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1. INTRODUCTION

In the last decade a great deal of effort has been made to
understand the physical properties of magnetic semiconductors.
The properties of itinerant electrons and the relationship bet-
ween the magnetic and electricallpro erties of these substances
are at present of great interest’l:2 Recently discussions of
the true spectrum of the magnetic semiconductors have been un-
dertaken in connection with the magnetic polaron problem/3"7ﬂ
The formation of bound polaron-like states due to the effective
attraction of the electron and magnon is a very interesting
many-body problem. It is.possible for the case of the antiferro-
magnetic coupling of the electron spin to the lattice (magnetic
subsystem). Investigations of the magnetic polarons permit us
to clarify the nature of the true carriers at low temperatures
of the magnetic semiconductors. Under various regimes the bare
carriers can be greatly renormalized and the relevant true car-
riers must be considered. This has been supported from the expe-
rimental point of view/8.9/.

The properties of the magnetic polaron states have been in-
vestigated at zero temperature in papers/3‘5a Recently a much
more detailed theory of the magnetic polaron at T = O has been
given by Shastry and Mattis’®/. In ref.’® the Green function
for a single electron has been calculated including both spin-
conserving and spin-flip processes. Crucial differences between
bound- and scatterinc-state contributions to the electron spect-
ral weight have bezn highlighted. Unfortunately, the damping
effects and finite lifetimes have not been taken into account.
The only mechanism for the damping of the polaron bound states
which has been considered is the decay of a magnetic polaron in-
to an unbound electron with spin-flip and magnon. By energy con-
siderations this becomes possible when the magnetic polaron
state merges only with the electron-magnon continuum.

The states of the current carriers in ferromagnetic semicon-
ductors have been investijgated for an arbitrary value of ex-
change parameter I in the spin-wave region by a variational
procedure in ref./?/. These authors have criticized the present
methods of calculation of the one-electron Green function for
the s-f model and claim that an adequate description requires
cumbersome and untransparent decoupling procedures.

The purpose of this paper is to discuss further the magnetic
polaron problem and develop an unified and complete self-consis-
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tent finite-temperature theory by taking into account the dam-
ping effects and finite lifetime. For this aim we use the no-
vel irreducible Green function (IGF) method developed by Plakida
for the self-consistent phonon theory/lo/and the Heisenberg
ferromagnet/ll/and by Kuzemsky for the Hubbard model/lzﬂ The

IGF method completely describes the quasiparticle inelastic
scattering processes in a many-body system and finds quasipar-
ticle spectra with damping in a very general way. From a techni-
cal point of view the IGF method is a special kind of the pro-
jection-operator approach in the theory of two-time Green func-—
tions/!3 By introducing "irreducible" parts of the GF (or the
"irreducible" parts of the operators, from which the GF is con-—
structed) the equation of motion for the GF can be exactly trans-
formed into a Dyson equation with an exact representation of

the self-energy operator which is represented by higher-order
Green functions. To calculate the self-energy operator in a self-
consistent way, we have to express it approximately by lower-
order Green functions. The IGF method has been applied recently
in a number of solid-state problems/!%. Recently, Marvakov et
al./15/ generalized this method to the calculation of elementary
excitations with damping for the s_f model. In/15/ the scattering
regime has been only considered. The present paper is devoted

to developing this approach further to take into account the
polaron-like states.

2. HAMILTONIAN OF THE s-f MODEL

The total Hamiltonian of the s—f model is given by the fol-
lowing expression/!,2/

H = He + Hee + Hf + Hg_f, (1)

where H, is the operator of kinetic energy of itinerant band
electrons
+

FPR
q,= ijzo Lijdio 3o = % % ¥o o - (2)
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Here ¢ =N X %jeprdk(Ri = Rj)] is the band energy. Although
1

the itinerant electrons (2) are predominantly d-electrons,
they are usually treated as s —electrons for mathematical simp-
licity. However, the retaining predominant d -character of the
itinerant electrons may be very important for describing the
heavy rare-earth metals and magnetic semiconductors.

