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1. INTRODUCTION

Quantum behaviour of solitons in solids has been apparently
considered first in 1972/ in the case of crowdion propagation
in crystals at low temperatures, Obviously, the crowdion confi-
guration represents a unique example of one-dimensional struc-
ture in 3-dimensional solids. It arises when the deformation
caused by an extra atom occurs only in one of the crystallo-
graphic directions. Thus, the extra atom is in more or less

.close-packed row in which even the remote atoms are displaced
from their equilibrium positions (Fig.l). The model used in/V
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Fig.1. Crowdion configuration:
a) in an undeformed crystal and
b} in a erystal deformed by an
elastic wave.

is similar to the Frenkel -
Kontorova dislocation mo-
del’?/, It has been shown
that the crowdion turns in-
to a quasi-particle (the
crowdion wave) that is no
longer characterized by its
mass centre and velocity but
by its quasi-wave vector, k,
and dispersion law (k). It
has been also shown that
the crowdion can move with

‘a supersonic velocity and

irradiate Cherenkov phonons.
From a mathematical point
of view the problem has been
reduced to the sine-Gordon
model, However, the consi-
deration made in /! is quite
more general and the physi-
cal results can be also ap-
plied to some other models
(e.g., SSH’Y ¢*-mode1’*/
etc.) used for describing
solitons in polyacetylene,

'NbSeg and other quasi-one -

dimensional substances. It
is of interest therefore to
point out the main conse-
quences of the effects pre-
dicted in/1/ and consider
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their applicability to other model structures. It will be shown,
e.g., that the quantum effects make impossible the pinning of
the soliton to the lattice not only in the case of crowdions

but also in polyacetylene in contrast to the classical results’%,

2. MODEL., CONTINUUM APPROXIMATION

Crowdion behaviour in crystals /1/ and the soliton behaviour
in quasi-one-dimensional structures like polyacetylene described
usually by SSH and #*%-models have many common features which
can be treated in a common way by means of a Lagrangian of the
form

AR 4 2
L-%3 ui,_fg."ga(un+l-un)2+ W)t D)
n

describing a chain of particles of mass m interacting with
their neighbours via elastic forces and placed in a potential
W(). u, is the displacement of n -th particle, and ¢ cor- ~
responds to the sound velocity in the isolated chain. The ‘lat-
tice constant a =1. In the continuum approximation (n conti-
nuous) the equations of motion are reduced to the following

differential equation

‘02un- d 2“!1 1 aw

L SR : ; {2
crgts an? m  Jdu .

n

If the poter'ztial is assumed to be-of the form

W(u) ;}-.Au - cos2m) , (3)

then (2) coincides with the sine-Gordon equation, The one-so-
liton solution of un:erest has the form

un - vt) = 2 arctg(exp}»:l‘i.ﬂ-) 5 ~ (&)
4 .

where x is the crowdion centre, and the crowdion length is

L=Lo\/L-—w2, L0=-71-7—\/m02/2A.' w = v/c. L 65)

For the validity of the continuum approximation the inequality
L>>1 nmust be satisfied. The crowdion energy in the same ap-
proach is

= Uo/\/l—W2 (6)

which can be obtained from the static energy U, = 2mc2/z2L
by the Lorents transformation., At small velocities (v<<c¢) the
soliton behaves like a particle of mass

= U,/c® = 2m/ (L ) €))

which obviously is much smaller than the atomic mass, p,
Now consider the case of

W(u) double-well potential W(u) (Fig.2).
Obviously, W(+uo) =W (+u ) =0,
--A where +u0 are the coordlnates

of the equivalent potential mi-
nima, and (') denotes the deriva-
tive with respect to u. As we

1 AJ . k . .
=ty U, u are interested in solutions of
; . the form u((n-vt)/f) eq.(2) be-
Fig.2. A double~well po; comes :
tential form used in ¢ mes o, d2u  dW (8)
and SSH models. o2 ==l = w7) 2P

where z = (n-vt)/f.
The energy first 1ntegral of (8) ig

me* duf® @ 18 o '
—-2--(?5) = S W(u) . (9)

As the left-hand side and W(u) are positive, the condition v<ec
appears. On the other hand, eq.(9) must be satisfied for arbit-

rary v<c.ﬁence, £t=1 \/1-w ;

Taklng into account (9), the straln energy, W¢ , can be writ-
ten in the form

i du 2 an - mec? . du Ll e
v]el_._.._.2 -‘;n( _*.2! f—-—-—-dz du---g-'Uo/vl w ’ (10)
where
. u,
U, =v2me? [ VW) du. an
-u

