 (~ - 1 ) t 2 u 2 
4 3 о о 

(24) 

(This va1ue differs ~rom that of 141 ,see Appendix)-. 
Hence, the so1iton moves in а periodic potentia1 with the 

periodicity of the 1attice, The amplitude of this potentia1, U1, . 
has been considered · in/4/ as а pinning energy. From the .com­
parison of this energy with the s~liton-soliton interaction 
energy the critical so1iton concentration necessary for the 
depinning and free so1iton propagation has been eva1uated. The 
barrier height has been eva1uated a1so in/3/ and the conc1usion 
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has been made that pinning can. take place at low temperatures 
(Т < 20740 К). An attempt of а more precise calculation of the 

.pinnin7 energy has been made ·in / 5/.However, as it was shown in 
1972 11 the pinning of the soliton in such а potential cannot 
take place even at Т = О due to quantum effects. As а criteri- -
on of the quantum behaviour one may use the quantity • 

8 = 

(in а quantum case 8 ~ 1). Owing to the small effective mass 
and exponentially small barrier height 8 turns out to Ье smal­

· ler than 1 in all physically reasonable cases. In fact, the con­
dition 8 < 1 can Ье rewritten as 

172 t mc 2 2 u о 2 
172fe > а(--) (--) 

- 6 D а 

( (JD being the Debye temperature) which is satisfied even at 
f = 1. 

4. SOLITON AS А QUASI-PARTICLE 

Hence, the soliton is а quantum object. It is delocalized 
and must Ье considered as а quasi-particle (soliton wave) that 
is no longer characterized Ьу the coordinate and velocity of 
its centre but Ьу its quasi-wave vector, k, and dispersion law, 
Е(~. ~ote that as а consequence of the delocalization there is 

no sense to calculate the "pinning energy" in more detail (ta­
king into account the dependence of the soliton shape on the 
position of its centre within а unit cell). In fact, tunneling 
occurs between equivalent states. On the other hand, ·rhe con­
tribution to the soliton effective mass is negligible (see be­
low). 

То find the soliton wave dispersion law, one has to . obtain 
the eigenvalue spectrum of the Schrodinger equation 

'1'" + ЗЕ.._(& - ..!. U cos 2rrx) '1' = О 1i 2 2 1 
. -1 / 2 ikJ: 

that allows solut1ons of the form of Bloch waves '1' = N е фk(х), 
where Фk (х+ 1) = Фk (х). This spectrum is quite comp1icated in 
the genera1 case. However, in the case of interest (8 « 1) 
the dependence of the energy on the quasi-wave vector k can Ье 
determined from the fol1owing ,equation 

17 28 2 sinko 
cosk = cosk

0 
+ --

4(1 - k 2/ 172 ) k о 
о 

6 

k 2 = 2!! &; f12 • 
о 

1т 
1' 

~· 

This leads for small k 0<<1 to the dispersion law 

~- E(k) = u0 + ..!..u1 8 + 112 k 2 / 21L*· 
,4 

~ 

r· .. 

. 

.;. 

/ 

where the effect/ ve mass IL* = IL (1 - ~ 8 2 ) . 

5. SUPERSONIC SOLITON BEНAVIOUR. 
PHONON EМISSION 

А11 the consideration above is obvious1y restricted Ьу the 
condition of small ve1ocity v as compared to velocity с called 
here the sound velocity in the isolated chain. However, the 
actual sound ve~ocity, s, 1n complex 1attices (the only lat­
tices where crowdions occur) can Ье drastica11y different from 
velocity с. In fact, the sound propagation is connected with 
displacements of heavy 1attice ce1ls containing severa1 atoms. 
On the other hand the effective strain constant can a1so Ье 
\videly different. Therefore the crowdion can move vli th а super­
sonic ve1ocity. In such а case the propagation of an elastic 
wave in the crysta1 amounts to а change in the amp1itude А and 
in the period of the potentia1 W(u) which now become functions 
of the deformation ten&or ~: 