For tight-binding electrons the band energy is given by

€

o= Bty cos(k-Ry). (3)

i describes the Coulomb interaction of itinerant d-like
electrons

U +
ee N kftqa ak+q,0 A% ap-q,—-a ap,—o' (4)

Here U 1is the Hubbard Coulomb correlation integral. In the

case of a pure semiconductor at low temperatures the "conduction"

electron band is empty, and the Coulomb term (4) therefore is

not so important. H, describes the localized moments which are

treated by the Heisenberg model

1 e d > - e d
H,-.= %3 8.5 I yj.8 8
f 2” 1 1 ] 2; q q =—q (5)
The two subsystems (band electrons and localized spins) are
coupled by a local spin-spin exchange interaction

H

s =-213% §-0) a8 a .=

oo i io
oo (6)

+ o 7+ +
S—-q ak Tak+q i * S—-q (akl1‘ ak+qf— ak& ak+q¢ ).

This term leads to the formation of the bound polaronlike states
due to the effective attraction of the electron and magnon in
the case of antiferromagnetic coupling (I < 0).

3. DYSON EQUATION FOR BOUND STATE GREEN FUNCTION

For the calculation of the electronic quasiparticle spect-
rum of the described model (1) one must consider the equation
of motion for the one-electron GF

Gk”(ﬂ = <<a,®) aIa>>. )

In paperfl&la self-consistent calculation of the GF (7) has
been performed, where the bound states have not been taken into
account. To do this, one needs the full generalized Green func-
tion
1 . .
Kap,|a,» <<ay, {Cro >

ko : (8)
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i ! >>
i <<Cka|ako>> <<Ck0lea
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i

To explain the structure of this GF, let us consider first the
equation of motion for the Fourier transform of the GF (7)



1 + z +

@G, (@) =1 +¢ G (@) ~— 3 {<<s:‘j1 8. o |a,>> + 25<<8_ga, +q,a|aka>>},
v &)
. where z, = 1(-1) if 0 =+ (¥) or +{-). Following/m—IS/ we intro-
duce by definition the irreducible operator in the r.h.s. of
eq.(7)

z \ir Zz Z
S ) =8 - <So>5q,0 (10)
in which the mean-field contribution is removed. Then the equa-
tion of motion (7) can be exactly transformed to the following
form

0 + I +
(o —eka) <<aka{ako>> +-_—:<<Ck0]ako>>= 1, an
VN
Here
0 I<S.> .
Pl Seral iy 0. (12)
ko k (o T
VN
' Sz )il' ﬁ 3
Cyo = E‘ {S—qak+q,—o + 2, —q Siq0 T %ot Pro” (13)
In the lattice representation the operator Co reads
-0 z ir
14
=5 8 4 +2E) 3. (14)

To study magnetic polaron problem, both the Green function
<<ay,|al,>> and <<Cjglaj,>> entered into eq.(8) have to be
evaluated in the same way. It is a crucial point of the whole
problem. In terms of the variational procedure this means the
proper choice of the relevant set of wave functions (c.f£./7/ ).

To calculate <<Cjq|ajo>> and <<Cys |Clg >>, let us consider the
equation of motion (due to the first—time differentiation) for
<<S'°ak+q_a |a‘;0>>, In this paper, for the sake of simplicity,
we cbnsider only a low electron concentration limit and neglect
the U term. A generalization to the finite electron concen-
tration case can be done directly. Thus, we obtain