°
In the same way the kinetic energy is found to be

masel g (12)
> -{; u“dn = w Wez
and the energy connected with the potential W(u) is
: dz b e :
fWu))dn =!I'W(u)-aTl-du _'EVO\/l we. (13)
3



Finally the total energy is

E-U,/Vi=ut. : (14)

Note that the contributions of terms (10,12,13) to the effec-

tive mass p are equal in magnitude but differ in sign. /
Hence, the soliton energy and effective mass can be obtained

by means only of the potential W(u) without knowing the solution
of (8). So, for the ¢*%-model one has

W(u) =-;;-yu§[(—§—-)2 Sre (15)
0

and making use of (11) obtains

_ 4mc* o 16
UO‘" = ug (16)
0 N

and

« 4 mogs (17)
0w e : - v
where
£ = (eme? /y) 172, (18)

In the same notations the soliton solution of (8) has the
form
u(@ -vt) = uotanh(w—:-—v-t—). (19)
In this case U, and p contain an additional small factor
(ug /a)2in comparison with (6) and (7). The same parameter ap—--_3
pears also in SSH model’3/ and owing to its small value (-0 )
the effective mass of the soliton in polyacetylene turns out
to be of the order of several electronic masses. -
However note that u, and l;l' may not be extremely small,
because this leads to very small potential minima not able to
pin atoms. In other words ug has to be larger than the zero
oscillation amplitude. Unfortunately this is not the case rea-
lized in SSH model where the barrier height A =W(0) ~W(u,) =
~ 150 K (called in/% the condensation energy) is much smaller
as compared to the first quantum level Bw/2 ~103K. In the no-
tations of SSH’/3/ one has

2A 2 AMK,1/2. 222 . 9
= ; A= =0.20; u, = 0.04A,
e i s e e 0

0
4
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As a result, the atomic coordinates become bad characteristics,
the existence of a real dimerization is questionable, and a more
accurate quantum analysis has to be carried out,

3. LATTICE PERIODICITY EFFECT.
PINNING PROBLEM

I1f the soliton length is much larger than the lattice con— .
stant, solutions (4) and (19) describe well the atomic posi-
tions. However, the soliton energy calculated in the continuum
approximation is degenerated with respect to the coordinate of
centre X. The lattice discreteness can be taken into account
in a good approximation substituting the solutions into the sum

. 2 2
E-2E, B,=3uie T lu, ,-u) +W(@), (20)

Making use of a standard method yields
E=[dk X 8(n-k)E, = [ dkE + [ dkE  cos2ak + ... . (21)
n

The first integral in the right-hand side is the energy (14).
It can be shovg} that each subsequent integral is smaller by
a factor ~-e~7°%, Hence, one may limit oneself to the second
term., The calculation (for Vv = 0) yields (see Appendix).

*

~-n2l
3

& =-%—U10082ﬂ'x, U,=ae (22)

1 1

where the value of the coefficient ¢ depends on the model used,
For the sine—-Gordon system

2y = 4n¥/9 ‘ ; 2l
and for the ¢4—mode1

Waamf 2.2 -
a, =8 (3 1)20 ug (24)y

(This value differs from that of /¥ gee Appendix).

Hence, the soliton moves in a periodic potential with the
periodicity of the lattice. The amplitude of this potential, U,,
has been considered in/4/ as a pinning energy. From the com-
parison of this energy with the soliton-soliton interaction
energy the critical soliton concentration necessary for the
depinning and free soliton propagation has been evaluated. The
barrier height has been evaluated also in/3/ and the conclusion
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has been made that pinning can take place at low temperatures
(T < 20+40 K). An attempt of a more precise calculation of the
plnnlng energy has been made-in/%/.However, as it was shown in
197271 the pinning of the soliton in such a potential cannot
take place even at T = O due to quantum effects. As a criteri--
on of the quantum behaviour one may use the quantity

Ul
 2h2/

(in a quantum case 8 <1). Owing to the small effective mass

and exponentially small barrier height & turns out to be smal-
‘ler than 1 in all physically reasonable cases. In fact, the con-
dition 8 < 1 can be rewritten as

2
s a (B ahii oy
D a

(0p being the Debye temperature) which is satisfied even at
Bl

4, SOLITON AS A QUASI-PARTICLE

Hence, the soliton is a quantum object. It is delocalized |,
and must be considered as a quasi-particle (soliton wave) that
is no longer characterized by the coordinate and velocity of
its centre but by its quasi~wave vector, k, and dispersion law,
e(k) . Note that as a consequence of the delocalization there is
no sense to calculate the "pinning energy" in more detail (ta-
king into account the dependence of the soliton shape on the
position of its centre within a unit cell). In fact, tunneling
occurs between equivalent states. On the other hand, the con-
tribution to the soliton effective mass is negligible (see be-
low). .