u - ~n 
W(u 0 .~) = A(~)I1-cos(217 n )!, 

1 + ~ 1 (n) • 

\-.!here ~ n is the component of the deformation vector ~ ·a1ong 
the crowdion chain (chosen as х -axis). Assuming axia1 syппnet­

ry the diagona1 elements of ~ are ~ 1 (n) =~n+ 1 -~ , ~ 2(n), ~ (n). 
The analysis made in / 1/ shows that the proЬlem0 can Ье ful1y 

considered (analytica11y) in the most interesting case when 
the phonon quasi-wave vector components in the crowdion direc­
tion are sma11 (q:r:L << 1). The other components have to satisfy 
q~a <<1. In this case the so1iton length takes the form 

1+~1 
f = v' 2mc 21 А(~) = L tl + Л . ~ .

1
) , 

2rт 1 

where Л 1 are determined through the coefficients in the expan­
sion of А in powers of ~ 1 : А(~)= A[l -2(Лг 1)~ 1 -2.\.2 (~ 2+~ 3 )]. 
The bottom of the crowdion energy band is a1so shifted and, as 
а result, the crowdion wave can Ье described Ьу а local dis­
persion la\-.7 
r (k,.::\)., UO + El~i + 1\2k2/2,.L*' 
where Е = U (1 - Л ) , Е 2 = Е 3 = Лр} (1 -Л 1) • 

1 ·о 1 . . h d f . . 1 
То cons1der the phonon em1ss1on, t е е ormat1on potent1a 

method can Ье used / 11. If the wave propagates along the chain, 
the emission probability, W +, is found to Ье 

' 
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w+ f 2 --~1--(-~)2 bsqx 2hмв 2 N 2р (ехрт- -1) -1 

where М = I m1 is the tota1 mass of а 1attice се11, р = ILsl 'h, 
and N is the се11 number. Since in this case phonons with wave 
vectors Qx- k are emitted (or absorbed) 'nsq /Т -1tвk/T-
_ (J.!в2/Т) 1/2 , 2 . 

2 + f 1 qx Т 
Thus, for ·т » /LB W =- -- --2- · 

8Ms 2 N ILB /LS 

If osci11ations with а11 possiЬle directions of q are excited 
in the crys tal, then q- Т / 1\ s whereas q х- k - (2/LT / fl) 112 • Con­
sequent1y, Q:z;/ q- (1Ls2/T)112_sf v « 1 which is typica1 of the 
Cherenkov emission cone. In this case, however, the phoнon ener­
gy can Ье of the order of the crowdion excitation itself, and 
therefore the process, in genera1, cou1d Ье ine1astic. 

It has been recent1y reported 16 1 about the possibi1ity of 
supersonic propagation of so1itons in SSH mode1. The numerica1 
calcu1ations made there show that а so1iton of the form 

u tanh( х- vt ) can move with а ve1ocity v 1arger than the sound 
о е 

ve1ocity in the "meta11ic" state. But the physical nature of 
the new restricting ve1ocity seems not to Ье c1ear enough. On 
the other hand, if the so1iton configuration is formed Ьу means 
of а sma11 deformation transfer fro~ а се11 to cel1 t~e sound 
ve1ocity (correct1y defined) seems to р1ау а very important 
ro1e. This proЬlem wi11 Ье considered e1se\1here. 

Acknowledgements are due to Professor E.A.Kaner and SoDrech­
sler for discussiohs. 

APPENDIX 

То obtain U1 one has to calculate (at v = О) the fo11owing 
integrals 

00 

11 = f W (u(n)) сов 211n dn, 
2 00 2 

1 2 = ~ f [u(n + 1) - u(n)] oos21тn dn. 
2 -оо 

,J 

Note that the strain energy in 12 has to Ье written in а fi­
nite difference form. If the difference is substituted Ьу а de­
rivative, the 1atter must Ье taken at the point n + 1/ 2 ·and one 
obtains 

mc 2 .дu 2 mc2 дu 2 
- 2- f <-а· · ) cos2"n dn =- - 2- · f <-а ) cos211n dn 

n n+ 1/2 n n 
J W(u) соs21ТП dn, 

8 

~~о. о·: 

where the second equa1ity fo'11ovтs from (9). As а resu1t, in the 
continuum approximation 11z U 