1
(o ) <<8% lal > e S O |af >> -
k+q,~0 -q kt+q,~0' ko NS -q k+q,~0 ' ko

1 5 0—0 Z -0 _z + (15)
i za;/ﬁ p Jp << (o-(p+q$p - Sp S—-(p+q) )ak+q’_0] ak0>> 2

Then it is convenient to define the following set of the irredu-
cible operators

4

(gt s 57 els? '
i ) L e L . (16a)
-, z -0 7 ir ' z et S
S S - = & =
( —~(p+q) " p sp S—(p+q) ) S-(p+q) Sp SP s“(P+‘l)
: . (16b)
A - - A
1<8,>( o ap,—q) ga, —(M))} S_q’
where
ZZ -+ z \ir Z,ir - ot
A 2Ky +Kg 2BZ97(8q) > +<8-¢8¢> (16¢)
2<Sg> 2<8¢> :

Note that before introducing the irreducible operators (16) one
has to extract from <<S:ZCk+q,_o|aig>> the terms proportional
to the 1t.ut1a1 Green function <<S:‘¢’lak+q,_a|a+ka>>’using the spin
cotflmutatlon relation. It must be represented by introducing the
spin-operators ordering rule in the calculations.

After a simple algebra equation (15) can be written in the
following form

i :
(A - I (w)<<a, |a, > + _E_cp(k) «<a lap > =
+
<Ay 18y, 2IA,, (@) << Bk,ql a:a» (17)
=% + ’ 5 i
q ®W+ 2w - 50 @ - (0 '
0 q k+q,—0 k+q,0
where
-g 0 Z .ir ZUAr
S 2IA, (w)<(S Suizi>
® k) =3} L ko (‘-)-q)(q b, (17a)
q
W + zawq - ‘k+q,-0 © - (k+q,-0
1 ¢ 0 g ‘
Aol@) = 5 % (0 + By o - (k+q,—0) : : . by
N . e e
wy = — <8y>Tg - I )+ — 20, 3, —Ro B (17¢)
VN N < 2<8y> :

Here o denot/elzls/ the magnon energy in the generalized mean-field
approximation '.The higher-order operators Ak,q and Bk,q

have the form (c.f.“s/) ;

(]8a-)

1 -0 1 -0 z -0z ir
A =-—0 S8 -~z 3] (8 S -S_§ ) a
k, k+q,—0 * ~ 0 e ~(q+p) —(q+p) k+q,~0"’
4 \/‘I‘T q q N P qtp)p P qtp q
e 1 Z Jir ..
Bk:q 7 ZU:/-:N-:;(S_q) Ck+q!a i (]8b)
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The irreducible operators (10), (16a) and (16b) have been in-
troduced so that the operators A, q and qu satisfy the con-

ditions
+ +
<lA, o ako] >=<lAL . Cpl > =0, <IBy ., a,l,>=<[B, CkU]{g)O.
Now we consider the GF <<(S ) 1a+ >>., Similarly to equa-
k+q,0 ko
tion (17) we have
z ir
< S S <<B >>
<<Bkala >> + —-E 6" ¢ q) «<a la >> =3 - kqlaka (20)
q 0
N D= ck+q,¢7 Ois t'k+q,0’
Then from eqs.(17) and (20) we obtain
I
— ¥, () <<akaiak+o>> + <<Cka|a]ta>> i
<Ay qlaza > (1 +1A, ()] <<3k'q\a{,, >> }(21)
=34 . + .
0 0

g {1 = IAka(cu)] (w + 2,0 —‘k+q,—o) Ll IAka(“’)] (w - ‘k+q,o)

where
-0 O
<S_ S >
\P ((0) =3 t +
TSI @] @+ g0 - )

(1« IAkU(m)] <«(sZ ) il : (22)

+ i

. IAka(w)] (w - £k+q =)

Analogously one can write the equation for GF <<Ck0|0;;>>.
So, the equations of motion (9), (17), (19), (21) can be summa-
rized in the matrix form (c.f./!5/)

QG -1+ E ¢ G,. (23)
Here
0 A

@ s UR 1 0 I

Q - . D1 . (24)
WDV @ 1 o w ]

0 0 AL a8, > <A, ol Cyly>> !