To find the scliton wave dispersion law, one has to obtain
the eigenvalue spectrum of the Schrédinger equation
2 3%(8 - $U, cos2e) ¥ =0

1/2 ikx
that allows solutions of the form of Bloch waves ¥ =N ¢k(),
where ¢, (x+1) = ¢, (x). This spectrum is quite complicated in
the general case, However, in the case of interest (6§ <<1)
the dependence of the energy on the quasi-~wave vector k can be
determined from the following equation

7252 Sinkov, 2 _ 2“&/7.2 -
4(1-k§/n2) kg

cosk = cosk0+

6

This leads for small k<<l to the dispersion law
) = U +—14—U 5 + W2k2/ 2,

where the effective mass p* =pu(l - —;—-62 e
]

5, SUPERSONIC SOLITON BEHAVIOUR.
PHONON EMISSION

All the consideration above is obviously restricted by the
condition of small velocity V as compared to velocity c¢ called
here, the sound velocity in the isolated chain. However, the
actual sound velocity, ‘s, in complex lattices (the only lat-
tices where crowdions occur) can be drastically different from
velocity ¢. In fact, the sound propagation is connected with
displacements of heavy lattice cells containing several atoms.
On the other hand the effective strain constant can also be
widely different. Therefore the crowdion can move with a super-
sonic velocity. In such a case the propagation of an elastic
wave in the crystal amounts to a change in the amplitude A and
in the period of the potential W(u) which now become functions
of the deformation tensor A:

un'fn
A @ :

where €, is the component of the deformation vector £ along
the crowdion chain (chosen as X-axis). Assuming axial symmet-
ry the diagonal elements of A are A (n) = $n 0 A5, Ag(n).

The analysis made in/1/ shows that the protlem can be f i
considered (analytically) in the most interesting case when
the phonon quasi-wave vector components in the crowdion direc-
tion are small (g,L <<1). The other components have to satisfy
q,8 <«<1.1In this case the soliton length takes the form

W(u,, A) = A(A)] - cos(2n

o ‘ Veme®/A(A) = L +A A,

where A, are determined through the coefficients in the expan-
sion of A in powers of Aj: A(A) = All -20~ 1)A ;- 225(A 5+ Ag)).
The bottom of the crowdion energy band is also shifted and, as
a result, the crowdlon wave can be described by a local dls—
persion law
¢(k,8) = Uy +€ A, + 8%k /2u%,
where e,=U (1 A, €2=¢€g =)‘2/(1~)')

To con51&Lr the phonon emission, the deformation potential
method can be used/l/ If the wave propagates along the chain,
the emission probability, W', is found to be




2 h
3 q 8q A i
W+ z 1 ( x)2 (exp— b3 A1) 1 -
ohMs2N 2P T
where M=% m is the total mass of a lattice cell, p =pus/%,
and N 1is the cell number. Since in this case phonons with wave
vectors qz- k are emitted (or absorbed) %sq /T ~hsk/T ~
~ {us®/T)1/2 | 2 :
¥ 2 + 51 ql T
Thus, for T > us W = )
8Ms®N us  us

If oscillations with all possible directions of 4.; are excited
in the crystal, then g~ T/%s whereas Qy~k =~ (2;;'1‘/‘5)1/2 « Con-
sequently, ¢./q ~ (us2/T)1/2.s/v<< 1 .which is typical of the
Cherenkov emission cone. In this case, however, the phonon ener-
gy can be of the order of the crowdion excitation itself, and
therefore the process, in general, could be inelastic.

It has been recently reported 76 ‘about the possibility of
supersonic propagation of solitons in SSH model. The numerical
calculations made there show that a soliton of the form

.

uotanh(—’-‘-:e-!t—‘-) can move with a velocity v larger than the sound

velocity in the "metallic" state. But the physical nature of
the new restricting velocity seems not to be clear enough. On
the other hand, if the soliton configuration is formed by means
of a small deformation transfer from a cell to cell the sound
velocity (correctly defined) seems to play a very important
role. This problem will be considered elsewhere.