1 
= 1

1 
+ 12 = О (in contrast to the 

va1ue 21 
1 

obtai.ned in / 4 / ) , 

For the ф4 mode1 11 and 12 are exact1y integraЬle in e1emen­
tary functions. Using (15) and (18) y ie1ds / 7/ 

2 00 4 2н 2 
l = ~ U~ ( COS21Тn dn = ~ ШС t.Uo ( 1 + __ 1_) 

1 2f 2 -оо ch4n/ t 3 sh "2f п2f2 ' 
f =f о 

Su~stituting (19) into 12 one obtains after some transforma-
tions 

mc2 2 1 оо 
12 = --u вh- · r 2 о f . 

-оо 

mc2 1 дlз сов 217'n dn . ___ u2 sh-. 2 ( ..--
2

)/3 _ {3' (А 1) 
-- 2 о t д/3 - о 

2 n + 1/ 2 /32)2 
(ch f · + о 

where f3 = sh-1- · and 
171 

о 2f ' 

l = j COB21ТfXdX 
3 

-оо ch 2х + f32 
2п 

вin (" l arch (2/3 2+ 1)) . 

v (2/3 2 + 1)2 sh11 2e 

Substituting the derivative into (А1) and taking into account 

that 2/3 ~ + 1 = сьf one obtains 

12 =- 211'2 щс2 
sh "2f 

Finally 

U 2(1 1 ) 
2( 1Т 2 1 2 2 2 -п 2f 

1 = 1 + 2 "' 8п - - 1 + --Н u 0 mc . е 
3 Зf2 

which coincides (after neglecting 1/Зе 2 << 1 ) with (21) and 
(22). 

For the sine-Gordon equation the potential W(u) and the so-
1iton so1ution are given Ьу (3) and (4), respective1y. Hence / 7/ 

" 

сов 2пn mc 2 2mc 2 2 f3 о 1
1 
= 2А J dn = ----, 1 = --L f arctg ( )cos2rтxdx. 

ch2 n/ L L sh112 L 2 "2 ch(x + t> 
00 

2k The expans ion arctg 2(t) = I С k t , 
k= 1 

k+ 1 k 
(-1) I 

Ck= k n=1 2n -1 
1 and 

. . . 171 . 1d termw1se 1ntegrat1on у1е 
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2 "" с 2k 
mc l k (21ТL • sh-1-) [ 1 + _!_1 .... х 

112sh 112L k=2 (2k.-1)! 2L (77L)2' 
I = - 2L sh-1-I 

. 2 2L 1 

х [ 1 + ( k -1 ) 2] 
rrL • 

Finally (a t 2L » 1) , 

u "' 1 
.4112 mc2 е -1Т 2 L. 
9 
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В Объединенном институте ядерных исследований начал 
выходить сборник "Краткие сообщения ОИЯИ" . В нем 
будут помещаться статьи, содержащие оригинальные научные, 
научно-технические, методические и прикладные результаты, 

требующие срочной публикации. Будучи частью ••сообщений 
оияи••, статьи , вошедшие в сборник, имеют, как и другие 
издания ОИЯИ, статус официальных публикаций. 

Сборник ••краткие сообщени я ОИЯИ 11 будет выходить 
регулярно. 

The Joint Institute for Nuclear Research begins puЫi­
shing а collection of papers entitled JINR Rapid Communi­
cations which is а section of the JINR CoПJПunications 
and is intended for the accelerated puЫication of impor­
tant results оп the following subjects: 

Physics of elementary particles and atomic nuclei. 
Theoretical physics. 
Experimental techniques and methods. 
Accelerators ; 
Cryogenics. 
Computing mathematics and methods. 
Solid state physics. Liquids. 
Theory of condenced matter. 
Applied researches. 

Being а part of the JINR CoПJПunications, the articles 
of new collection like all . other puЬlications of . 
the Joint Institute for Nuclear Research have the status 
of official puЫications. · 

JI NR Rapid Communi cations will Ье issued regularly. 
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