6 - ! Gl= . . (25)
P l/mk.p I/Qk’p kp‘a >»> K \C >>
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with the notation

0
wk’q =[1- IAka(m)] (w + zawq _€k+q,—o)’ (26a)

0 i
Qk,q pis] IAko(cu)] (w - €k+q,0) /11 - IAkg(m)]. (26b)
s 2 /
Comparing eq.(24) with the results of paper'lS/one can see that
vy ko @) play the role of the generalized "susceptibility" of the
spln—electron bound states instead of a 51mp1e electron suscep-
tibility xq(k @) in the scattering-state regime

Xolk o) = 0 3 Kt @n

To obtain a Dyson equation, we have to use the second-time
t” differentiation for the matrix GF G; and then to introduce
the "right" irreducible parts as discussed above for "left" ope-
rators. Thus, we obtain the exact equation

~

s 5 40
G, = G ot Gkapm G, (28)

where the generalized mean—-field Green function étnﬁu) reads

o L6 (29)
G, @ = 9 1.
The scattering operator Qo(m) is given by the expression
~—1 N N ~=1
B o@-=1T12 &Pp odii, (30)
a P q
Pq
where
+ +
«Ak,plAk,q >> <<Ak’p [Bk,q»
Pe. o -
+ + €3))
<<BLpIALq>> <<Bkm|Bkﬂ>> i
From the Dyson equation
<0 ~0 A A
Gka(“’) = Gy, (@) + Gy, (@) My; (@) G () (32)

we get the following equation for the self-energy operator ﬁkU@Q
% A ~0 2
Po@ =M @ +M (G @P @ (33)

from which it follows that we can speak in a complete analogy
to the diagrammatic technique that the M is deflned as
a proper (connected) part of the scattering operator P



H,, @ = {B,(@)}°. (34)
It should be emphasized that for the retarded (and advanced)
GF”s the proper part has only a symbolic character. But one

can use the causal instead of retarded GF at any step of calcu-
lations due to the same form of the equation of motion for all
three (retarded, advanced, and causal) GF's. In some sense

there is such a possibility of controlling, in the diagramatic
language, the relevant decoupling procedure in further approxi-
mative self-energy calculations. o (@) has the following exact

representation

= 0 0

M, (@) = , (35)
0 0, @/¥ ()

where Hka(w) denotes

[Af g0 <Ap BE >2¢ <<By . AF 558 <cBp (Bt >0
nka(w) 25 yP k,q A ,p ! Pkyq i P »q iy P q
P4 Oy Oy o “L,p

Qka thwkﬂ thﬂkq (36)

Hence, the determination of the full GF Gko has been reduced
to the determlnatlon of the mean-field GF G Lo and the self-
energy operator M

4., EXCITATION SPECTRUM OF THE MAGNETIC POLARON

The mean—-field matrix GF ﬁga@n has the explicit form

4 1
1 -—Y¥ (w)
0 1 i
S 1 . ‘/N) (37)
e g = W ( IRIE
\/'h_l- ‘l{m @ @ — € ()
Here det() reads
= 0 2
detQ) = w - €5 ~ a /N)‘l';(a(w). : (38)

: + 3 :
Let us consider only GF <<a,;|a,, >>. It can be rewritten in
the following form

0,1

<<aka1a:o>> = {[<«<a, la* s Sk e (39)

where (<<a |a >0 ) = detQ and the self-energy corrections
are given bv

S 0wt “lka(“’) . (40)
8 RO

As follows from eq.(38), the generalized meanfield GF
«<a,|af >>% has a very nontrivial structure which is quite
d1f§erent from the standard scattering-state regime form:

<, lap,>> = i(«akala‘;o»w)' g 1)
where
+ 0 0 -1
<<ak0|aka>>m =(w - ‘ka) :
12
€ Ol c
“((JJ) = T 2 f<<S ak+q o |s+q'ak+q'.-0 >0 ks
(42)
ir C
+ <<(S aH_q’o ((S p k+q radi>> 1.