Acknowledgements are due to Professor E.A.Kaner and S.Drech-
sler for discussions. '

APPENDIX

To obtain U; one has to calculate (at v = 0) the following
integrals :

me? [u(n +1) - u(m)] £ 6os 27n dn.

I '=~fw W(u()) cosm dn, I, = =

*é‘*a

Note that the strain emergy in I, has to be written in a fi-
nite difference form. If the difference is substituted by a de-
rivative, the latter must be taken at the point n +1/2 and one
obtains

2. 5.8 g0 joie
me du _ _ mc* .. .du i

5 }'(an ) 1/20.0521mdn = 5 f (an)'1 cos2mm dn =~ [ W(u) cos2mm dn,

8

where the second equality follows from (9). As a result, in the
continuum approximation ¥ U, =I,+1I,=0 (in contrast to the
value 2I, obtained in/4/ ).

For the ¢* model I; and I, are exactly integrable in elemen-
tary functions. Using (15) and (18) vields /7

e w0 Ret mlhgy Lo g le
. g2 °_, ch4n/t 3 shnr2l w202
Substituting (19) into I, one obtains after some transforma-
tions
2 1 © cos2rndn me 1
I;= ————m: ugsh-z- f =% %Sh‘i“ l("_—g)ﬂ-ﬁ’(Al)
=00 n+1/2
@PILE | gy
1 /1/ ;
here = gh—e—;and
w BO Sh2t’
5 2
2 h (2 1))
T, - [ coszzrtxd i sin(w f arch (28 “+ :
~ ch2x + B2 Vv @BE+1)® sha®l

1

Substituting the derivative into (Al) and taking into account

that 2B§+1=ch—;'- one obtains
2
I, = - 272me? -2 :
shx2¢
Finally

. 2 1 2 2 2 -n2
U,=2(0;+1Iy) = 81:9(1'3—-14--5&-:2-)2 ugmec-e

which coincides (after neglecting 1/382 << 1 ) with (21) and

(22). V
For the sine-Cordon equation the potential W(u) and the so-

liton solution are given by (3) and (4), respectively. Hence/?/

: 5 5 ‘
joeapait, 0 g 2meT ¢ arotg®(—BQ — )cosax dx.
ch®n/L LshaL ° =2 ch(x+-%-)
k+1 g
2k (=1) 1 o

s Ck=

s 2y - g .
The expansion arctg“(t) k=le i e

: 5 AT
termwise integration’ = yield



it me? Cg g 2k 1
= = 2L she2e] - =2 (2rL+ssh—=) [1+ RS
'12 2L !  ge2sha2L k=2 (Bk ~1)! 2L (1rL)J

k-1,2
x[1+(—-;£-.-) 1.

Finally (at 2L >»1),

am? 2. -n2L
U 1 = T mc~e .
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B O6veauHeHHOM WMHCTUTYTE AfepHbIX MccnenoBaHuit Hadan
BuxoAuTb cBophuk "Hpamxue coobwyenus OUAH". B Hem
GyAayT nomewaTtbcA CTaTbM, COAepKaliMe OpUIrUHANbHbE HayuHsie ,
Hay4YHO-TexHMUecKHe, MeTOAMUECKMe W NPUKNaaHHe pesynbTaTs,
Tpebyoume cpouHon nybnukauyuu., bygyum uyacTbio ""CoobueHuin
OUAK'', ctaTbu, Boweguue 8 cbopHuK, uMenT, Kak u apyrue
n3naHua OUAN, cTtartyc oduymanbHex nyGaukaymii. !

C6opHuk ''Kpatkue coobuyeHun OUAKY 6yaetr BmxoauTb
perynapHo, ; -

The Joint Institute for Nuclear Research begins publi-
shing a collection of papers entitled JINR Rapid Communi-
cations which is a section of the JINR Communications
and is intended for the accelerated publication of impor-
tant results on the following subjects:

Physics of elementary particles and atomic nuclei.
Theoretical physics.

Experimental techniques and methods.

Accelerators, :

Cryogenics.

Computing mathematics and methods.

Solid state physics. Liquids.

Theory of condenced matter.

Applied researches.

Being a part of the JINR Communications, the articles
of new collection 1ike all. other publications of
the Joint Institute for Nuclear Research have the status
of official publications. .

JINR Rapid Communications will be issued regularly.
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