For the bound polaron-like electron-magnon states the mean-field
renormalizations are quite different from the Hartree-Fock re-
normalizations. In general, the quasiparticle energies are de-
termined by the equation

e 2 ~
Em =€+ (I7N) 'lfka(Eka) (43)
and the energy spectrum E consists of two bands for any
electron spin projection. At the atomic limit (¢, = 0) and

@ >0 we obtain the exact analytical representation given

in paper’?

+ 0 S+z.8_ 4+ 1 -1 8 - 2,8 |
Kayg |aye> |, = 2S”+”1 ( +18) Z-KS+1), (44)
where § and §, = <So>ﬁwv are the spin-value and magnetiza-

tion, respectlvely Moreover, our generalized mean—-field solu-
tion is exactly reduced to the Shastry-Mattls/ﬁ/ result for
T =0

Akg(m) -1

+ 0 2
<<akﬂ"akﬂ>> ISM = {w - fka - 8(” 21 sm;;_(m (45)

The magnetic polaron states are formed only for antiferromagne-
tic s—-f coupling (I < 0) when there is a lowering of the band
electron energy due to the effective attraction of the electron
and magnon. At T = O the excitation spectrum of the magnetic
polaron problem has been investigated in more detail

In general, one needs numerical calculations of the excitation
spectrum (43). For this aim the explicit form of the correla-
tion functions <S?S%> and <(8Z% )i (S8%)i'> must be taken into
account/15-17/, v it 1!

9



Let us consider two limiting cases where analytical calcu-
lations are possible:
;) a wide-band semiconductor (1S <<w)

(5648, +D4SG6-5+ D

E =€+ =

ky

(46a)
Gig oot 2I(8 - 8) <S:S__q>
- ¢ ~ 28, 28

vlosag
N q (k-q
ii) a narrow-band semiconductor (JI{8 > W)

254 1)(8 89 1.4, <S. 8>

€L+ — 3 1.1 ;
@ DEs, " nT e s ] oY

Elu =18 + 1)+

where we removed the longitudinal spin correlations for the sake

of simplicity. Here W, is the bandwidth in the limit I = 0.

Now we consider the low-temperature (spin-wave) 11m1t in eqs. (46)
in which it may be reasonable to assume that S, = 8 and <S'S”>=

25(1 + v ). Here v = [exp(Bm Yy 1] . Thus, we obtain ),
(c£./7.987 ),
a’s . 1 Shianl
E = 4184 3t (o kg ik
k. N s o im ey (47a)
X k—q k~q  k
|TI|S << W,
BLois, 1, B d1ox 028 o%g iy .
ki + +2S+1(k+NqZS+1( S )'l 18 >>W. (47b)

Using expressions (47) one can estimate the binding energy of
the polaron-like state which can be defined as

0
‘W%, B (48a)

because in the H-F approximation the spin-down band is given

by the expression € =% + IS. We obtain

B = gy~ % r Ifk-;k—-qek_—fkms b e =¥ e
and ‘

m ‘1(;2" % f 2szf 1 ((l.‘?—sq;lfk b Hgt o
10

where

2
g _ 28 5 1 sy 8 k. (50)
‘B1 N qfk_q-c—.?IS- w I, ‘B2 +28+1 I

The temperature dependence of the energy spectrum in the spin-
wave region is given by the usual T behaviour. In a gene-
ral case one takes into account a more exact form of the corre-
lation function <st:§>, for example, the famous VLP result/lﬁﬂ

5. DAMPING OF POLARON STATES

To find explicit useful expressions for the self-energy ope-
rator X (k, ) (40), suitable approximations to evaluate the
higher—-order GF’s in (36) should be used. To calculate the
self-energy in a self-consistent way, we have to approximate
it by the lower-order GF”s. Let us consider GF s appearlng in

(36). It is convenient to write down <<A IA >>c in the
form
<<A |A+ >»° = L+}°__<i_@:_(eﬁ“"+' 1) fdcei <A A (0 (1)
k,p' Tk,q T on s k,q " k,p X
Then we obtain 2
+ + —0
<Ak’qA ®>° = N <quk+q GCHP L) S_p(t)>
> : B® > 02
i <ak+q,—0F—q,—0 -p,~0 akﬂ”—a 4
We use the following decoupling procedure
<s? qu_o k+p—0(t)s ®>=35, <s (t)> <Ck+q —Chiq—0®>:

+ + : + (53)
<ak+qy-0F—q —C F—p 0 (t)akﬂh- o2 = aq,l: - F—q 5l F—q,—a he “Prig0 ak’ﬂb-"m =
Here

+ 1 z . ir O z ir O Jir
<F—q,—a F-q,—o(t)>='ﬁ‘l, “p ’<[(s ) Sqrp ~ Cqep)) S—P]
L (54)
-0 z ir -0 z ir . ir
-5 . 4
SN CIOVC L R(CTCNPNCI

The approximation (53) results from the neglect of the vertex
corrections, i.e., the correlation between propagation of the
polarons and the magnetic excitations and the electrons and the
magnons, respectively. Taking into account the spectral theo-
rem we obtain from (51)=(53)

11



dw] dwz(l + V(wl))

2
<<A e B = 1 a
k,pmk’q» N o {-—Im <<sj;}sq>>w } x

9.p W -] -0, 1
L tmeg el - o g ) x
« [if dmldmzdwa[l 5 n)(w,)][1+v(w2)]{ i <<(S_z )irl(s z)ir o
el e e . . !
x1-Lm <<s:'(’q+q 418 P} - 1 <<ak+q,_,,!a§+q,_g>>m3 b (55)

2 du do, (1 )
L Gl

1 % ir, _Z ir
=2 Im<<(3_ 0718007 >3, 1 x

k,p' "k,q p:d N © - 0wy - oy 1
1 i : !
x ik = Im <<Ck+q,olck+q,0>>0)2! ; (56)
+ . s
and <<A |qu>> s <<B |A1 >> contributions are removed.

k, ’ v *

In eqs. FSS)”and (56) we drog the Fermi distribution function
due to the low electron concentration approximation. Equations
(32),. (55) and (56) form a closed self-consistent system of
equations. In principle, we may substitute into the r.h.s. of
.(55) and (56) any relevant initial Green functions and solve
it by iterations. We choose for the first iteration step the
following simple one-pole expressions :

-0 o+
a

1
* --Im<S >
rr ~p k+q+p,-0 I Spa k+q+p,~a Ep s

—0 O
=<8 8§ >8(a ik
Bt (w +z0mp (k+q+p,—0)'

Z ir

1 7z ir . & 2
oI <) Byl Y 0> =<2 EDTS S

= “keqep, o)
2 (57)

1 -0, o 2<8q4 >

=S Im<<S_ I8 > = -z S0 Stk z,0.)

g 2 5

~1Im ak+q’_0[ ak+q,_a > = (w - (k+q,—0)'

Then we obtain from (36), (55-57)

28512 o / ' 8l
L e el e
; q,p 2 ¢ - -
wk,q o z"(wq wp) ‘k+q-p,-0

12

S EH > 2 1+ v(?) _ .
o Bl polis fdw'_—-—z—-_{-%lm«(sz 3D > dx
o + zamq ~ € kiq-p,—0 q.p i -9 1 ®
-0 o Z ir z . ir (58)
S
L <S°8> ey

> 7
©w -0 + Z,0 w -~

0 ®q ~ ‘ktqip,—0 = “ktqp,0

where we write down only the s -f exchange inelastic scattering
contributions for brevity. For a concrete calculation in a wide
region of temperature we need a suitable approximation for the
longitudinal spin susceptibility. For this aim one may use the
results of paper/”/.Using the self-energy 2,(k, w) we obtain
the shift A (k, ®) and damping I, (k, @) of the electronic states
taking into account magnetic polaron states

Ak, @) = Re Sy, 0); I,k o) =-Im3 k& o). (59)

For example, the s -f exchange inelastic scattering contribu-
tion to the damping for the spin-wave region reads

n (- @sn’? %I_ z 1 v 1+ vyl o
Moap, @l o) Gy

As it follows from (60), the damping of magnetic polaron arizes
from combined processes of absorption and emission of magnons
with different energy g - a)p).

6. CONCLUSIONS

In this paper we have shown that the IGF method gives a uni-
fied and self~consistent formalism for a complete description
of the electronic spectrum including bound polaron-like states
and inelastic scattering processes for magnetic semiconductors
within the s ~f{ model Hamiltonian. Contrary to the claiming
made in ref./?”/ our one-electron Green function correctly re-
produces the true spectrum of the current carriers in a very
natural way because the IGF method permits us to extract all
relevant (for the problem under consideration) mean-field re-
normalizations and put them into the "zero-order" (generalized
mean field) GF. In a general case the mean-field renormaliza-
tions can have a very nontrivial structure as in cases of the
Hubbard model in the strong correlation limit 12/ and the mag-
netic polaron problem at finite temperatures and an arbitrary
value of s-f exchange. To obtain this nontrivial structure
of the mean-field renormalizations correctly, one must construct
the full matrix GF built on the complete algebra of relevant
operators and develop a special projection procedure for higher-

13



order GF’s in accordance with the finding algebra. Moreover,

for the first time in our theory we are able to calculate expli-
citly the full self-energy operator 2k, o) for magnetic pola-
ron problem.

Note that a similar but distinct task is the problem of the
bound magnetic polaron in semiconductors’!?:2%/, The BMP consist
of an impurity electron localized in a shallow donor state ac-—
companied by an inhomogeneous local magnetization and it also
can be considered by the present method, but it is the object
of a subsequent paper.
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B 06bveguHEeHHOM MHCTUTYTE RAAEPHLIX UCCNEROBaHUA Hadan
BuXxoAuTb cbopHuk "Hpamxue coobwyenuna OHAH", B Hem
6yAyT NOMeWaTbCA CTaThU, COAEpPXaWMe OpPUMIrMHafNbHbie HayuHue,
HayUYHO-TexHUUEeCKne, MeTOfAMYECKHEe W NPUKNaaHe pe3ynbTaTw,
Tpebyoime cpouHoi nybnukauuu, Byayum uacTbio ''CoobueHui
OUAK", crtaTtbu, Bowepume B cOOPHUK, MMENT, KakK u apyrue
usagaHus OUAU, ctatyc obmumanbHux nybnukauws .,

C6opHuk ''KpaTtkue coobueHua OUAU'' GypeT BUXOAUTDH
perynapHo.

The Joint Institute for Nuclear Research begins publi-
shing a collection of papers entitled JINR Rapid Communi-
cations which is a section of the JINR Communications
and is intended for the accelerated publication of impor-
tant results on the following subjects:

Physics of elementary particles and atomic nuclei,
Theoretical physics.

Experimental techniques and methods.

Accelerators.

Cryogenics.

Computing mathematics and methods.

Solid state physics. Liquids.

Theory of condenced matter.

Applied researches,

Being a part of the JINR Communications, the articles
of new collection like all other publications of
the Joint Institute for Nuclear Research have the status
of official publications.

JINR Rapid Communications will be issued regularly.
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WILL YOU FILL BLANK SPACES IN YOUR LIBRARY?

You can receive by post the books listed below. Prices - in US 8,

including the packing and registered postage

Proceedings of the VII All-Union Conference on
Charged Particle Accelerators. Dubna, 1980.

° 2 volumes, 25.00

D2-81-543

D1,2-81-728

D17-81-758

D1,2-82-27

D2-82-568

D3,4-82-704

D11-83-511

D7-83-644

D2,13-83-689

D13-84-63

Proceedings of the VIII All-Union Conference
on Charged Particle Accelerators. Protvino,
1982, 2 volumes. 25.00

Proceedings of the VI International Conference
on the Problems of Quantum Field Theory.
Alushta, 1981 9.50

Proceedings of the VI International Seminar
on High Energy Physics Problems. Dubna, 1981. 9.50

Proceedings of the II International Symposium
on Selected Problems in Statistical Mechanics.
Dubna, 1981, 15.50

Proceedings of the International Symposium
on Polarization Phenomena in High Energy
Physics. Dubna, 1981. 9.00

Proceedings of the Meeting on Investiga-
tions in the Field of Relativistic Nuc-
lear Physics. Dubna, 1982 7.50

Proceedings of the IV International
School on Neutron Physics. Dubna, 1982 12.00

Proceedings of the Conference on Systems and
Techniques of Analitical Computing and Their
Applications in Theoretical Physics. Dubna,1982. 9.50

Proceedings of the International School-Seminar
on Heavy Ion Physics. Alushta, 1983, 11.30

Proceedings of the Workshop on Radiation Problems
and Gravitational Wave Detection. Dubna, 1983. 6.00

Proceedings of the XI International
Symposium on Nuclear Electronics,
Bratislava, Czechoslovakia, 1983. 12.00

E1,2-84-160 Proceedings of the 1983 JINR-CERN School

D2-84~366

of Physics. Tabor, Czechoslovakia, 1983. 6.50

Proceedings of the VII International Conference
on the Problems of Quantum Field Theory.
Alushta, 1984, 11.00

Orders for the above-mentioned books can be sent at the address:

Publishing NDepartment, JIN

Head Post Office, P.0.Box 79 101000 Moscow, USSR

Kyaemckuit A.JI., Mapsakos [[.H., Bmaxos H.II. E17-84-662

CaMocorinacoBaHHas TEOpHUA MATrCHHUTHOTO INOIAPOHAa

PasBuTa HOBasA CaMoOCOIJIaCcOBAaHHAf TeEOPHA MarHWTHOI'O NOJiA=
poHa B paMkKax S - f —o6MeHHOM MOpesiH MAUHUTHOTO IOJIYIPOBOSHHKAE .
C nomompblo MeTOna HENpHBOOHMBIX GYHKUMH ['DHHa BIepBhle MOJydeHa
OOHO3NIeKTpOHHAaA GyHKuUHMA [pHHA C yueTOM CBSISAHHOTO 3JIeKTPOH~
MATHOHHOT'O COCTOSHHA IPH KOHEeUYHHIX TeMmnepaTrypax. llonyueHHoe
pelleHHe cBoOOMTcs K pemenuiw llactpu-Marruca npu T = (0. Bnepshe
Halp#eHo 3aTyXaHHe MarHHTOINOJIAPOHHOI'O COCTOAHHA 3a cHeT He-—
VIPYIHX NPOIleCCOB pACCesHHSA.

Pabora BhmonHeHa B JlaGopaTopuH TeopeTHUecKoil dH3uku OWUAH.

Coobmenne 06benHHeHHOro HHCTHTYTa AAePHHX HcclegosaHuit., [ly6ua 1984

Kuzemsky A.L., Marvakov D.I., Vlahov J.P. E17-84-662

Self-Consistent Theory of the Magnetic Polaron

A finite temperature self-consistent theory of magnetic
polaron in the s —f model of ferromagnetic semiconductors is
developed. The calculations are based on the novel approach
of the thermodynamic two-time Green function method. This
approach consists in the introduction of the "irreducible"
Green functions (IGF) and derivation of the exact Dyson equa-—
tion and exact self-energy operator. It is shown that IGF
method gives a unified and natural approach for a calcula-
tion of the magnetic polaron states by taking explicitly into
account the damping effects and finite lifetime. .

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1984




